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2 I Background

. -\oise affects our ability to monitor low-magnitude events.

• Frequency filtering commonly used for noise suppression is ineffective when signal
and noise share the same frequency range.

• Frequency filtering is known to distort the signal, in some cases, making phase
onsets and polarities difficult to determine.

• This work was inspired by Greg Beroza's (Stanford University) presentation at
2018 AGU Meeting (Zhu et al., 2019).



3 I Background

Deep learning denoising widely used in the field of Music Information Retrieval for
music source separation (e.g., separation of singing voices from music
accompaniment)
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4 Approach

• The network consists of an encoder and a
decoder.

• For an input R(t,f), the network provides a signal

mask (Ms (t,f)) and a noise mask (MN (t,f)).

• The estimated 'clean' signal (g(t, f)) is obtained

by multiplying Ms(t, f) with R(t, f); and the

estimated noise (N (t, f)) is obtained by
multiplying MN (t, f) with R(t, f).



5 Network Architecture

Noisy Signal

100x121x2

100x121x8

50x61x8
50x61x16

25x31x16

25x31x32

13x16x32

13x16x64

7x8x64

7x8x128

4x4x128

4x4x256
12

Signal Mask
Noise Mask

100x122x2
100x122x8

100x122x16

50x61x16

50x62x32

26x31x32

26x32x64

14x16x64

14x16x128

7x8x128

8x8x384

3x3 Conv2D + ReLU + BN (batch norm.)

3x3 Conv2D + 2x2 stride + ReLU + BN

er 3x3 Deconv2D + 2x2 stride + ReLU + BN + 30% Dropout

lx1 Conv2D + softmax

4114iencatenate

• The network consists of 20 hidden
layers.

• Half of the layers makes up the
encoder, and the other half the decoder.

• Implemented using Keras on top of
TensorFlow

• —2.4 million trainable parameters

• —3K non-trainable parameters



6 I Data

• The 'clean' signal dataset consists of 3,188 high-SNR

Z-comp waveforms (60-sec long and filtered with BP

1-20 Hz) recorded at BRPU from local and near-

regional earthquakes.

• The noise dataset contains 15,426 waveforms from

various noise sources and various stations.

• The 2 datasets randomly divided into training,

validation, and test sets using the '70-15-15' rule.

A BAS ON

E

•

B ASIN

OREM' SAL r
• LAKE CFESEFII

afttir SA LA
LAKE OE 5ERZ

A

UTAH

7.4
AAA
b3VA
orn

.511 =1E6,4
lir Vcr.ali i=4Fad.,

Name: SRPUI

Hama; UU

DeacripPon
. Butthe Ranch Prree, UT, USA old TA-

r
-1317A

liteoledo

1m%

  A 
14 A

A At% 4%
ALegend X

Stations

A SriortPenCKI

A StrongHOlion

A 0041VOSI1e

Broadtka rid

Non-UUSS.Nietvico
• ILII1

SO 111

A

A A

A ff A
A

A Vvr
A A A

A
A Hiv,,Org•

Fav

A
A

A °lirl IV
Men

Miren Pi gond
Rau* awl Ado,.

•

A 0

A C
0

P.*



7 I Data

• Noisy waveforms constructed by summing each 'clean' signal waveform and a
randomly selected noise waveform. This was repeated 20 times for each set
resulting in:

o 44,620 waveforms for the training set,

o 9,580 waveforms for the validation set, and

o 9,560 waveforms for the test set.

• The validation set is used in tuning the network hyperparameters, while the test set
is used to assess network performance.



8 I Network Training

• Input for the network are both the real

and imaginary part of the STFT of the

noisy 'constructed' waveforms.

• We used:

• A SGD optimizer and a learning rate of

5x10-4

• An L2 regularization (penalty for larger

weights)

• Training carried out for 225 epochs
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9 I Evaluation Metrics

• Correlation Coefficient (CC)
o Measures the similarity between the recovered waveform and the ground truth
(GT)

• Signal-to-Noise Ratio (SNR in dB)
O Using 9-sec window for both signal and noise

SNR = 10 log10 
As
AN

• Signal-to-Distortion Ratio (SDR in dB)
o Measures the amplitude distortion with respect to GT

IIWGT112 SDR = 1010 g10
11W-WGTI12

WGT - Ground truth waveform; W - Recovered waveform



Evaluation Based on Constructed Data of the Test Set
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• Recovered waveforms are very
similar to the corresponding GTs
(CC of 0.97-0.99).

• Recovered seismograms show
little distortion with respect to the
GTs (SDR of 12.37-17.81 dB).



11 I Evaluation Based on Constructed Data of
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• Again, the recovered waveforms
show high degrees of fidelity to
the GTs.



12 Evaluation Based on Constructed Data of the Test Set
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• 9,560 constructed noisy
waveforms of the test set

• The denoiser achieves an average
improvement in SNR of —5 dB.



13 I Evaluation Based on Constructed Data of the Test Set
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• High average cross correlation values

(CC=0.82-0.84) for both the signal and
noise.

• This suggests that most of the 9,560

waveforms recovered by the network

are very similar to their respective GT.

• As implied by the high average SDRs,
most of the recovered waveforms suffer

little amplitude distortion.



14 I Evaluation Based on Real Data — Denoised vs. Raw
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• 584 'real' waveforms from events
with Mc from less than -0.1 to 4.5

• The denoiser achieves an average
improvement in SNR of —5 dB over
raw data.



1 5 Evaluation Based on Real Data — Denoised vs. Frequency Filtering
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• Compared with both
the raw and filtered
data, the denoised
seismograms show
reduced pre-P noise
and enhanced P
amplitudes,

• Resulting in improved
SNRs.



16 I Evaluation Based on Real Data — Denoised vs. Frequency Filtering
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• The denoiser achieves an
average improvement in
SNR of —2-3 dB over
bandpass filter.

• The gab in performance
increases with decreasing
filter bandwidth.
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17 I Why Does Denoising Outperform Frequency Filtering?
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• The values of the elements of
the mask operator vary with both
time & frequency in the range of
0-1.

• The operator for a bandpass filter
would appear as a streak of 1s
within the passband.

• The mask operator adapts to the
changing characteristics of the
input signal.



18 Model Transportability
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19 Model Transportability
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20 Model Transportability
ZNPU
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• For these stations, denoising achieved an average improvement of —3-5 dB over bandpass filtering.



21 I Conclusions

• We implemented a seismic denoising method that uses a trained deep CNN model

to decompose an input waveform into a signal of interest and noise.

• Test results based on more than 9,000 constructed waveform data suggest that most of

the waveforms recovered by the trained deep convolutional network show high degree of

fidelity to their respective GTs, in terms of both waveform similarity and amplitudes.

• Processing of real seismograms suggests that the denoiser achieves an average

improvement in SNR of —5 dB and —2-5 dB over the raw and bandpass filtered data,

respectively.

• The CNN model also works well for UUSS stations not involved in model training,

suggesting that it is transportable around Utah, and possibly also to neighboring regions

with similar wave propagation characteristics and background noise.
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23 I Target (Mask) Calculations

• Signal Mask
ls(t,f)I 

Ms(t,f) — ls(tpl+IN(t,f)1

• Noise Mask
IN(t,f)I 

IN(t PI
itiN(t, f ) = is(t,f)1+ '


