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Background

" Noise affects our ability to monitor low-magnitude events.

" Frequency filtering commonly used for noise suppression is ineffective when signal
and noise share the same frequency range.

" Frequency filtering is known to distort the signal, in some cases, making phase
onsets and polarities difficult to determine.

" This work was inspired by Greg Beroza’s (Stanford University) presentation at
2018 AGU Meeting (Zhu et al., 2019).
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4 | Approach

R(t, f) =S(t,f) + N(t. f) » The network consists of an encoder and a
Denoiser decodet.
(" | )
Me(t, ) = For an input R(t,f), the getwork provides a signal
Rt f) — € D .<:M o mask (M (t,f)) and a noise mask (M, (t,f)).
N\%
s » The estimated ‘clean’ signal (S(t, f)) is obtained
/ by multiplying M (¢, f) with R(t, f); and the
$(t, f) = Ms(t, ) O R(t. f) estimated noise (N (¢, f)) is obtained by
NGt f) = My(tf) O Rt f) multiplying My (t, f) with R(t, f).




Network Architecture

. 7 Signal Mask
- Noise Mask
100x122x2
- o 100x122x8
22 //

6 3x3 Conv2D + RelU + BN (batch norm.)

6 3x3 Conv2D + 2x2 stride + ReLU + BN

6 3x3 Deconv2D + 2x2 stride + ReLU + BN + 30% Dropout

6 1x1 Conv2D + softmax

Yoncatenate

The network consists of 20 hidden
layers.

Half of the layers makes up the

encoder, and the other half the decoder.

Implemented using Keras on top of
TensorFlow

~2.4 million trainable parameters

~3K non-trainable parameters



o I Data

" The ‘clean’ signal dataset consists of 3,188 high-SNR
Z-comp waveforms (60-sec long and filtered with BP
1-20 Hz) recorded at BRPU from local and near- Yl Bn
w7I ki e
regional earthquakes. o .
@  Hetwork LU
Deﬁcnm“:si:?:Er Ranch, Price, UT, USA old TA-
L Maw Inla
" The noise dataset contains 15,426 waveforms from 3 e ‘; A
various noise sources and various stations. P 3 A% ‘ A
F .“[‘:‘ ‘
5 A "h j "“"‘\‘ A
o ‘- [umie
i s : - Stations A v A
" The 2 datasets randomly divided into training, — A4 3
, , . A StrongMotion A EA
validation, and test sets using the “70-15-15’ rule. A Composite AP A P e
Broadband A Ad & T Canpan Natond
- Non-UusS-Network ‘ A A B =
I—L—JSD = iy
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Data

" Noisy waveforms constructed by summing each ‘clean’ signal waveform and a
randomly selected noise waveform. This was repeated 20 times for each set
resulting in:

o 44,620 waveforms for the training set,
o 9,580 waveforms for the validation set, and

o 9,560 waveforms for the test set.

" The validation set is used in tuning the network hyperparameters, while the test set
is used to assess network performance.



8 I Network Training

" Input for the network are both the real

Training and validation loss

and imaginary part of the STFT of the e T

noisy ‘constructed’ waveforms. z:
" We used: 3.0
* A SGD optimizer and a learning rate of 4 .
5%104 =~
1.5 A
* An .2 regularization (penalty for larger -
weights) -

* Training carried out for 225 epochs 0 50 100 150 200 250

Epochs
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Evaluation Metrics

= Correlation Coetficient (CC)
o Measures the similarity between the recovered waveform and the ground truth

GT)

" Signal-to-Noise Ratio (SNR in dB)
o Using 9-sec window for both signal and noise

SNR = 10logyo 22
AN
" Signal-to-Distortion Ratio (SDR in dB)

o Measures the amplitude distortion with respect to GT

Iwerl®
SDR = 101log;, ||W-VGVTGT||2

Wer - Ground truth waveform; W - Recovered waveform
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Evaluation Based on Constructed Data of the Test Set
(a)

" Recovered waveforms are very
similar to the corresponding GTs

(CC of 0.97-0.99).

" Recovered seismograms show
little distortion with respect to the
GTs (SDR of 12.37-17.81 dB).



11 | Evaluation Based on Constructed Data of the Test Set

(a)
Il\

1o
ID=1711

" Again, the recovered waveforms
show high degrees of fidelity to
the GTs.




12 I Evaluation Based on Constructed Data of the Test Set

2000
W Noisy Data "
1750 4 Do " 9,560 constructed noisy
SNR= 2.4(x 3.6) dB waveforms of the test set
1500 SNR= 7.0(x 3.9) dB

1250 A

" The denoiser achieves an average
improvement in SNR of ~5 dB.
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Evaluation Based on Constructed Data of the Test Set

With respect to 'clean' GT signal
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= High average cross correlation values
(CC=0.82-0.84) for both the signal and

noise.

" This suggests that most of the 9,560
waveforms recovered by the network
are very similar to their respective GT.

= As implied by the high average SDRs,
most of the recovered waveforms suffer
little amplitude distortion.




14 1 Evaluation Based on Real Data — Denoised vs. Raw

160 SNR= 2.7(+ 2.6) dB . Raw ASNR= 5.4(+ 4.3) dB - 584 cfﬁal, WaVCfOI'mS fI'Om CVCl’ltS

SNR= 8.1(x 5.5) dB B Denoised

with M from less than -0.1 to 4.5

Frequency

80

Frequency

" The denoiser achieves an average
improvement in SNR of ~5 dB over
raw data.
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15 | Evaluation Based on Real Data — Denoised vs. Frequency Filtering
()’ ()"

* Compared with both

N | 0] - the raw and filtered
. | | 1 1 ikl =1- - | | | S'I“h an “EI data, the denoised
0 10 20 30 40 0 60 0 10 20 30 w0 B & seismograms show
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Evaluation Based on Real Data — Denoised vs. Frequency Filtering

(a)

(b)
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" The denoiser achieves an
average improvement in
SNR of ~2—3 dB over
bandpass filter.

" The gab in performance
increases with decreasing

filter bandwidth.
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Why Does Denoising Outperform Frequency Filtering!?
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" The values of the elements of
the mask operator vary with both
time & frequency in the range of

0-1.

" The operator for a bandpass filter
would appear as a streak of 1s
within the passband.

" The mask operator adapts to the
changing characteristics of the
input signal.
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Model Transportability

Two stations (ZNPU & SPU) not involved in model training
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" [arge geographical separations
insure that variabilities (in terms of
propagation effects & background
noise) are sufficiently captured.
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Model Transportability
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20 I Model Transportability
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= Total of 844
waveforms from events

with M of -0.84-5.3
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= Total of 583 waveforms
from events with M of

0.1-4.5

* For these stations, denoising achieved an average improvement of ~3—5 dB over bandpass filtering;




21 I Conclusions

» We implemented a seismic denoising method that uses a trained deep CNN model

to decompose an input waveform into a signal of interest and noise.

" Test results based on more than 9,000 constructed waveform data suggest that most of
the waveforms recovered by the trained deep convolutional network show high degree of

fidelity to their respective GTs, in terms of both waveform similarity and amplitudes.

" Processing of real seismograms suggests that the denoiser achieves an average
improvement in SNR of ~5 dB and ~2-5 dB over the raw and bandpass filtered data,

respectively.

" The CNN model also works well for UUSS stations not involved in model training,
suggesting that it 1s transportable around Utah, and possibly also to neighboring regions

with similar wave propagation characteristics and background noise.
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23 | Target (Mask) Calculations

= Signal Mask

s
Ms(t,f) = IS(t,)|+|N ()

= Noise Mask

N(t,

ISEOI+INCEI




