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Abstract: Battery Energy Storage Systems (BESS) integrate Information Technology and Operational Technology devices from multiple vendors and that are often connected to public networks. In face of these
supply chain and cybersecurity threats, it 1s important to take a security-in-depth approach to defend ESS against cyberattacks. False data injection attacks (FDIA) have emerged as a source of stealth attacks on
sensors and actuators, where the attacker attempts to cause damage or alter operations without being detected. In such scenario, the attacker designs an attack vector that minimizes the probability of detection by

traditional estimation methods. In this work we evaluate possible FDIA in BESS and alternatives to detect them and mitigate their effects.

Cybersecurity of BESS False Data Injection Attacks

°  BESS are composed by many software and hardware devices from various source * A FDIA that is not detected by residual-based bad data detection methods of static
*  Commercial BESS are often connected to public internet to receive software patches linear state estimators can be obtained if the malicious actor has knowledge of the
and updates, to communicate with servers for remote monitoring, and to receive system’s parameters and measurements>
advanced analytics services from manufacturers *  With that information, it 1s possible to determine which and by how much
*  Network exposure and complex supply chain create a large surface for cyberattacks measurements have to be modified such that the result of the state estimation
*  Goal: design algorithms capable of detecting false data injection attacks (FDIA) in determined by the attacker is obtained
state-of-charge (SoC) estimation * Such attack vector, Ay,, can be used to modify the estimated state of a system from
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Fig. 1. Components and subsystems of a BESS.
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* A simplistic BESS model can be represented by the linear dynamics (1)1% & Sbat B Shat 5o 2
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Ubat = Voc + Rolpar + V1 4 . . . . L
. . _ (2) *  Stealthy FDIA designed for static estimators can affect dynamic SoC estimation
lpat = lc T g 3) algorithms
. 1 _ _ * Adding an innovation-based detector to a SoC estimator can allow detecting step-
= C (Neic +ia) = 7s¢ (4) type FDIA to states that cannot be detected by static estimators
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* Future work:
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e ¢ SoC Co R ) Design detectors for more sophisticated attacks and more complex battery
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*  vyq:voltage of capacitor (;
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