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Degradation 1.1 (2017): 1-8.



. | Methods

1. Material — 99.9% pure Al wire containing Fe-rich
Impurities.

2. Salt loading - Printed with NaCl at 60 pg/cm?.

3. Humdity — 84% RH.

4. 15 x-ray computer tomography (XCT) datasets
collected, 13 within first 88 hours of exposure. Final
scan after 2270 hours of exposure.

5. Spatial resolution — 27 um?*

6. Time between scans was typically 7 hours, 3.5 hours
In Some cases.




4 | Overall volume loss and nucleation rate
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| Growth rates of individual pits
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9 pits for which we have kinetic data (nucleated in first 88 hours), separated into two general categories:

e Small pits: six of the nine pits ceased observable growth less than 25 hours after nucleation and had final
volumes less than 4000 um? and

e Large pits: three of the nine pits grew for 46 or more hours and reached final volumes greater than 13,000 pm?.
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.l eitr ] Pit2 | Pit3 | Pitd | Pit5 | Pit6 | Pit7 | Pit8 | Pit9
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9 pits for which we have kinetic data (nucleated in first 88 hours), separated into two general categories:

e Small pits: six of the nine pits ceased observable growth less than 25 hours after nucleation and had final
volumes less than 4000 um? and

e Large pits: three of the nine pits grew for 46 or more hours and reached final volumes greater than 13,000 pm?. I



Why do some pits grow faster (initially) and end up
" " being bigger than others?
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Is it all about cathode size? Initial droplet size?
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Why do some pits keep growing for a (relatively) long
" " time and have a jump in growth rate? — Small pits
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For small pits, droplet surface area typically increases slightly initially. This is likely because XCT

data doesn’t allow corrosion product and droplet to be clearly distinguished. Expansion of surface
area 1s hypothesized to primarily be due to more corrosion product.



Why do some pits keep growing for a (relatively) long

time and have a jump 1n growth rate? |
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For big pits, the 1nitial evolution of the droplet is similar to that of small pits (~doubles 1n size) -

The one exception is pit 6.

Big jump in droplet coverage area happens at about the same time a jump 1in pit volume happens. I
Why?
1. Faster corrosion = more corrosion product in droplet = XCT measures a larger “droplet”. |

2. Droplet surface area gets bigger, then corrosion speeds up.



XCT let’s us answer that question
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2D renderings of Pit 4
(typical of large pits) ‘
shows that jump in growth
rate is preceded by droplet
spreading.

Bigger droplet = larger
cathode (pit grows faster)
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XCT let’s us answer that question
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3D renderings of Pit 4 (typical of large
e Ly S @5 pits) shows that jump in growth rate is
preceded by droplet spreading
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_ | Small pits don’t have droplet spreading
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Typical small pit (pit 3) doesn’t exhibit droplet spreading ‘



There’s more... pit morphology
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Plasma FIB and EBSD of specific pits (Pit 6 in this case)
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How does the pit interact with:
* Secondary phase particles

* Grain boundaries

* Dislocations network?



Conclusions and Questions
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Mass-loss trends seem to be related to nucleation rate slowing over time rather than
growth rate changing of the individual pits. ‘

Suggests that, for constant salt loading, short (months) studies of mass loss are
indicative of long-term behavior. |

Questions this study (at least somewhat) answers:

* Why do some pits grow significantly larger and for significantly longer times than
others? — droplet spreading

* What accounts for jump in growth rate? — droplet spreading !

Remaining questions

* How does the growth rate remain constant for 10s of hours despite evolving conditions? |
* What 1s the relationship between initial droplet size and pit growth rate? Is 1t linear? |

* Why do some droplets spread and not others?
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