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) | Alloying impact on passivity
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Passivity is heavily influenced by alloying elements, i.e. Cr/Mo additions to steel or Ni alloys.

Other passivity promoting elements (Ti, Mo, Nb, etc.) show beneficial effects when added to pure
Al, assuming the elements are kept in solid solution.
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. | Alloying impact on passivity — Cr-T1 system

Concentrated HCI
{ Ti-Cr, 30°C
TH ¢ Hﬂmn

btk

. =T

20 0 B0 i 100
Cr

J.H. Kim, 1993 Alley Chromium Contant / at%

Corrogion Rate /mm-y
S S
il &N
:1 = —I_ch”m*ﬂ"ﬁﬂ'# ;
8 i
[}
) =
=
¢ 0
g
=
i

The underlying passivating mechanism is expected, for these Ti-Cr systems, to be caused by the formation of a homogeneous
double oxy-hydroxide of Cr*" and Ti**, stable across a larger pH and potential range than typically experienced by pure Ti or Cr.

M. Mehmood, 1999

The combination of Ti and Cr has been shown to have
synergistic effects for corrosion resistance/passivity across

a range of aggressive environments (concentrated acids).
2Hypothetical stability diagram for Cr-Ti-H,O syste
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) | Alloying impact on passivity — Cr-T1 system

The combination of Ti and Cr has been shown to have
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synergistic effects for corrosion resistance/passivity across

a range of aggressive environments (concentrated acids).
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The underlying passivating mechanism is expected, for these Ti-Cr systems, to be caused by the formation of a homogeneous
double oxy-hydroxide of Cr*" and Ti**, stable across a larger pH and potential range than typically experienced by pure Ti or Cr.
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Corrosion of high entropy alloys (HEASs)

Pit morphology of CoCrFeMan HEA
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. | Corrosion of high entropy alloys (HEAS)
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Pit morphology of CoCrFeMnNi HEA

Potential property space for proposed
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T. Fujieda, 2017
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7 | High-throughput Alloy Screening by AM

Samples were printed with an in-house LB-DED
Laser Beam — Directed Energy system with potential for mixing 5 powders.
Deposition (LB-DED)
A pre-mixed equiatomic CoCrFeMnNi alloy powder
and commercial purity (CP) Ti powder were used.

Material characterization:

 Site specific x-ray diffraction (XRD).

* Energy dispersive spectroscopy (EDS) and Electron
backscattered diffraction (EBSD).

Electrochemical measurements:
* Capillary cell polarization measurements.
* Repassivation kinetics by scratch testing.




; | High-throughput Alloy Screening
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9 | High-throughput Alloy Screening — TiX[CoCrFeMnNi](l_X)/S
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10 | TiX[CoCrFeMnNi](I_X)/5 — graded composition phase analysis
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v | Ti,[CoCrFeMnNi] s — graded composition phase analysis

Pure Ti
Hexagonal Ti + Ti rich BCC intermetallic
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of other transition metals.
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12 | TiX[CoCrFeMnNi](I_X)/5 — graded composition phase analysis
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Using EBSD alone does not allow for accurate phase
identification, analysis of material with XRD
informed phase ID appears to be more accurate.

XRD helps distinguish between Ti right and o B e
transition metal rich intermetallic phases.
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| Ti [CoCrFeMan](1 xys — Equi-atomic composition
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“1Electrochemical behavior — Capillary cell measurements IZ.i
Pure Ti |

2.0
Area 1 (Tirich)
1.6+ Area 2 (Ti/HEA)

5 Area 3 (HEA/T1)

éﬂ 1.2- Area 4 (HEA rich)

~—

1))
< 0.81
2
S 0.4 1
. e P OO i
Pure CoCrFeMnNi alloy
Parameters
WE Ti-graded Cantor -04 L) S e ) e L) S L L S B LR R R R
: -9 -8 -7 -6 -5 -4 -3 -2
EE ;AWZGM o 10 10 10" 10~ 107 10" 10~ 10
glIAg . 2
[ Electrolyte 0.599 M NaCl | Current Density (A/cm”)

Scan Range -0.05V vs. Eoc to 2.0V vs. E,.¢
Scan rate 1 mV/s
Flow rate 0.075 mL/min UN-Reno collaboration with Dr. Chidambaram and Mr. Summers




“|Electrochemical behavior — Capillary cell measurements
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16 |Electrochemical behavior — Scratch testing for
repassivation kinetics
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1 |Electr0chemica1 behavior — Scratch testing for hardness
measurement
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18 |Electr0chemica1 behavior — Scratch testing for hardness ,|

measurement
Pure Ti
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Prior to the scribe touching the sample, the data
acquisition rate was switched to 10,000 pt./sec.

Peak current is maximum for the CoCrFeMnNi1 rich
side of the sample, minimum at the Ti rich/IMC rich

region, and increased when moving closer to pure Ti.
SNL tribology lab — Brendan Nation, Morgan Jones, and Nic Argibay
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19 |Electr0chemica1 behavior — Scratch testing for

repassivation kinetics

Pure Ti
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There 1s a lot of potential for this rapid
experimental approach, but fine tuning will be
required in the acquisition and analysis.

SNL tribology lab — Brendan Nation, Morgan Jones, and Nic Argibay
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2 I Conclusions

= The phase analysis portion of the high throughput alloy screening approach is able to
accurately determine phase constitution across these compositionally graded alloys.
= Doing site specific XRD first, prior to EDS/EBSD, helps with more site specific phase analysis.

= Electrochemical measurements using a capillary cell showed the breakdown potential of
the Ti rich side of the sample to be larger than the CoCrFeMnNi rich side of the sample.

= Mitigating noise in measurements and limiting crevice corrosion will be critical to generating
consistent results.

= Scratch testing shows promise as an approach to determine mechanical and corrosion
properties of the compositionally graded alloys.

= The quicker repassivation (return to stable current) for the Ti rich region of the sample correlates well
with the larger breakdown potential seen for capillary cell measurements.
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. | Background: Current HEA studies at Sandia

The most recent studies at Sandia used the LENS process to create a compositionally graded

CoCrFeMnNi HEA with the Ti-6%Al-4%V alloy. These types of samples allow for rapid screening
of properties such as microhardness (map in left of image).
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hardness (GPa)
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K_is fracture toughness

F.is friction force, measured and
recorded during scratch

A is projected frontal area
p is maximum penetration depth, SWLI

ﬂp is perimeter length

R is radius of indenter




