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Pitting on Stainless Steels

Pitting on SS304
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Pit Stability Background

Determined through cathode
kinetics and environmental factors

Z.Y. Chen, R.G. Kelly (2009)
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Pit Stability Background
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Motivation and Goals

• Maximum pit model provides size bound, but
• No time dependence
• No pit geometry dependence
• No insights into effects of cathodes smaller than maximum cathode

• Next step is time dependence of chemistry in a pitting system
• Still must couple pit with external cathode
• Apply pit stability criteria
• Must implement potential-dependent pit kinetics and transport of species

• Current presentation
• Initial development of modeling framework and application to a range of pit
geometries and WL



Different Pit Geometries

• Consider three pit shapes:
• Hemisphere (simple)

• Double and undercutting pits
(complex)

• Under what conditions will these
pits grow or repassivate?

• I cath,max impact on stability
• Water layer thickness change

• hc impact on stability
• Pit geometry/size
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Pit Stability Criteria 
If Inequality is True, Then Pit Will Grow

1. Emouth > Er

2. (1)r/FEM,anode > r max pit model

I)3M
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3. [M1FENI > [Mlcritical

• [Ni2+]critical = 2048.84 Imt m

rmon
• [Cr3+] critical = 3213 m3

MO/
• [Fe 21 critical = 13,622.02 [A

Criteria for all pits
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Pit Stability Criteria 
If Inequality is True, Then Pit Will Grow

1- Emouth > Erp

2.
(I) I

—1.1FEM,anode > Umax pit model

0I 3M
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• Dashed lines represent constant pit size, g = Num

• Highlighted region represents satisfied pit stability
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Pit Stability Criteria 
If Inequality is True, Then Pit Will Grow

1.

2.

3.

Emouth > Erp

(I) (I)

-11FEM,anode > -1.1max pit model

1
• (-)3Mmax pit model 
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[Ni2+]critical 3
= 2048.84 [11
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Criteria for time-dependent pits



Stationary Pit Stability Criterion
Summary: No differences between pits are seen in E > Erp criteria; alwaysI

satisfied. Minimal differences between pits are seen in - criterion
r



Finite Element Modeling Setup
Input Parameters: 

Concentration NaCI = 3M (RH = 88.321)

WL = 10 — 1000 [tm (for LD = 1.8 — 180 g/m2)

g = 30 pim; D = 15 CM,

K = 19.7 [—S1
m

Assumptions: 

Laplace as governing equation (constant

conductivity)

WL = water layer thickness

g = pit diameter

D = cathode diameter

\/
Comparison of stability criterion: 

EFEM > Erp

( I ) > (

r FEM r max pit
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Hemisphere Pit 

Geometric Parameters: 

water layer varied

WL = 10-1000 µm,g = 30 µm, D = 15 cm
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Geometric Parameters: 

water layer varied

WL = 10-1000 µm,g = 30 µm, D = 15 cm

MiL(1)=10 urn Surface: (V)
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Undercut Pit 

Geometric Parameters: 

water layer varied

WL = 10-1000 µm,g = 30 µm, D = 15 cm

WL(1)=10 um Surface: (V)
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Plotting 1/r Stability Criterion for

3
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Conclusions for Steady-State Modeling
U RSITY

RGINIA
ENGINEERING

• All pits satisfy EFEM > Erp criteria for geometries and environmental
factors considered

• Water layer changes > 100 ,tim do not have a large impact on stability,
indicating that pit size/geometry (i.e. ILA is more important to stability
than environmental factors (i.e. Icath,max)

• Complex hemisphere-like
i> 

 pits behave similarly to a hemisphere pit in both
EFEM > Erp and E

r)FEM max pit 
criteria

• Indicates that using "hemispherical pit" for simplicity is not a bad assumption

• "Double Pit" is less stable than hemisphere and undercutting pit

Doe e conce trati profile o al ions agree with atements?



Time Dependent Pit Stability Criterion
Summary: Concentrations of Ni2+, Cr3+, and Fe2+ all increase with time, and all
satisfy critical concentration criteria before reaching steady-state



Time-Dependent FEM Setup
Input Parameters: 

Concentration NaCI = 3M (RH = 88.321)

m2
DNi = 4.01,X10-1°

DFe 4.03x10-1°

Dcr = 3.23x10-1°

K = 19.7 [—S
m

Assumptions: 

m2s
Ni —> Ni2+ + 2e-

Cr —> Cr3+ + 3e-

F e —> Fe2+ + 2e-

16% Cr; 10% Ni; 74% Fe

Laplace as governing equation (constant

conductivity)

Dilute solution (Nernst-Einstein equation)
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Hemisphere Pit 
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Double Pit 
Geometric Parameters: 

Time varied

t = 0- 1000 s, WL = 16 µm,
g = 30 µm, D = 15 cm
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Undercut Pit 
Geometric Parameters: 

Time varied
t = 0-1000 s,WL = 16 µm,

g = 30 gn, D = 15 cm
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Conclusions for Time-Dependent Modeling

• At the edge of the pit, it is more difficult to satisfy the critical concentration
criteria (due to easier diffusion)

• In all pit geometries, all metal ions satisfy the critical concentration criteria
before reaching steady state

• The Double Pit reached stability the quickest, but was also the quickest to
loose stability via easy diffusion out of the pit

• Both steady-state and time-dependent results indicate that with the
current set of pit geometries, all pits will actively corrode
• Note that these pits are all fairly small, so it is not surprising that they are stable.
• In the future we will explore pit size to find size at which external cathode cannot
support pit growth
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Double Pit
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