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2 I Alloying impact on passivity
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Passivity is heavily influenced by alloying elements, i.e. Cr/Mo additions to steel or Ni alloys.

Other passivity promoting elements (Ti, Mo, Nb, etc.) show beneficial effects when added to pure
Al, assuming the elements are kept in solid solution.



Concentrated Ha
bitiik

Alloying impact on passivity Cr-Ti system
The combination of Ti and Cr has been shown to have
synergistic effects for corrosion resistance/passivity across
a range of aggressive environments (concentrated acids).
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The underlying passivating mechanism is expected, for these Ti-Cr systems, to be caused by the formation of a homogeneous
double oxy-hydroxide of Cr3+ and TO+, stable across a larger pH and potential range than typically experienced by pure Ti or Cr.

M. Mehmood, 1999
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Alloying impact on passivity Cr-Ti system
The combination of Ti and Cr has been shown to have
synergistic effects for corrosion resistance/passivity across
a range of aggressive environments (concentrated acids).
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The underlying passivating mechanism is expected, for these Ti-Cr systems, to be caused by the formation of a homogeneous
double oxy-hydroxide of Cr3+ and TO+, stable across a larger pH and potential range than typically experienced by pure Ti or Cr.

M. Mehmood, 1999
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5 1 Corrosion of high entropy alloys (HEAs)

Pit morphology of CoCrFeMnNi HEA
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1 Corrosion of high entropy alloys (HEAs)
Pit morphology of CoCrFeMnNi HEA
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7 High-throughput Alloy Screening by AM

Laser Beam — Directed Energy
Deposition (LB-DED)

.1.

—1% Alloy B
increments

Alloy A

Samples were printed with an in-house LB-DED
system with potential for mixing 5 powders.

A pre-mixed equiatomic CoCrFeMnNi alloy powder
and commercial purity (CP) Ti powder were used.

Material characterization:
• Site specific x-ray diffraction (XRD).
• Energy dispersive spectroscopy (EDS) and Electron

backscattered diffraction (EBSD).

Electrochemical measurements:
• Capillary cell polarization measurements.
• Repassivation kinetics by scratch testing.



8 1 High-throughput Alloy Screening
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9 1 High-throughput Alloy Screening
Site specific XRD

Air

Laser Beam — Directed Energy
Deposition (LB-DED)
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10 I rrix[CoCrFeMnNi]0_05 graded composition phase analysis

Pure Ti

Pure CoCrFeMnNi alloy
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11 1 Tix[CoCrFeMnNi]0_05 graded composition phase analysis

Pure Ti

Lr

L

Pure CoCrFeMnNi alloy

Hexagonal Ti + Ti rich BCC intermetallic

BCC Ti + cubic Ti2Ni — Ni component is like a combination
of other transition metals.

BCC NiTi + BCC Ti + cubic Ti2Ni

BCC NiTi + hexagonal TiFe2

BCC Ti0.16Cr0.26Fe58 + hexagonal TiCrMn (similar to TiFe2)

BCC Ti0.16Cr0.26Fe58 + hexagonal TiFe2

FCC steel + BCC Ti0.16Cr0.26Fe58 + hexagonal TiFe2

} FCC steel

SNL Materials Characterization — Mark Rodriguez



12 I Tix[CoCrFeMnNi]0_05
Ti BCC

Tm24Ti5

Ti Hex Ni3Ti

Fe FCC

Using EBSD alone does not allow for accurate phase
identification, analysis of material with XRD
informed phase ID appears to be more accurate.

XRD helps distinguish between Ti right and
transition metal rich intermetallic phases.

graded composition phase analysis
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1 3 I Tix[CoCrFeMnNi]0_05
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14 1 Electrochemical behavior
Pure Ti

Pure CoCrFeMnNi alloy
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15 Electrochemical behavior Capillary cell measurements
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1 6 Electrochemical behavior Scratch testing for
repassivation kinetics
Pure Ti

Pure CoCrFeMnNi alloy

First scratch after 5500 second anodic polarization
(+ 200 mV vs. Ag/AgC1) in 1 M Na2SO4 solution.

All performed with scratches at 20 N, 60 mm/min,
0.5 mm long.

SNL tribology lab - Brendan Nation, Morgan Jones, and Nic Argibay
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17 Electrochemical behavior — Scratch testing for hardness 1
measurement i

18

1
Pure Ti

Pure CoCrFeMnNi alloy

First scratch after 5500 second anodic polarization
(+ 200 mV vs. Ag/AgC1) in 1 M Na2SO4 solution.

All performed with scratches at 20 N, 60 mm/min,
0.5 mm long.

SNL tribology lab — Brendan Nation, Morgan Jones, and Nic Argibay
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18 Electrochemical behavior Scratch testing for hardness
measurement Current (mA)

Pure Ti

Pure CoCrFeMnNi alloy

Prior to the scribe touching the sample, the data
acquisition rate was switched to 10,000 pt./sec.

Peak current is maximum for the CoCrFeMnNi rich
side of the sample, minimum at the Ti rich/IMC rich
region, and increased when moving closer to pure Ti.
SNL tribology lab — Brendan Nation, Morgan Jones, and Nic Argibay
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1 9 Electrochemical behavior — Scratch testing for
repassivation kinetics
Pure Ti

1000pm

Pure CoCrFeMnNi alloy

There is a lot of potential for this rapid
experimental approach, but fine tuning will be
required in the acquisition and analysis.
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20 I Conclusions

■ The phase analysis portion of the high throughput alloy screening approach is able to
accurately determine phase constitution across these compositionally graded alloys.

■ Doing site specific XRD first, prior to EDS/EBSD, helps with more site specific phase analysis.

■ Electrochemical measurements using a capillary cell showed the breakdown potential of
the Ti rich side of the sample to be larger than the CoCrFeMnNi rich side of the sample.

■ Mitigating noise in measurements and limiting crevice corrosion will be critical to generating
consistent results.

■ Scratch testing shows promise as an approach to determine mechanical and corrosion
properties of the compositionally graded alloys.

■ The quicker repassivation (return to stable current) for the Ti rich region of the sample correlates well
with the larger breakdown potential seen for capillary cell measurements.
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24 Background: Current HEA studies at Sandia

The most recent studies at

CoCrFeMnNi HEA with the

of properties such as microha

Pure Ti-6%A1-4%V

Vickers

Hardness

96()

Sandia used the LENS process to create a compositionally graded

Ti-6%Al-4%V alloy. These types of samples allow for rapid screening
rdness (map in left of image).

Example electron

micrographs

1) (CoCrFeMnNi)10Ti6490

5 lam

2) (CoCrFeMnNi)60Ti6440

-B—rr
rFeM3) (CoCnNi)95Ti645

5 1.1m

Equiatomic

CoCrFeMnNi

Microstructural characterization

along this sample helped refine

composition selections to ones

that exhibit chemical

homogeneity, expected to be a
requirement for the Cr and Ti

to behave synergistically in

corrosive environments.



s pot harde ns s (GPa)

1 11.7

2 8.6

3 9.1

4 9.6

5 10.1

6 8.0

7 7.4

8 7.0

9 7.2

10 6.3

11 6.9

12 6.0

13 4.4

14 5.0

15 4.8

16 4.6

17 3.7
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hardness (GPa)

H 
8F

n= 2
71-14)

K —
c (2pA)1l2

F

A = 
1 
— Rl — (R d ) R2 — (R — d )2
2 P 

p p

l= 2R arccos 
R pd

Ict is fracture toughness

Ft is friction force, measured and
recorded during scratch

A is projected frontal area

p is maximum penetration depth, SWLI

I is perimeter length

R *s radius of indenter


