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Pitting on Stainless Steels

Pitting on SS304
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Pit Repassivation on SS302
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Pit Stability Background

Stable localized corrosion COUPLING OF ANODE
AND CATHODE

ANODE CONTROL Stifling

Determined through cathode
kinetics and environmental factors

CATHODE CONTROL

Cathode Current Capacity (l.am max)

Anode Current Demand (I, )

Determined through size of the pit, and
pit stability product

ZY. Chen, R.G. Kelly (2009)
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Pit Stability Background

R.M. Katona, J. Carpenter, E.J. Schindelholz, R.G. Kelly (2019)




Pit Stability Background
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Motivation and Goals

* Maximum pit model provides size bound, but
* No time dependence
* No pit geometry dependence
* No insights into effects of cathodes smaller than maximum cathode

* Next step is time dependence of chemistry in a pitting system

* Still must couple pit with external cathode

* Apply pit stability criteria

* Must implement potential-dependent pit kinetics and transport of species
* Current presentation

* |nitial development of modeling framework and application to a range of pit
geometries and WL




Different Pit Geometries

* Consider three pit shapes:
 Hemisphere (simple)

* Double and undercutting pits
(complex)

e Under what conditions will these
pits grow or repassivate?

* Icath max iMmpact on stability
e Water layer thickness change

* [ impact on stability
* Pit geometry/size
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Hemispherical Pit

Double Pit

Undercutting Pit

Represents active pit growing
on “old” repassivated pit

Represents undercut pit with corrosion
product built up at pit mouth
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Pit Stability Criteria o JALLSRIR
If Inequality is True, Then Pit Will Grow

1. |Eqouth > Erp Criteria for all pits
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Pit Stability Criteria
If Inequality is True, Then Pit Will Grow

* Dashed lines represent constant pit size, g = 30um

. outh rp
* Highlighted region represents satisfied pit stability
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Criteria for hemisphere-like pits

3M Max Pit Model, 50% saturation
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Pit Stability Criteria

If Inequality is True, Then Pit Will Grow

1. Emouth > Erp
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Criteria for time-dependent pits
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Stationary Pit Stability Criterion

Summary: No differences between pits are seen in E' > E,.,, criteria; always

satisfied. Minimal differences between pits are seen in - criterion
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Finite Element Modeling Setup

Input Parameters:
Concentration NaCl = 3M (RH = 88.321)
WL =10-1000 um (for LD = 1.8 —180 g/m?)
g=30um;D =15cm

S
k =19.7 [—]
m

Assumptions:

Laplace as governing equation (constant
conductivity)

WL = water layer thickness
g = pit diameter

D = cathode diameter

RSITY

o
edge mouthv

pit

Comparison of stability criterion:

Ergm > Erp

3M Potential Distribution as f(WL)
Hemisphere Pit

600

Potential [V]

)max pit

Ohmic Drop decreases
above ~ 50 um WL

Water layer thickness [um]
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Hemisphere Pit i e

_ . % satisfied for WL > 10.5 um
Geometric Parameters: Epie > Eyp for ALL WL's

water layer varied

WL = 10-1000 um, g = 30 um, D=15cm 3M Potential Distribution as f(WL)

Hemisphere Pit

WL{1)=10 um Surface: (V)

Potential [V]

Region with both criteria satisfied

Water layer thickness [um]




Double Pit

Geometric Parameters:

water layer varied

WL = 10-1000 pm, g = 30 um,D = 15 cm

U
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% satisfied for WL > 50 um
Epit > Eyp for ALL WL's

WL{1)=10 um Surface: (V)

Potential [V]

3M Potential Distribution as f(WL)
Double Pit

Region with both criteria satisfied

Water layer thickness [um]




Undercut Pit

Geometric Parameters:

water layer varied

WL = 10-1000 pm, g = 30 um,D = 15 cm

U
iy

All Regions Active
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. % satisfied for ALL WL's
Epit > Eyp for ALL WL's

WL{1)=10 um Surface: (V)

Potential [V]

3M Potential Distribution as f(WL)
Undercut Pit, All Regions Active

E_edge

——E_mouth_b

——E_mouth_a

Region with both criteria satisfied

Water layer thickness [um]
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Plotting I/r Stability Criterion for Hemisphere-Based Pits

I/r Stability Criterion I/r Stability Criterion
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Conclusions for Steady-State Modeling

* All pits satisty Epgy > Ey criteria for geometries and environmental
factors considered

* Water layer changes > 100 um do not have a large impact on stability,
indicating that pit size/geometry (i.e. I; ) is more important to stability
than environmental factors (i.e. I.qth max)

 Complex hemisphelre-like pitslbehave similarly to a hemisphere pit in both
Ergym > Eypp and (—) > (—) criteria
FEM

r '/ max pit

* Indicates that using “hemispherical pit” for simplicity is not a bad assumption
* “Double Pit” is less stable than hemisphere and undercutting pit

Does the concentration profile of metal ions agree with these statements?




Time-Dependent Pit Stability Criterion

Summary: Concentrations of Ni%t, Cr3*, and Fe?™ all increase with time, and all
satisfy critical concentration criteria before reaching steady-state




Time-Dependent FEM Setup

|nDUt Parameters: Line Graph: Concentration Ni (mod/m?) -
Concentration NaCl = 3M (RH = 88.321) S : !
_ _ 3000 -
_10 m? 2800 -
DNL' =4.01x10 T 2600k
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10 ‘m?] 22001
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S
L - IE'UU'— 55
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Kk =19.7 l—] 0 - 100 . 740 gool-| — 100 Concentrations increase
- 16% Cr; 10% Ni; 74% Fe | “°[| 1%, atior
. with time
Assumptions: ed )
200 e
Laplace as governing equation (constant oli . . : 2 .
% .d o 5 10 15 i x10°
conductivity) Reversed arc length (m) :
Dilute solution (Nernst-Einstein equation)

‘ Comparison of stability criterion:
[M+]FEM > [M+]critica1
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Concentration (molym?)

Double Pit

Geometric Parameters:

Time varied

t = 0-1000 s, WL = 16 pum,

g=30um,D =15cm

Primary pit

Secondary pit
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Conclusions for Time-Dependent Modeling

* At the edge of the pit, it is more difficult to satisfy the critical concentration
criteria (due to easier diffusion)

* In all pit geometries, all metal ions satisfy the critical concentration criteria
before reaching steady state

* The Double Pit reached stability the quickest, but was also the quickest to
loose stability via easy diffusion out of the pit

* Both steady-state and time-dependent results indicate that with the
current set of pit geometries, all pits will actively corrode

* Note that these pits are all fairly small, so it is not surprising that they are stable.

* In the future we will explore pit size to find size at which external cathode cannot
support pit growth
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Hemisphere Pit

Line Graph: Concentration Cr (molim?) Line Graph: Concentration Fe {mol/im?)
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Concentration (molim?)




Double Pit

C7‘3+ F62+

Line Graph: Concentration Cr {molim®} Line Graph: Concentration Fe (molim?)

Arc length (m)
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Undercut Pit 41BN

Cr3t Fe?*

Line Graph: Concentration Fe (mol/m?)
Line Graph: Concentration Cr (mol/m?)

Concentration (mol/m®)




