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Introduction

We are seeking to develop a functionalized extraordinary
optical transmission (EOT) plasmonic sensor for the
purpose of detecting low-levels of gaseous chemical
warfare agents (CWAs).
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Figure 1. Unfunctionalized sensor substrates, a) nanohole array (NHA)
EOT sensor and b) plasmonic sensor.

Current work focuses on the development of a zirconium
based metal-organic framework (MOF) film coating to
functionalize silicon and gold sensor substrates.

This MOF is currently being tested on NHA glass
substrates for detection of the CWA simulant, DMMP.

This poster details a facile microwave synthesis method
and sensor functionalization with Ui0-66 thin films, and
initial tests with DMMP.
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Results: Sensor Functionalization

With further optimization for thin film growth for temperature, time, and initial
reagent concentrations, we found that homogeneous, oriented thin films of
Ui0-66 and Ui0-66-NH2 could be grown on gold with reaction times as short
as 2 minutes.
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Figure 2. SEM imaging of blank substrates coated with Ui0-66 MOF,
c) silicon substrate and d) gold substrate.

The films consist of relatively large intergrown crystallites with a dense, thin
base of small domains. The films consistently showed variation in thickness
on silicon substrates. Films grown on gold substrates showed no consistent
variation across synthesis conditions. Though they did show some variation
experiment-to-experiment individual films were highly homogenous.
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Figure 3. SEM imaging of blank substrates coated with Ui0-66 MOF, e)
silicon substrate and fl gold substrate.

Multiple reaction times were investigated over the course of the experiment,
and films were grown following 2, 5, 15, 30, and 60 minute reaction times at
120°C. Though longer reaction times (30 and 60 min) exhibited slightly more
overgrowth the effect was not dramatic. In fact, film thickness was not
strongly correlated to reaction time, as there was similar sample-to-sample
variation for the base conditions (30 min, 120 °C) as there was for samples
synthesized with differing reaction times.

In contrast to other thin film growth
methods for Ui0-66, some of the films
synthesized on gold substrates by the
microwave method presented a
surface fracturing of unknown origin
(Fig g). It is thought that this
fracturing could be helpful or harmful
to the deployment of these sensors,
depending on the overall presented
chemical selectivity.
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functionalized NHA sensors on glass were
to gaseous DMMP, a CWA simulant. The
created a measurable spectral shift in the

sensor, as can be seen
in Fig. h. This spectral
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shift is caused by a
number of DMMP
molecules being trapped
in the Ui0-66 matrix,
which increases the
index seen by the
plasmonic field.

The sensors were also
exposed to liquid
DMMP, as shown in Fig.
i. which instead caused
a collapse of the Ui0-66
matrix. This collapse
caused a permanent
post-exposure spectral
shift. This collapse

permanent index by the plasmonic
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The above changes in the refractive index adjust the
overall optically transmitted spectrum, which allow our
direct analysis of surface behavior within the plasmonic
field on the sensor.

Conclusions & Future Work

We report a simple, rapid microwave synthesis method
for the growth of thin films of Ui0-66 for use in
chemoselective functionalization of gold and silicon
sensor substrates. This method can provide high-quality
thin films in as little as 2 minutes.

Future work will include the testing of the microwave
synthesis for different types of MOFs. We will also utilize
a gas flow cell in conjunction with a quartz crystal
microbalance (QCM) sensor to analyze simulant uptake
of the Ui0-66 and other MOF thin films while exposed to
a variety of CWA simulants mixed with other chemicals,
to test sensitivity and selectivity of the MOF.
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Figure 4. Future work j) standard QCM sensor and k) gas flow cell.
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