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Nickel plating regulates the tritium flow
from the pellet to the getter:

e Too fast flow leads to not-uniform growth
of hydride in the getter.
e Too slow leads to tritium gas build up in the pellet.

Oxygen & water on the surface of the Ni can
influence the flow hydrogen into and out of
the Ni.

Our study aims at providing insight into the
relevant surface mechanisms.
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Key hypothesis:
Small amounts of surface oxygen (and maybe water) can reduce
hydrogen uptake by the nickel surface

Key challenges:
1. Need precisely-controlled nickel surfaces
2. Need techniques sensitive to small amounts of surface hydrogen

Typically, surface techniques are either ...

X . -
* “blind” to hydrogen: XPS or AES AES @» @ o
or... wikipedia.org

Electron collision Auger electron emission

 Weak signal, often convoluted with
substrate contributions:
STM, LEED, Helium atom scattering (HAS)



Our approach:

First address this well-defined question:

* How does O, on the surface of Ni affect its hydrogen adsorption?

 Work on precisely controlled Ni surfaces.
* Employ two techniques with sub-monolayer sensitivity to hydrogen:

(a) TDS (b) ARIES
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Thermal Desorption Spectroscopy (TDS)

Conventional setup:

\
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Our new setup:
Designed with Josh Whaley

. Commissioned & tested with Chen Wang
- Precise control of sample surface

- extremely sensitive measurements of
H, or D, release
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Upgrades completed within this TPBAR project:

1. Special exposure chamber (D,, O,, H,0) dedicated to TDS, which separates
gas exposure from TDS module
>> eliminates possible desorption contributions from heating stage

2. Sample holders as samples

Instead of: Machine sample holders
out of sample material,

i.e., Ni:

>> nothing but the sample is transferred from deposition chamber into TDS

1. & 2. >>> only the Ni sample is being exposed to the gas environment
we want to study, e.g., D,, O,, H,0.
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First, extensive Ar+ ion
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atomically clean:
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Peak at rather low Temp (~¥70 Deg C) >>>
We detect monolayer (or less) of D, at Ni surface.
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To complete by Dec 31:

soo  * Quantify amount of oxygen
needed to block hydrogen
e Same type of study with water
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| Angle-resolved ion energy
SO spectroscopy (ARIES)

recoiled ions (H") .
& scattered Ne*

ion beam:

Low energy ion scattering (LEIS):

Notation: X(QS), Detects projectile ion Ne*,
scattered from the surface atom X

Direct recoil spectroscopy (DRS):

Notation: X(R), Detects surface atom X,
recoiled by the projectile into the detector.
like H(R) (recoiled hydrogen)




Measure clean Ni foil in residual UHV
3 keV Ne+ beam a=80 Deg from normal

“Collision circle plot” for scattering angles
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20°<0<90° ...

... assigns
circular arcs
to collision
processes:

Strongest
signals from
H(R), Ni(QS)
and O(R)

Energies of scattered & recoiled ions,
assuming elastic collisions,
conservation of energy & momentum

2
Es  (cos6 +/p? —sin26>

E, 1+
ER 4‘“. 2

= cos“ 6
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E. = energy of scattered ion

= = energy of recoiled ion
E, = energy of incident ion (3 keV)

U = scattering angle

U = mass ratio of target atom to incident ion



Collision-circle plots for different gaseous environments...

(Dosing gasses into the chamber via a leak valve)

Dosing with D, Clean Ni foil
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... allow assignment of collision processes relevant during gas exposure.
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Baseline ion energy spectrum on Ni foil in “residual UHV”

3 keV Ne+ beam =80 Deg from normal
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i3 ‘ Effect of oxygen on hydrogen adsorption
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With increasing oxygen dosing:
1. 0O(QS) & O(R) peaks grow
2. Nipeak diminishes as O coverage increases
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Temperature effect on H adsorption
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With increasing temperature:

1. H peak diminishes
2. 0O peaks remains unchanged (up to 400 °C)
3. Ni peak increases slightly

|



14
Compare H(R) peaks:

SR
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‘ Temperature effect on H adsorption with & without O, dosing (cont.)
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isobar measurements of hydrogen
uptake by monitoring D(R) while
ramping down temperature
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» |sobar curves generally obey Arrhenius relation

» Higher pressure - adsorption at higher temperatures

\D adsorbs at higher temperature/lower pressure than D,

/

1 0 L e BB "



Summary:
 Demonstrated extreme H-sensitivity of TDS and ARIES
 Both techniques showed that minute amounts of oxygen can

block H-uptake by the Ni surface
* ARIES: Quantified effect of Temp and dissociation on H-uptake

Outlook: H/Pd (3x3) RS
] Individual B SSeeEes. S
* Include other contaminants (H,0O, CH,) H vacancies ESERSEEEENE
* H & O adsorption on Ni single crystals el
Combine ARIES T —— w Leverage nm : i 4
with modeling our new 3
capability
to image
simulated H/Ni(111) hydrogen
map for three-fold with STM: 3
adsorption site H/Pd (1x1)
4 ! Individual H atoms




