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Nickel plating regulates the tritium flow
from the pellet to the getter:

• Too fast flow leads to not-uniform growth
of hydride in the getter.

• Too slow leads to tritium gas build up in the pellet.

Oxygen & water on the surface of the Ni can
influence the flow hydrogen into and out of
the Ni.

Our study aims at providing insight into the
relevant surface mechanisms.
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Key hypothesis:
Small amounts  of surface oxygen (and maybe water) can reduce
hydrogen uptake by the nickel surface

Key challenges:
1. Need precisely-controlled nickel surfaces
2. Need techniques sensitive to small amounts of surface hydrogen

Typically, surface techniques are either ...
• "blind" to hydrogen: XPS or AES
or...
• Weak signal, often convoluted with

substrate contributions:
STM, LEED, Helium atom scattering (HAS)

AES

Electron collision Auger electron emission

Taken from
wikipedia.org



Our approach:

First address this well-defined question:

How does 02 on the surface of Ni affect its hydrogen adsorption?

• Work on precisely controlled Ni surfaces.
• Employ two techniques with sub-monolayer sensitivity to hydrogen:

UHV
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2 Thermal Desorption Spectroscopy (TDS)

Conventional setup:
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Our new setup:

- Precise control of sample surface
- extremely sensitive measurements of

H2 or D2 release
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3 Upgrades completed within this TPBAR project:

1. Special exposure chamber (D2, 02, H20) dedicated to TDS, which separates

gas exposure from TDS module

» eliminates possible desorption contributions from heating stage

2. Sample holders as samples

Instead of: c
o

-) r

\ 

Machine sample holders
out of sample material,
i.e., Ni:

o
) r )

» nothing but the sample is transferred from deposition chamber into TDS

1. & 2. >>> only the Ni sample is being exposed to the gas environment
we want to study, e.g., D2, 02, H20.



4 Thermal desorption Spectroscopy (TDS) of D 2 on Ni

o

1 8 mm
4 ►

First, extensive Ar+ ion
bombardment to make
entire sample plate
atomically clean:

Auger Spectrometry
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Thermal desorption of D2 (mass 4) from polycrystalline Ni
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After 5 min exposure to 104 mbar of D2
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Peak at rather low Temp (-70 Deg C) >>>

We detect monolayer (or less) of D2 at Ni surface.



5 TDS of D2 on Ni pre-exposed to 02 :
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°
Small amount of oxygen
blocks hydrogen adsorption!

To complete by Dec 31: 

• Quantify amount of oxygen
needed to block hydrogen

• Same type of study with water
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ion beam:
3 keV Ne+

surface normal
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Low energy ion scattering (LEIS):

Notation: X(QS), Detects projectile ion Ne+,
scattered from the surface atom X

Direct recoil spectroscopy (DRS):

Notation: X(R), Detects surface atom X,
recoiled by the projectile into the detector.

like H(R) (recoiled hydrogen)

Angle-resolved ion energy
spectroscopy (ARIES)



Measure clean Ni foil in residual UHV
3 keV Ne+ beam sa=80 Deg from normal

"Collision circle plot" for scattering angles
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Energies of scattered & recoiled ions,
assuming elastic collisions,
conservation of energy & momentum

2Es = cos 0 + -\/[12 — s1112 0

E0 1 + 1,1

ER = 411
 COS2 9

Eo (1 +

ES = energy of scattered ion

ER = energy of recoiled ion

E0 = energy of incident ion (3 keV)

19.= scattering angle

p = mass ratio of target atom to incident ion
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... allow assignment of collision processes relevant during gas exposure.



Baseline ion energy spectrum on Ni foil in "residual UHV"

3 keV Ne+ beam sa=80 Deg from normal

Fixed scattering angle 0 = 45°

1-1c1) 0(QS) 0(R)Clean Ni surface

0.0 0.2 0.4 0.6

relative energy (E/Eo)1/2

0 200 400 600 800

norrnalized scattering intensity (arb. units]

1500

T
Recoiled H

NVS)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

relative energy E/Eo (dimensionless)

Ne+

Trace amounts of impurities scattered

(mostly O, possibly some C) from Ni

1.0



12
Effect of oxygen on hydrogen adsorption

3 keV Ne+ 4 Ni foil 0 = 45°, a = 80°
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Temperature effect on H adsorption with & without 02 dosing
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Temperature effect on H adsorption with & without 02 dosing (cont.)
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Compare H(R) peaks:
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Examining dissociation: comparison of dosing with D2 vs D
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/ • D2 and D have similar uptake on Ni

• not a significant barrier for D2
dissociation at the surface

• background for D is larger due to
impurities outgassed by H cracker
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1 Temperature effect on hydrogen uptake
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1 Isobars comparing D and D2c
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For both D and D2 dosing
• Isobar curves generally obey Arrhenius relation
• Higher pressure 4 adsorption at higher temperatures

D adsorbs at higher temperature/lower pressure than D2



Summary:

• Demonstrated extreme H-sensitivity of TDS and ARIES

• Both techniques showed that minute amounts of oxygen can

block H-uptake by the Ni surface
• ARIES: Quantified effect of Temp and dissociation on H-uptake

Outlook:

• Include other contaminants (H20, CH4)

H & O adsorption on Ni single crystals
1 keV Ne• .Ni(111).1-11119 = 45* 11 E = 0.090 -10.005

Combine ARIES

with modeling

simulated H/Ni(111)

map for three-fold

adsorption site 01

Leverage ,}
our new

capability

to image

hydrogen

with STM:
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