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1 Motivating Questions
2

1. What are the growth kinetics of
individual pits?

2. How does this compare to mass-loss
studies of growth kinetics?

3. How does pit morphology evolve during
growth?
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3 1 Methods

1. Material — 99.9% pure A1 wire containing Fe-rich
impurities.

2. Salt loading - Printed with NaC1 at 60 pig/cm2.

3. Humidity — 84% RH.

4. 15 x-ray computer tomography (XCT) datasets
collected, 13 within first 88 hours of exposure. Final
scan after 2270 hours of exposure.

5. Spatial resolution — 27 ilm3.

6. Time between scans was typically 7 hours, 3.5 hours
in some cases.
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4
Overall volume loss and nucleation rate
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Total volume loss trend (left) similar to that observed by others.

Nucleation rate (right) slowed over time.



5 1 Growth rates of individual pits
Small pits (< 5,000 ttm3)
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9 pits for which we have kinetic data (nucleated in first 88 hours), separated into two general categories:

• Small pits: six of the nine pits ceased observable growth less than 25 hours after nucleation and had final
volumes less than 4000 pm3 and

• Large pits: three of the nine pits grew for 46 or more hours and reached final volumes greater than 13,000 [tm3.



1 Growth rates of individual pits
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Small pits
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9 pits for which we have kinetic data (nucleated in first 88 hours), separated into two general categories:

• Small pits: six of the nine pits ceased observable growth less than 25 hours after nucleation and had final
volumes less than 4000 [tm3 and

• Large pits: three of the nine pits grew for 46 or more hours and reached final volumes greater than 13,000 [tm3.



1 Why do some pits grow faster (initially) and end up7 being bigger than others?
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Is it all about cathode size? Initial droplet size?



Why do some pits keep growing for a (relatively) long
time and have a jump in growth rate? — Small pits
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For small pits, droplet surface area typically increases slightly initially. This is likely because XCT
data doesn't allow corrosion product and droplet to be clearly distinguished. Expansion of surface
area is hypothesized to primarily be due to more corrosion product.



Why do some pits keep growing for a (relatively) long
9 time and have a jump in growth rate?
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For big pits, the initial evolution of the droplet is similar to that of small pits (—doubles in size)
The one exception is pit 6.
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Big jump in droplet coverage area happens at about the same time a jump in pit volume happens.
Why?

1. Faster corrosion = more corrosion product in droplet = XCT measures a larger "droplet".

2. Droplet surface area gets bigger, then corrosion speeds up.



1 0 1 XCT let's us answer that question
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2D renderings of Pit 4
(typical of large pits)
shows that jump in growth
rate is preceded by droplet
spreading.

Bigger droplet = larger
cathode (pit grows faster)
and impedes droplet drying
(pit grows longer).
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11 1 XCT let's us answer that question
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3D renderings of Pit 4 (typical of large
pits) shows that jump in growth rate is
preceded by droplet spreading

Bigger droplet = larger cathode (pit grows
faster) and impedes droplet drying (pit
grows longer)

(c)
10000

Pi
t 
Vo
lu
me
 (
u
m
3
)
 

1

6000 —

4000 —

2000 —

0

20

Pit 4

1-0-1

0.0.4,0"'" I 172

-1°1

 I 240

30 40

Timethr)

50 60



1 Small pits don't have droplet spreading
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13 1 There's more... pit morphology
Pit 4 — XCT 2D rendering

How does the pit interact with:
• Secondary phase particles
• Grain boundaries
• Dislocations network?

Plasma FIB and EBSD of specific pits (Pit 6 in this case
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14 1 Conclusions and Questions
Mass-loss trends seem to be related to nucleation rate slowing over time rather than
growth rate changing of the individual pits.

Suggests that, for constant salt loading, short (months) studies of mass loss are
indicative of long-term behavior.

Questions this study (at least somewhat) answers: 

• Why do some pits grow significantly larger and for significantly longer times than
others? — droplet spreading

• What accounts for jump in growth rate? — droplet spreading

Remaining questions 

• How does the growth rate remain constant for l Os of hours despite evolving conditions?

• What is the relationship between initial droplet size and pit growth rate? Is it linear?

• Why do some droplets spread and not others?
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