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Abstract—A techno-economic analysis is underway examining 

the cost and performance of future large-scale photovoltaic (PV) 

plant components, including bifacial modules, tandem modules, 

increased plant voltage architectures, and module-level power 

electronics. Integration of these components into PV plant designs 

is compared with current PV technologies based on levelized cost 

of electricity (LCOE). Baseline models are developed and 

validated against recorded PV plant performance data. Expected 

cost and performance data of future PV technologies are 

incorporated into the baseline models. An evolutionary algorithm 

is utilized to optimize PV plant configuration, technology 

combination, and LCOE. This paper focuses on the bifacial 

module analysis. 
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I. INTRODUCTION AND BACKGROUND 

Solar PV has experienced a precipitous decline in costs over 
the past decade, the bulk of which can be attributed to cost 
reductions and efficiency improvements of PV modules. More 
efficient modules also reduce the needed amount of land and 
racking and mounting equipment, bringing down the overall 
plant cost per Watt-dc. However, with the cost of PV modules 
falling below $0.30/Wdc globally and efficiencies of crystalline 
silicon (c-Si) cells approaching theoretical limits, cost 
reductions and efficiency improvements in traditional c-Si PV 
modules are anticipated to asymptote. 

In an effort to continue PV’s decreasing cost trends, research 
has focused on other individual aspects of plants, including new 
PV cell and module technologies to further increase efficiency 
and power output, and increased voltages and module-level 
power electronics for reduced energy loss. However, more 
research is needed on how these individual innovations can best 
come together to provide the lowest cost PV electricity. As with 
other increasingly constrained and optimized systems, trade-offs 
need to be made. For PV plants, technology selection decisions 
balance cost, power output, and reliability to achieve the lowest 
levelized cost of electricity (LCOE). It is not readily apparent 
how low of a LCOE can be achieved by any given combination 
of technologies. 

There are two broad areas for opportunity for innovation in 
PV plant design. The first is improvements in the individual 
components that make up a PV plant. Table I outlines various 
pieces of a PV plant and innovations that will impact the cost  

TABLE I.  PV PLANT TECHNOLOGIES FOR EXPLORATION AND 

ASSOCIATED DESIGN CONSIDERATIONS 

PV Plant Technology Example Plant Design Considerations 

Bifacial modules 

Added energy from increasing module 

height vs. increased racking and wiring 

cost; added energy from increasing ground 

albedo vs. cost of solution 

Tandem modules 
Added energy from increasing efficiency 
vs. increased wiring and balance-of-plant 

costs 

Increased plant voltages 

above 1500 Vdc 

Reduced energy losses vs. increased 

component costs 

Module-level power 

electronics for large-scale 

plants 

Reduced energy losses and potential for 

lower cost per inverter vs. increased upfront 

and maintenance costs 

and performance of a PV plant. The second opportunity for 
reducing cost through PV plant design is in optimizing the 
integration of the plant components as a whole.  

This project seeks to gain a deeper understanding of the cost 
and performance of the future PV plant components outlined in 
Table I and how they may be integrated into new PV plant 
designs that significantly reduce the LCOE of PV. Baseline 
models for PV plants with three irradiance profiles – Southwest, 
Southeast, and Midwest – were developed within the National 
Renewable Energy Laboratory (NREL) System Advisor Model 
(SAM) and validated against actual PV plant performance data. 
Cost and performance data of future PV technologies, based 
upon a comprehensive literature review and responses gathered 
from industry experts during informational interviews, were 
incorporated into these baseline models. An evolutionary 
algorithm was selected and implemented to determine an 
optimal PV plant configuration and technology combination for 
each location based on expected performance and cost of these 
new technology configurations. This paper focuses on the 
methodology and results of the bifacial module analysis, 
identifying plant-level configurations that result in the lowest 
LCOE results and may have the greatest impact on future plant 
cost and performance.  

II. METHODOLOGY 

A. Baseline Model & Calibration 

The first task undertaken was development of baseline 
models based on three PV plants with varying plant 
configurations and weather profiles. To accurately calibrate 
each baseline model, plant data was gathered from three existing 
utility-scale PV plants in the Southeast, Midwest, and Southwest 
ranging from 1-MWac to 50-MWac.  



For baseline calibration, each plant was modeled within 
NREL’s SAM. Each plant utilizes a variety of array 
configurations and module types and a mix of fixed-tilt and 
single-axis tracking (SAT) tracking systems. Therefore, plant 
arrays were first modeled separately at the inverter level within 
SAM and simulated using plant-collected irradiance data to 
compare the modeled energy output with actual plant recorded 
energy yield on a monthly and annual basis for each plant. To 
calibrate both the model and plant data, outliers due to 
identifiable weather anomalies, inverter outages, equipment 
failures, and data collection complications were filtered from 
recorded plant data, yielding adjusted monthly totals for each 
inverter. These adjusted monthly energy totals were then 
compared to expected monthly output from the models, yielding 
an average absolute divergence of approximately 5% across all 
three plants. Fig. 1 illustrates a sample of monthly expected 
energy and adjusted actual energy over a full year.  

Following model calibration and baseline performance 
analysis, the economic performance of the three baseline PV 
plants was analyzed using SAM and compared to power 
purchase agreements for similar plants. System costs and 
financial assumptions for the baseline economic analysis were 
developed based on historical data and observed trends for PV 
project financing and incentives. After calibrating the baseline 
SAM models, the performance and cost metrics for modules, 
inverters, and system losses were updated to match current 
manufacturer specifications and plant configurations to better 
compare modern PV technologies with the novel PV 
technologies investigated. These updated models serve as the 
baseline for the remainder of the study. LCOE values for each 
plant array are listed in Table II and are used for comparison 
with the LCOEs of the novel PV technologies (see Results and 
Discussion).  

 

Fig. 1. Comparison of Monthly Expected Energy and Adjusted Actual 

Energy. 

TABLE II.  BASELINE LCOE RESULTS 

PV Plant Nominal LCOE ($/MWh) 

Southwest 

Plant 

Array 1 35.62 

Array 2 35.62 

Array 3 38.95 

Southeast 

Plant 

Array 1 53.05 

Array 2 52.15 

Array 3 51.90 

Array 4 47.50 

Midwest Plant 58.02 

B. Literature Review & Informational Interviews 

A comprehensive literature review was conducted to identify 
background information for the technologies analyzed in this 
project. Over forty technical reports, articles, and web 
documents were reviewed to capture the characteristics and the 
current state of the technologies outlined in Table I. Insights 
around bifacial modules included the trade-off between 
increased performance/heat dissipation with increased bifacial 
module array height versus increased racking costs, with 
performance saturation estimated at array heights above 2 
meters [1][2][3]. Additional literature insights, such as a 
methodology for modeling low-cost, four-terminal (4T) 
perovskite-silicon tandem modules, potential benefits of 
microinverters over string inverters, and challenges associated 
with increasing plant voltages to greater than 1500 Vdc, were 
collected [4][5][6].  

Informational interviews were also conducted to collect 
detailed information on the technologies being analyzed in this 
project. More than a dozen industry experts including 
researchers, equipment and module manufacturers, and 
engineering firms were contacted with detailed questionnaires 
pertaining to characteristics of the technologies outlined in 
Table I. Bifacial module technical datasheets and tandem 
module specifications were acquired from PV manufacturers 
and insights and responses were used to inform the incorporation 
of the new PV technologies into SAM. 

C. PV Plant Performance Modeling 

Parameters for each of the technologies listed in Table I 
were incorporated into SAM on an individual basis and are 
being compared with current PV technologies based on LCOE 
analysis. To date, bifacial module performance and LCOE 
analysis/optimization has been completed and is discussed 
below. Analysis surrounding the remainder of PV technologies 
included in this study is ongoing.  

A custom bifacial module was created within SAM, based 
on datasheets provided during the informational interview 
process and incorporated into the SAM models utilizing hourly 
albedo values within the weather files for bifacial gain 
calculations. System design specifications, such as modules per 
string and strings in parallel, were adjusted to accommodate the 
inclusion of bifacial modules based on module performance 
characteristics. The remaining plant specifications, such as 
DC:AC ratio, plant capacity, ground coverage ratio (GCR), and 
module ground clearance height, were set to match those of the 
baseline models. These “non-optimized” models were then 
analyzed for bifacial module optimization sensitivities 
including varying ground clearance height, GCR, and albedo 
grooming. 

Literature insights discuss the trade-off between increased 
performance with bifacial module arrays versus increased 
racking costs for heights above approximately 2 meters 
[1][2][3]. Typically, as the ground clearance height of bifacial 
modules increases, reflected light to the backside of each 
module is also increased, positively affecting energy yield 
overall. However, the limit of this performance gain can be site- 
 



 

Fig. 2. Ground Coverage Ratio and Ground Clearance Height Diagram [7]. 

specific, and heavily affected by costs (see section D). To 
capture the potential performance effects associated with 
increased ground clearance height, the height was varied 
between a typical, 1-meter ground clearance height and an 
extreme case of 5 meters. For a fixed-tilt system, ground 
clearance height is defined as the distance from the ground to 
the bottom edge of the array. For SAT systems, the ground 
clearance height refers to the axis height of the array when tilt 
is zero (see Fig. 2). 

 

GCR is defined as the ratio between the module area and the 

PV plant land area, simplified in Fig. 2 as the collector width of 

an array over the row to row distance. As GCR decreases, row-

to-row distance increases and as GCR approaches 1.0, row-to-

row distance decreases. This ratio is used to calculate row-to-

row shading for an array, as well as to calculate the total land 

area of the plant, which impacts system costs. To analyze the 

effects of row spacing on PV plant performance and LCOE, 

GCR was adjusted compared to baseline plant designs (see 

Section D). 

Albedo can also significantly affect the performance of a 
bifacial system by impacting the amount of light that is 
reflected off the ground to the backside of the panels [3][8][9]. 
For this reason, a groomed albedo sensitivity utilizing white 
gravel was investigated for performance and LCOE 
optimization. To implement groomed albedo in SAM, a 
constant monthly albedo of 0.55 (the average albedo of white 
pebbles) was applied [10]. Using estimates for additional land 
preparation costs, the model was optimized to obtain the lowest 
LCOE based on the interaction between improved albedo, 
bifacial ground clearance height, and GCR (see Section D). 

D. PV Plant Economic Modeling 

To determine economic viability of the future PV plant 
technologies studied, detailed cost breakdowns of the baseline 
plants were developed, allowing for identification of key cost 
trade-offs and equipment-level adjustments between the 
baseline models and the new technology cases. The key cost 
considerations for the bifacial module case are discussed below. 
Performance and LCOE analyses for the tandem module, 
increased voltage architectures, and module-level power 
electronics cases are ongoing.  

Incorporation of the three bifacial module sensitivities 
discussed in Section C results in several cost and model 
considerations. For the module ground clearance height 
sensitivity, items including (but not limited to) steel cost, DC 
wiring, structural design, and installation for capital costs, as 
well as module cleaning and other O&M costs, can be affected 
depending on the plant design, stringing configuration, and PV 

plant location. As a result, several assumptions must be made 
to estimate the cost impacts of these factors, if any. Once these 
assumptions were developed, estimates for cost adders (costs in 
addition to the baseline costs) were informed by the literature 
and EPRI experts. The assumptions and cost estimates for the 
module ground clearance height sensitivity are listed in Table 
III. Assumptions and cost estimates were similarly developed 
for the GCR and groomed albedo sensitivities and are listed in 
Table IV and Table V, respectively. 

These cost estimates were incorporated into each SAM 
sensitivity model for LCOE analysis and optimization. It should 
be noted that the cost factors in Table III-V are specifically 
based on the plants studied and are rough estimates. These 
assumed cost factors can vary and may be significant for other 
installations, affecting project economics. 

TABLE III.  BIFACIAL MODULE GROUND CLEARANCE HEIGHT 

SENSITIVITY COST ASSUMPTIONS 

Cost 

Factor 
Assumption(s) Cost Above Baseline 

Steel Cost 

Material cost for steel is assumed 
to be $0.002/WDC per linear foot 

Combined total:  
$0.018/WDC per linear 

meter above 1-meter 

ground clearance 
height 

Wind 
Ballasting 

For every additional linear foot of 

vertical height, assume 2ft of steel 
is driven into the ground for 

ballasting 

Structural 
Design 

Addressed by wind ballasting 

DC Wiring 

Negligible; DC wiring may 

increase, but fewer modules are 
needed for the bifacial module 

case, negating cost effects 

$0 

Installation 

Negligible; for ground clearance 

heights above 7ft (2.1m), a man-
lift will likely replace a skid steer 

$0 

O&M 

Costs 

Module cleaning unaffected; for 

ground clearance heights above 
7ft (2.1m) module maintenance is 

performed by a skid steer and man 

lift 

$0.171/kW-yr for 

plants with ground 

clearance heights 
above 7 ft 

TABLE IV.  BIFACIAL MODULE GCR SENSITIVITY COST ASSUMPTIONS 

Cost 

Factor 
Assumption(s) 

Cost Above 

Baseline 

Land 

Cost 

As GCR increases or decreases, total land 

area will be affected. This is captured in the 
land prep costs. 

Calculated in 
SAM: 

$5000/acre 

baseline cost 

AC 

Wiring 

Negligible; AC wiring length may increase 
with increased row-to-row distance, but not 

significantly. 

$0 

DC 

Wiring 

Negligible; DC wiring between rows may 
increase, but there are fewer modules per 

row compared to the baseline, negating any 

additional DC wiring costs 

$0 

TABLE V.  BIFACIAL MODULE GROOMED ALBEDO COST ASSUMPTIONS 

Cost Factor Assumption(s) 
Cost Above 

Baseline 

Land 
Preparation 

White gravel (albedo of ~0.55) will be 
utilized to groom PV plant land area. A 

cost of $2.75/ft3 is assumed for white 

gravel at each plant with a gravel 
coverage depth of 0.5”. 

$5,000/acre 



E. Optimization Algorithm Selection 

To optimize the novel plant designs, the models are 
exported from the traditional SAM graphical interface to a 
Python environment, allowing for use by PySAM, a 
programming interface designed for reading and editing 
SAM/BAM/VCF/BCF files. Exporting SAM files to the 
PySAM environment enables the automation of many 
simulations with varying system parameters. Additionally, this 
environment makes it possible to implement custom cost 
equations for the novel technologies that are not yet built into 
SAM. 

The goal when selecting an optimizer for this analysis was 
to find one that could achieve the minimum LCOE within a 
reasonable computation time. Because each PySAM model 
takes approximately 1 minute to execute, it is desirable to select 
an optimizer that converges efficiently. As a result, the 
performance of three optimizers – a traditional convergent (or 
gradient descent) optimizer and two evolutionary algorithms – 
was compared. 

Traditional convergent optimizers perform well when the 
optimization function produces a smooth solution space. 
Evolutionary algorithm optimizers are inspired by biological 
processes, and search for an optimal solution in a distributed 
manner, using randomized parameters between iterations. 
These algorithms perform well with optimization functions that 
are non-convex as the distributed search and random mutations 
enable evolutionary algorithms to avoid getting stuck in local 
minimums. Before testing the optimizers, a parametric sweep 
was conducted on the LCOE versus the ground clearance height 
and GCR for the Southwest plant (see Fig. 3). At a high-level, 
the solution space appears smooth, but at a more granular level, 
the solution space exhibits local minimums. 

Two evolutionary algorithms were selected for testing: the 
particle swarm and the genetic algorithm. Both are well suited 
for numerical optimization problems. In the particle swarm 
algorithm, a population of individual particles navigate the 
parameter space. The speed and direction for each particle is 
governed by a combination of its locally best-known position 
and the global best-known position. In the genetic algorithm, 
there are generations of individuals with a fixed population size, 
constant across all generations. From one generation to the 
next, offspring are produced from the parent generation by 
mating individuals (exchanging parameters), mutating 
parameters, and selecting among the offspring with the highest 
fitness (defined as the minimum LCOE in this case). In both 
algorithms, a population size of 10 is selected. For 
implementation the python package Distributed Evolutionary 

 

Fig. 3. Parametric Sweep Results Analyzing Bifacial Module Case LCOE 

Versus Ground Clearance Height and GCR. 

Algorithms in Python (DEAP) was used. For the traditional 
optimizer, the default minimization optimizer in the SciPy 
python package was used. 

A challenge in the application of evolutionary algorithms is 
the selection of options, called hyperparameters. In each of 
these, there is a parameter that sets the learning rate. If the 
learning rate is fast, the algorithm will converge to a solution 
more quickly; however, there is a risk that it is too fast and may 
skip over the optimal solution. A slower learning parameter 
takes longer to converge but has a greater chance of settling on 
a more optimal solution. The learning parameter for the particle 
swarm algorithm is the maximum velocity, whereas the 
learning parameter for the genetic algorithm is the mutation 
standard deviation. The hyperparameters were evaluated by 
comparing the algorithm convergence rate with a range of 
learning parameter values, with results shown in Fig. 4. The 
faster (larger number) learning parameters tend to converge 
more quickly than the slower (smaller number) parameters.  
Ultimately, 0.1 was selected as the learning parameter for the 
remainder of the analysis to balance accuracy with speed, with 
the algorithms converging in approximately 40 to 60 
simulations with a learning parameter of 0.1.  

To evaluate and compare the optimizers’ relative 
performance with each other, the same optimization problem 
was solved 10 times by each optimizer with randomized 
starting conditions. Fig. 5 and Fig. 6 show the results of the 
repeated optimization runs for the particle swarm and genetic 
algorithm, respectively. In each run, the solution converges in 
approximately 40 to 80 model simulations. 

  
Fig. 4. Particle Swarm Hyperparameter Evaluation (above) and Genetic 

Algorithm Hyperparameter Evaluation (below).  
 

 



 
Fig. 5. Particle Swarm Optimization Runs. 

 
Fig. 6. Genetic Algorithm Optimization Runs. 

The average performance of these 10 runs was calculated 
for each evolutionary algorithm and compared to the average 
performance of the traditional gradient descent algorithm. It 
was found that while the evolutionary algorithms took 2 to 4 
times longer to converge, they reached more optimal solutions 
than the traditional gradient descent algorithm. Fig. 7 shows the 
optimizer performance comparison as a function of simulation 
count. The optimal LCOE reached at the end of each 
optimization run is plotted in Fig. 8. This illustrates the greater 
performance of the evolutionary algorithms. It appears that the 
gradient descent optimizer finds local minimums and is unable 
to search the solution space as effectively as the evolutionary 
algorithms. An exhaustive analysis of traditional optimization 
algorithms was not performed, so there may exist others that are 
better suited for this application. In comparing the two 
evolutionary algorithms, the particle swarm algorithm gives 
more consistent results than the genetic algorithm. Fig. 9 gives 
a closer view of the of the optimal LCOE reached at the end of 
each optimization run for these two algorithms.  

 
Fig. 7. Optimizer Performance Comparison. 

 
Fig. 8. Optimal LCOE for Each Optimization Run. 

 
Fig. 9. Optimal LCOE for Each Optimization Run Utilizing Particle Swarm 

and Genetic Algorithms. 

Finally, in examining the parameter values reached from 
each optimization run, the particle swarm optimizer produced a 
narrower range. The optimal parameters for each optimization 
run are pictured in Fig. 10 with the graph spanning the full 
parameter ranges. In Fig. 11 the graph range is narrowed to 
highlight the differences between the two evolutionary 
algorithms, with the highlighted window containing all of the 
particle swarm optimization runs’ optimal parameters. To 
illustrate the optimizer effectiveness compared to a parametric 
sweep, this window represents 1/380 of the area of the 
parameter space (1/31 of the ground coverage ratio and 1/16 of 
the ground clearance height). To find this solution through a 
parametric sweep, 380 simulations would be required taking 
approximately 6.5 hours, whereas the particle swarm optimizer 
reaches the solution within 100 simulations taking 
approximately 1 hour and 40 minutes. Based on these tests, the 
particle swarm optimizer with a learning parameter of 0.1 was 
selected to optimize the GCR and ground clearance height, 
looking at both a baseline albedo and groomed albedo, to 
achieve the lowest possible LCOE configuration for each plant. 
Results for the bifacial module optimization cases are presented 
in the next section. 

 
 

 

 

 

 

 



 

Fig. 10. Optimal Parameters for Each Optimization Run. 

 

Fig. 11. Optimal Parameters for Each Optimization Run (enlarged). 

III. RESULTS AND DISCUSSION 

Initial performance and LCOE results were obtained for the 

non-optimized bifacial module cases that kept the original GCR 

and ground clearance height for the Southwest, Southeast, and 

Midwest PV locations. These models were then optimized in 

PySAM utilizing a particle swarm algorithm to determine the 

optimal GCR and ground clearance height that resulted in the 

lowest LCOE at each plant array. Preliminary optimized GCR 

and bifacial module ground clearance height values compared 

to the baseline are listed in Table VI.  

TABLE VI.  PRELIMINARY OPTIMIZED GCR AND GROUND CLEARANCE 

HEIGHT COMPARED TO BASELINE 

PV Plant 

GCR 
Module Ground 

Clearance Height (m) 

Baseline Optimized Baseline Optimized 

Southwest 

Plant 

Array 1 0.463 0.192 1.00 1.82 

Array 2 0.463 0.189 1.00 1.74 

Array 3 0.493 0.185 1.00 1.57 

Southeast 

Plant 

Array 1 0.543 0.296 1.00 1.00 

Array 2 0.543 0.313 1.00 1.00 

Array 3 0.543 0.345 1.00 1.00 

Array 4 0.211 0.192 1.00 1.30 

Midwest Plant 0.487 0.243 1.00 1.00 

For each case, GCR decreases significantly when optimized 

to reduce row-to-row shading loss. This signifies that, with the 

estimated land and preparation costs listed in Table IV, it is 

economically advantageous to increase row-to-row spacing for 

these three plants under these conditions. However, if land cost 

assumptions were to increase, optimized GCR may change as a 

result.  For bifacial module ground clearance height, the results 

show the saturation effect of backside performance gains. For 

SAT arrays in the Southwest and Southeast plants, average 

optimal ground clearance height is about 1.7 meters and 1.3 

meters, respectively. For all fixed-tilt arrays studied, average 

optimal ground clearance height is 1 meter. These values are 

mainly attributed to the differences in tracking technology, 

combined with locational irradiance and albedo effects, where 

average annual albedo for the Southwest, Southeast and 

Midwest plants is about 0.21, 0.14, and 0.26, respectively. As a 

result, an average bifacial module ground clearance height of 

1.7 meters for the Southwest plant is economically viable due 

to the increased backside energy gain available resulting from 

tracking and higher annual albedo and irradiance. 

Contrastingly, the lower albedo and irradiance of the Southeast 

location does not make it economically viable to increase fixed-

tilt ground clearance height over 1 meter. Instead, only the 

Southeast plant’s SAT array’s ground clearance height is 

increased. As an entirely fixed-tilt installation, the Midwest 

plant optimized ground clearance height remains at 1 meter 

despite elevated albedo, due to the lower irradiance profile of 

the Midwest location. These energy differences between 

bifacial SAT systems and bifacial fixed-tilt systems align with 

previous conclusions by NREL [11]. However, further 

optimization below 1-meter ground clearance height for fixed-

tilt systems at these plants may be worthwhile to investigate, as 

optimal LCOE results may change. 

Preliminary optimized LCOE results are listed and 
compared to baseline and non-optimized LCOEs in Table VII. 
Through GCR and ground clearance height optimization, 
average LCOE results decreased by 4.3%, 4.6%, and 6.9%, for 
the Southwest, Southeast, and Midwest plants, respectively, 
when compared to the baseline values. For Array 3 of the 
Southwest plant, LCOE results for this optimized SAT bifacial 
array decreased by nearly 10% compared to the baseline, 
monofacial SAT array.  Compared to the non-optimized bifacial 
cases, the optimized bifacial module LCOE decreased by 5.9%, 
0.7%, and 3.0%, for the Southwest, Southeast, and Midwest 
plants, respectively. This LCOE improvement range between 
plants can be attributed to original plant design and size. For 
plants where original site design was not optimal for bifacial 
modules, greater opportunities exist to improve energy 
optimization and, as a result, LCOE.  

Table VIII shows the preliminary optimized annual energy 
production for the three plants. In all cases, the optimized 
configurations resulted in increased annual energy output over 
both the baseline and non-optimized cases, indicating that the 
cost increases associated with increased ground clearance 
height and GCR were offset by the increased energy output. 
These results show how system energy can be improved via 
GCR and ground clearance height when optimized alongside 
system costs to achieve the lowest possible LCOE. 

 

 



TABLE VII.  BASELINE, NON-OPTIMIZED, AND PRELIMINARY OPTIMIZED 

LCOE RESULTS (NOMINAL) 

PV Plant 
Nominal LCOE ($/MWh) 

Baseline Non-Optimized Optimized 

Southwest 

Plant 

Array 1 35.62 37.11 35.18 

Array 2 35.62 37.11 34.91 

Array 3 38.95 37.71 35.19 

Southeast 

Plant 

Array 1 53.05 51.14 50.17 

Array 2 52.15 50.32 49.79 

Array 3 51.90 50.76 50.19 

Array 4 47.50 45.14 45.10 

Midwest Plant 58.02 55.68 54.03 

TABLE VIII.  BASELINE, NON-OPTIMIZED, AND PRELIMINARY OPTIMIZED 

ANNUAL ENERGY PRODUCTION RESULTS 

PV Plant 
Annual Energy Production (MWh) 

Baseline Non-Optimized Optimized 

Southwest 

Plant 

Array 1 89,914 90,674 99,087 

Array 2 25,688 25,932 28,313 

Array 3 30,094 31,370 34,420 

Southeast 

Plant 

Array 1 367 383 394 

Array 2 373 389 396 

Array 3 409 425 432 

Array 4 449 471 474 

Midwest Plant 4,313 4,517 4,701 

 
As described in Sections C and D, an albedo grooming 

scenario was incorporated into the models and optimized 
utilizing the particle swarm evolutionary algorithm to 
understand how optimal GCR and ground clearance height, and 
as a result, optimal LCOE, may be impacted by albedo 
grooming. Preliminary optimized GCR and ground clearance 
heights, as well as LCOE and annual energy production results 
from the albedo grooming optimization, are compared to the 
ungroomed albedo case in Table IX and Table X, respectively. 
Compared to the ungroomed albedo case, optimal GCR values 
for the albedo grooming sensitivity increase slightly, resulting 
in a smaller plant area, while optimal bifacial module ground 
clearance height decreases. This signifies a point at which 
decreasing GCR to mitigate row-to-row shading no longer 
becomes cost effective due to the increased land preparation 
costs associated with albedo grooming. 

TABLE IX.  PRELIMINARY OPTIMIZED GCR AND GROUND CLEARANCE 

HEIGHT RESULTS FOR UNGROOMED AND GROOMED ALBEDO 

PV Plant 

Ungroomed Albedo 
Albedo Grooming 

Sensitivity 

Optimized 

GCR 

Optimized 

Ground 

Clearance 

Height (m) 

Optimized 

GCR 

Optimized 

Ground 

Clearance 

Height (m) 

S
o

u
th

w
e
st

 

P
la

n
t 

Array 1 0.192 1.82 0.221 1.77 

Array 2 0.189 1.74 0.214 1.70 

Array 3 0.185 1.57 0.225 1.55 

S
o

u
th

e
a

st
 

P
la

n
t 

Array 1 0.296 1.00 0.374 1.00 

Array 2 0.313 1.00 0.382 1.00 

Array 3 0.345 1.00 0.382 1.00 

Array 4 0.192 1.30 0.238 1.12 

Midwest Plant 0.243 1.00 0.308 1.00 

TABLE X.  PRELIMINARY OPTIMIZED LCOE RESULTS FOR UNGROOMED 

AND GROOMED ALBEDO 

PV Plant 

Ungroomed Albedo 
Albedo Grooming 

Sensitivity 

Nominal 

LCOE 

($/MWh) 

Annual 

Energy 

Production 

(MWh) 

Nominal 

LCOE 

($/MWh) 

Annual 

Energy 

Production 

(MWh) 

S
o

u
th

w
e
st

 

P
la

n
t 

Array 1 35.18 99,087 35.99 104,266 

Array 2 34.91 28,313 35.72 29,800 

Array 3 35.19 34,420 35.99 35,741 

S
o

u
th

e
a

st
 

P
la

n
t 

Array 1 50.17 394 50.97 420 

Array 2 49.79 396 50.48 423 

Array 3 50.19 432 50.89 456 

Array 4 45.10 474 46.12 495 

Midwest Plant 54.03 4,701 54.99 4,949 

With an elevated albedo, preliminary annual energy 
production of the albedo-groomed sensitivity increases by an 
average of 4.8%, 5.9% and 5.3% for the Southwest, Southeast, 
and Midwest plants, respectively, compared to the ungroomed 
albedo cases’ optimized energy. However, this increased 
energy yield is not enough to overcome the additional land 
preparation cost associated with groomed albedo, resulting in 
slightly elevated LCOE results for the albedo-groomed 
sensitivity compared to the optimized, ungroomed albedo 
LCOE results. These results show the trade-off between 
different approaches and associated costs to increase plant 
output. However, they are dependent on the assumptions made 
for this analysis and further sensitivities could reveal different 
tipping points depending on cost assumptions.  

These preliminary results show the economic viability of 
strategic coordination between bifacial module technologies 
and plant design aspects such as GCR, module ground 
clearance height, and albedo grooming. Although these results 
are plant-specific, similar optimization of plant performance 
alongside costs may be able to decrease LCOE for future 
bifacial PV plants.  

IV. CONCLUSION 

By identifying potential innovative technologies and 
designs and their potential impact on cost reduction, this project 
serves to highlight opportunities in new PV plant design and 
focus resources on those technologies and designs that are 
likely to have the greatest impact in reducing cost. Furthermore, 
this project may serve as an important starting point for the 
development of a PV plant roadmap. For example, the 
International Technology Roadmap for PV Modules has been 
useful for identifying known opportunities for reducing costs 
and/or increasing efficiency, signaling what research is needed, 
and forecasting commercialization timelines [12]. A similar 
roadmap for plants is anticipated to aid decisions made by 
financiers, performance modeling software vendors, 
engineering, procurement, and construction (EPC) firms, and 
owner/operators. 

The future PV technologies listed in Table I have been 
successfully incorporated into the baseline model and a bifacial 



module case has been evaluated and optimized on a LCOE basis, 
identifying plant-level configurations that may have the greatest 
impact on future plant cost and performance. Using the selected 
optimization algorithm, optimized plant configurations allow 
for assessment of the effects of coordinated modifications to 
ground clearance height, GCR, and albedo, based on expected 
performance and estimated costs associated with these plant 
changes, showing the value of strategic coordination between 
bifacial module technologies and plant design aspects. As 
bifacial module efficiency, size, and costs continue to develop, 
this work may be utilized as a roadmap to optimize future 
bifacial plant LCOE based on component-level performance 
alongside system costs and locational characteristics.  

Additional development opportunities for future technology 
and cost improvements will be identified as the remainder of the 
technologies identified in Table I are simulated and optimized in 
future work.  
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