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Abstract—A techno-economic analysis is underway examining
the cost and performance of future large-scale photovoltaic (PV)
plant components, including bifacial modules, tandem modules,
increased plant voltage architectures, and module-level power
electronics. Integration of these components into PV plant designs
is compared with current PV technologies based on levelized cost
of electricity (LCOE). Baseline models are developed and
validated against recorded PV plant performance data. Expected
cost and performance data of future PV technologies are
incorporated into the baseline models. An evolutionary algorithm
is utilized to optimize PV plant configuration, technology
combination, and LCOE. This paper focuses on the bifacial
module analysis.
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. INTRODUCTION AND BACKGROUND

Solar PV has experienced a precipitous decline in costs over
the past decade, the bulk of which can be attributed to cost
reductions and efficiency improvements of PV modules. More
efficient modules also reduce the needed amount of land and
racking and mounting equipment, bringing down the overall
plant cost per Watt-dc. However, with the cost of PV modules
falling below $0.30/Wdc globally and efficiencies of crystalline
silicon (c-Si) cells approaching theoretical limits, cost
reductions and efficiency improvements in traditional c-Si PV
modules are anticipated to asymptote.

In an effort to continue PV’s decreasing cost trends, research
has focused on other individual aspects of plants, including new
PV cell and module technologies to further increase efficiency
and power output, and increased voltages and module-level
power electronics for reduced energy loss. However, more
research is needed on how these individual innovations can best
come together to provide the lowest cost PV electricity. As with
other increasingly constrained and optimized systems, trade-offs
need to be made. For PV plants, technology selection decisions
balance cost, power output, and reliability to achieve the lowest
levelized cost of electricity (LCOE). It is not readily apparent
how low of a LCOE can be achieved by any given combination
of technologies.

There are two broad areas for opportunity for innovation in
PV plant design. The first is improvements in the individual
components that make up a PV plant. Table I outlines various
pieces of a PV plant and innovations that will impact the cost

TABLE I. PV PLANT TECHNOLOGIES FOR EXPLORATION AND

ASSOCIATED DESIGN CONSIDERATIONS

PV Plant Technology Example Plant Design Considerations

Added energy from increasing module
height vs. increased racking and wiring
cost; added energy from increasing ground
albedo vs. cost of solution
Added energy from increasing efficiency
vs. increased wiring and balance-of-plant
costs
Reduced energy losses vs. increased

Bifacial modules

Tandem modules

Increased plant voltages

above 1500 Vdc component costs
Module-level power Reduced energy losses and potential for
electronics for large-scale | lower cost per inverter vs. increased upfront
plants and maintenance costs

and performance of a PV plant. The second opportunity for
reducing cost through PV plant design is in optimizing the
integration of the plant components as a whole.

This project seeks to gain a deeper understanding of the cost
and performance of the future PV plant components outlined in
Table | and how they may be integrated into new PV plant
designs that significantly reduce the LCOE of PV. Baseline
models for PV plants with three irradiance profiles — Southwest,
Southeast, and Midwest — were developed within the National
Renewable Energy Laboratory (NREL) System Advisor Model
(SAM) and validated against actual PV plant performance data.
Cost and performance data of future PV technologies, based
upon a comprehensive literature review and responses gathered
from industry experts during informational interviews, were
incorporated into these baseline models. An evolutionary
algorithm was selected and implemented to determine an
optimal PV plant configuration and technology combination for
each location based on expected performance and cost of these
new technology configurations. This paper focuses on the
methodology and results of the bifacial module analysis,
identifying plant-level configurations that result in the lowest
LCOE results and may have the greatest impact on future plant
cost and performance.

Il. METHODOLOGY

A. Baseline Model & Calibration

The first task undertaken was development of baseline
models based on three PV plants with varying plant
configurations and weather profiles. To accurately calibrate
each baseline model, plant data was gathered from three existing
utility-scale PV plants in the Southeast, Midwest, and Southwest
ranging from 1-MWac to 50-MWac.



For baseline calibration, each plant was modeled within
NREL’s SAM. Each plant utilizes a variety of array
configurations and module types and a mix of fixed-tilt and
single-axis tracking (SAT) tracking systems. Therefore, plant
arrays were first modeled separately at the inverter level within
SAM and simulated using plant-collected irradiance data to
compare the modeled energy output with actual plant recorded
energy yield on a monthly and annual basis for each plant. To
calibrate both the model and plant data, outliers due to
identifiable weather anomalies, inverter outages, equipment
failures, and data collection complications were filtered from
recorded plant data, yielding adjusted monthly totals for each
inverter. These adjusted monthly energy totals were then
compared to expected monthly output from the models, yielding
an average absolute divergence of approximately 5% across all
three plants. Fig. 1 illustrates a sample of monthly expected
energy and adjusted actual energy over a full year.

Following model calibration and baseline performance
analysis, the economic performance of the three baseline PV
plants was analyzed using SAM and compared to power
purchase agreements for similar plants. System costs and
financial assumptions for the baseline economic analysis were
developed based on historical data and observed trends for PV
project financing and incentives. After calibrating the baseline
SAM models, the performance and cost metrics for modules,
inverters, and system losses were updated to match current
manufacturer specifications and plant configurations to better
compare modern PV technologies with the novel PV
technologies investigated. These updated models serve as the
baseline for the remainder of the study. LCOE values for each
plant array are listed in Table Il and are used for comparison
with the LCOEs of the novel PV technologies (see Results and
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Fig. 1. Comparison of Monthly Expected Energy and Adjusted Actual
Energy.

TABLE II. BASELINE LCOE RESULTS

PV Plant Nominal LCOE ($/MWh)
Array 1 35.62
30“”;,";’;:‘% Array 2 35.62
Array 3 38.95
Array 1 53.05
Southeast Array 2 52.15
Plant Array 3 51.90
Array 4 47.50
Midwest Plant 58.02

B. Literature Review & Informational Interviews

A comprehensive literature review was conducted to identify
background information for the technologies analyzed in this
project. Over forty technical reports, articles, and web
documents were reviewed to capture the characteristics and the
current state of the technologies outlined in Table I. Insights
around bifacial modules included the trade-off between
increased performance/heat dissipation with increased bifacial
module array height versus increased racking costs, with
performance saturation estimated at array heights above 2
meters [1][2][3]. Additional literature insights, such as a
methodology for modeling low-cost, four-terminal (4T)
perovskite-silicon tandem modules, potential benefits of
microinverters over string inverters, and challenges associated
with increasing plant voltages to greater than 1500 Vdc, were
collected [4][5][6].

Informational interviews were also conducted to collect
detailed information on the technologies being analyzed in this
project. More than a dozen industry experts including
researchers, equipment and module manufacturers, and
engineering firms were contacted with detailed questionnaires
pertaining to characteristics of the technologies outlined in
Table 1. Bifacial module technical datasheets and tandem
module specifications were acquired from PV manufacturers
and insights and responses were used to inform the incorporation
of the new PV technologies into SAM.

C. PV Plant Performance Modeling

Parameters for each of the technologies listed in Table |
were incorporated into SAM on an individual basis and are
being compared with current PV technologies based on LCOE
analysis. To date, bifacial module performance and LCOE
analysis/optimization has been completed and is discussed
below. Analysis surrounding the remainder of PV technologies
included in this study is ongoing.

A custom bifacial module was created within SAM, based
on datasheets provided during the informational interview
process and incorporated into the SAM models utilizing hourly
albedo values within the weather files for bifacial gain
calculations. System design specifications, such as modules per
string and strings in parallel, were adjusted to accommodate the
inclusion of bifacial modules based on module performance
characteristics. The remaining plant specifications, such as
DC:AC ratio, plant capacity, ground coverage ratio (GCR), and
module ground clearance height, were set to match those of the
baseline models. These “non-optimized” models were then
analyzed for bifacial module optimization sensitivities
including varying ground clearance height, GCR, and albedo
grooming.

Literature insights discuss the trade-off between increased
performance with bifacial module arrays versus increased
racking costs for heights above approximately 2 meters
[11[2][3]. Typically, as the ground clearance height of bifacial
modules increases, reflected light to the backside of each
module is also increased, positively affecting energy yield
overall. However, the limit of this performance gain can be site-
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Fig. 2. Ground Coverage Ratio and Ground Clearance Height Diagram [7].

specific, and heavily affected by costs (see section D). To
capture the potential performance effects associated with
increased ground clearance height, the height was varied
between a typical, 1-meter ground clearance height and an
extreme case of 5 meters. For a fixed-tilt system, ground
clearance height is defined as the distance from the ground to
the bottom edge of the array. For SAT systems, the ground
clearance height refers to the axis height of the array when tilt
is zero (see Fig. 2).

GCR is defined as the ratio between the module area and the
PV plant land area, simplified in Fig. 2 as the collector width of
an array over the row to row distance. As GCR decreases, row-
to-row distance increases and as GCR approaches 1.0, row-to-
row distance decreases. This ratio is used to calculate row-to-
row shading for an array, as well as to calculate the total land
area of the plant, which impacts system costs. To analyze the
effects of row spacing on PV plant performance and LCOE,
GCR was adjusted compared to baseline plant designs (see
Section D).

Albedo can also significantly affect the performance of a
bifacial system by impacting the amount of light that is
reflected off the ground to the backside of the panels [3][8][9].
For this reason, a groomed albedo sensitivity utilizing white
gravel was investigated for performance and LCOE
optimization. To implement groomed albedo in SAM, a
constant monthly albedo of 0.55 (the average albedo of white
pebbles) was applied [10]. Using estimates for additional land
preparation costs, the model was optimized to obtain the lowest
LCOE based on the interaction between improved albedo,
bifacial ground clearance height, and GCR (see Section D).

D. PV Plant Economic Modeling

To determine economic viability of the future PV plant
technologies studied, detailed cost breakdowns of the baseline
plants were developed, allowing for identification of key cost
trade-offs and equipment-level adjustments between the
baseline models and the new technology cases. The key cost
considerations for the bifacial module case are discussed below.
Performance and LCOE analyses for the tandem module,
increased voltage architectures, and module-level power
electronics cases are ongoing.

Incorporation of the three bifacial module sensitivities
discussed in Section C results in several cost and model
considerations. For the module ground clearance height
sensitivity, items including (but not limited to) steel cost, DC
wiring, structural design, and installation for capital costs, as
well as module cleaning and other O&M costs, can be affected
depending on the plant design, stringing configuration, and PV

plant location. As a result, several assumptions must be made
to estimate the cost impacts of these factors, if any. Once these
assumptions were developed, estimates for cost adders (costs in
addition to the baseline costs) were informed by the literature
and EPRI experts. The assumptions and cost estimates for the
module ground clearance height sensitivity are listed in Table
I11. Assumptions and cost estimates were similarly developed
for the GCR and groomed albedo sensitivities and are listed in
Table 1V and Table V, respectively.

These cost estimates were incorporated into each SAM
sensitivity model for LCOE analysis and optimization. It should
be noted that the cost factors in Table I1I-V are specifically
based on the plants studied and are rough estimates. These
assumed cost factors can vary and may be significant for other
installations, affecting project economics.

TABLE IlI. BIFACIAL MODULE GROUND CLEARANCE HEIGHT
SENSITIVITY COST ASSUMPTIONS
Cost . .
Factor Assumption(s) Cost Above Baseline
Material cost for steel is assumed

Steel Cost to be $0.002/Wpc per linear foot . )
— - Combined total:

For every additional linear foot of .

- . : $0.018/Wpc per linear
Wind vertical height, assume 2ft of steel meter above 1-meter
Ballasting is driven into the ground for

. ground clearance
ballasting heiah
Structural - - eight
Design Addressed by wind ballasting
Negligible; DC wiring may
. increase, but fewer modules are
DC Wiring needed for the bifacial module %0
case, negating cost effects
Negligible; for ground clearance
Installation heights above 7ft (2.1m), a man- $0
lift will likely replace a skid steer
Module cleaning unaffected; for $0.171/KW-yr for
ground clearance heights above -
O&M (2 dul : . plants with ground
Costs ! f( .1md) lr)no uke_dmamtenagce 1S clearance heights
performed by a |s|f; steer and man above 7 ft
TABLE IV. BIFACIAL MODULE GCR SENSITIVITY COST ASSUMPTIONS
Cost Assumption(s) Cost Above
Factor P Baseline
As GCR increases or decreases, total land Calculate.d n
Land : o . SAM:
area will be affected. This is captured in the
Cost $5000/acre
land prep costs. .
baseline cost
AC Negligible; AC wiring length may increase
- with increased row-to-row distance, but not $0
Wiring S
significantly.
Negligible; DC wiring between rows may
DC increase, but there are fewer modules per $0
Wiring row compared to the baseline, negating any
additional DC wiring costs
TABLE V. BIFACIAL MODULE GROOMED ALBEDO COST ASSUMPTIONS
Cost Factor Assumption(s) Cost Apove
Baseline
White gravel (albedo of ~0.55) will be
Land utilized to groom PV plant land area. A
. cost of $2.75/ft® is assumed for white $5,000/acre
Preparation .
gravel at each plant with a gravel
coverage depth of 0.5”.




E. Optimization Algorithm Selection

To optimize the novel plant designs, the models are
exported from the traditional SAM graphical interface to a
Python environment, allowing for use by PySAM, a
programming interface designed for reading and editing
SAM/BAM/VCF/BCF files. Exporting SAM files to the
PySAM environment enables the automation of many
simulations with varying system parameters. Additionally, this
environment makes it possible to implement custom cost
equations for the novel technologies that are not yet built into
SAM.

The goal when selecting an optimizer for this analysis was
to find one that could achieve the minimum LCOE within a
reasonable computation time. Because each PySAM model
takes approximately 1 minute to execute, it is desirable to select
an optimizer that converges efficiently. As a result, the
performance of three optimizers — a traditional convergent (or
gradient descent) optimizer and two evolutionary algorithms —
was compared.

Traditional convergent optimizers perform well when the
optimization function produces a smooth solution space.
Evolutionary algorithm optimizers are inspired by biological
processes, and search for an optimal solution in a distributed
manner, using randomized parameters between iterations.
These algorithms perform well with optimization functions that
are non-convex as the distributed search and random mutations
enable evolutionary algorithms to avoid getting stuck in local
minimums. Before testing the optimizers, a parametric sweep
was conducted on the LCOE versus the ground clearance height
and GCR for the Southwest plant (see Fig. 3). At a high-level,
the solution space appears smooth, but at a more granular level,
the solution space exhibits local minimums.

Two evolutionary algorithms were selected for testing: the
particle swarm and the genetic algorithm. Both are well suited
for numerical optimization problems. In the particle swarm
algorithm, a population of individual particles navigate the
parameter space. The speed and direction for each particle is
governed by a combination of its locally best-known position
and the global best-known position. In the genetic algorithm,
there are generations of individuals with a fixed population size,
constant across all generations. From one generation to the
next, offspring are produced from the parent generation by
mating individuals (exchanging parameters), mutating
parameters, and selecting among the offspring with the highest
fitness (defined as the minimum LCOE in this case). In both
algorithms, a population size of 10 is selected. For
implementation the python package Distributed Evolutionary
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Fig. 3. Parametric Sweep Results Analyzing Bifacial Module Case LCOE
Versus Ground Clearance Height and GCR.

Algorithms in Python (DEAP) was used. For the traditional
optimizer, the default minimization optimizer in the SciPy
python package was used.

A challenge in the application of evolutionary algorithms is
the selection of options, called hyperparameters. In each of
these, there is a parameter that sets the learning rate. If the
learning rate is fast, the algorithm will converge to a solution
more quickly; however, there is a risk that it is too fast and may
skip over the optimal solution. A slower learning parameter
takes longer to converge but has a greater chance of settling on
a more optimal solution. The learning parameter for the particle
swarm algorithm is the maximum velocity, whereas the
learning parameter for the genetic algorithm is the mutation
standard deviation. The hyperparameters were evaluated by
comparing the algorithm convergence rate with a range of
learning parameter values, with results shown in Fig. 4. The
faster (larger number) learning parameters tend to converge
more quickly than the slower (smaller number) parameters.
Ultimately, 0.1 was selected as the learning parameter for the
remainder of the analysis to balance accuracy with speed, with
the algorithms converging in approximately 40 to 60
simulations with a learning parameter of 0.1.

To evaluate and compare the optimizers’ relative
performance with each other, the same optimization problem
was solved 10 times by each optimizer with randomized
starting conditions. Fig. 5 and Fig. 6 show the results of the
repeated optimization runs for the particle swarm and genetic
algorithm, respectively. In each run, the solution converges in
approximately 40 to 80 model simulations.

29.14
29.12
29.10
29.08
29.06
29.04
29.02
29.00
28.98
28.96 | %
28.94
28.92
0 50 100 150 200 250
Function Calls

LCOE ($/MWh)

Leaming ).5 ).05 ). 0.005
——05 5 ——0.005

Parameter 0.5 0.1 0.03 0.01 0.003
29.14
29.12
29.10
29.08 a
29.06
29.04 N
29.02 N
29.00 L
28.98 3
28.96 —a
28.94
28.92

0 50 100 150 200

Function Calls

LCOE ($/MWh)

Learning

Parameter 03

0.2 0.1 0.05 0.01

Fig. 4. Particle Swarm Hyperparameter Evaluation (above) and Genetic

Algorithm Hyperparameter Evaluation (below).



20.15

29.10

20.05

LCOE ($/MWh)

29.00
2895

28.90
0 20 40 60 80 100

Simulation Count

Fig. 5. Particle Swarm Optimization Runs.
29.30
29.25

29.20

9
°
7

LCOE ($/MWh)
8B
5 B

12
©
=}
S

28.95

28.90
0 20 40 60 80 100

Simulation Count
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The average performance of these 10 runs was calculated
for each evolutionary algorithm and compared to the average
performance of the traditional gradient descent algorithm. It
was found that while the evolutionary algorithms took 2 to 4
times longer to converge, they reached more optimal solutions
than the traditional gradient descent algorithm. Fig. 7 shows the
optimizer performance comparison as a function of simulation
count. The optimal LCOE reached at the end of each
optimization run is plotted in Fig. 8. This illustrates the greater
performance of the evolutionary algorithms. It appears that the
gradient descent optimizer finds local minimums and is unable
to search the solution space as effectively as the evolutionary
algorithms. An exhaustive analysis of traditional optimization
algorithms was not performed, so there may exist others that are
better suited for this application. In comparing the two
evolutionary algorithms, the particle swarm algorithm gives
more consistent results than the genetic algorithm. Fig. 9 gives
a closer view of the of the optimal LCOE reached at the end of
each optimization run for these two algorithms.
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Finally, in examining the parameter values reached from
each optimization run, the particle swarm optimizer produced a
narrower range. The optimal parameters for each optimization
run are pictured in Fig. 10 with the graph spanning the full
parameter ranges. In Fig. 11 the graph range is narrowed to
highlight the differences between the two evolutionary
algorithms, with the highlighted window containing all of the
particle swarm optimization runs’ optimal parameters. To
illustrate the optimizer effectiveness compared to a parametric
sweep, this window represents 1/380 of the area of the
parameter space (1/31 of the ground coverage ratio and 1/16 of
the ground clearance height). To find this solution through a
parametric sweep, 380 simulations would be required taking
approximately 6.5 hours, whereas the particle swarm optimizer
reaches the solution within 100 simulations taking
approximately 1 hour and 40 minutes. Based on these tests, the
particle swarm optimizer with a learning parameter of 0.1 was
selected to optimize the GCR and ground clearance height,
looking at both a baseline albedo and groomed albedo, to
achieve the lowest possible LCOE configuration for each plant.
Results for the bifacial module optimization cases are presented
in the next section.
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I1l. RESULTS AND DISCUSSION

Initial performance and LCOE results were obtained for the
non-optimized bifacial module cases that kept the original GCR
and ground clearance height for the Southwest, Southeast, and
Midwest PV locations. These models were then optimized in
PySAM utilizing a particle swarm algorithm to determine the
optimal GCR and ground clearance height that resulted in the
lowest LCOE at each plant array. Preliminary optimized GCR
and bifacial module ground clearance height values compared
to the baseline are listed in Table VI.

TABLE V1. PRELIMINARY OPTIMIZED GCR AND GROUND CLEARANCE
HEIGHT COMPARED TO BASELINE
Module Ground
GCR Clearance Height (m)
PV Plant
Baseline | Optimized | Baseline | Optimized
Southwest Array 1 0.463 0.192 1.00 1.82
u Plant Array 2 0.463 0.189 1.00 1.74
Array 3 0.493 0.185 1.00 1.57
Array 1 0.543 0.296 1.00 1.00
Southeast | Array 2 0.543 0.313 1.00 1.00
Plant | Array 3 0.543 0.345 1.00 1.00
Array 4 0.211 0.192 1.00 1.30
Midwest Plant 0.487 0.243 1.00 1.00

For each case, GCR decreases significantly when optimized
to reduce row-to-row shading loss. This signifies that, with the
estimated land and preparation costs listed in Table 1V, it is
economically advantageous to increase row-to-row spacing for
these three plants under these conditions. However, if land cost
assumptions were to increase, optimized GCR may change as a
result. For bifacial module ground clearance height, the results
show the saturation effect of backside performance gains. For
SAT arrays in the Southwest and Southeast plants, average
optimal ground clearance height is about 1.7 meters and 1.3
meters, respectively. For all fixed-tilt arrays studied, average
optimal ground clearance height is 1 meter. These values are
mainly attributed to the differences in tracking technology,
combined with locational irradiance and albedo effects, where
average annual albedo for the Southwest, Southeast and
Midwest plants is about 0.21, 0.14, and 0.26, respectively. As a
result, an average bifacial module ground clearance height of
1.7 meters for the Southwest plant is economically viable due
to the increased backside energy gain available resulting from
tracking and higher annual albedo and irradiance.
Contrastingly, the lower albedo and irradiance of the Southeast
location does not make it economically viable to increase fixed-
tilt ground clearance height over 1 meter. Instead, only the
Southeast plant’s SAT array’s ground clearance height is
increased. As an entirely fixed-tilt installation, the Midwest
plant optimized ground clearance height remains at 1 meter
despite elevated albedo, due to the lower irradiance profile of
the Midwest location. These energy differences between
bifacial SAT systems and bifacial fixed-tilt systems align with
previous conclusions by NREL [11]. However, further
optimization below 1-meter ground clearance height for fixed-
tilt systems at these plants may be worthwhile to investigate, as
optimal LCOE results may change.

Preliminary optimized LCOE results are listed and
compared to baseline and non-optimized LCOEs in Table VII.
Through GCR and ground clearance height optimization,
average LCOE results decreased by 4.3%, 4.6%, and 6.9%, for
the Southwest, Southeast, and Midwest plants, respectively,
when compared to the baseline values. For Array 3 of the
Southwest plant, LCOE results for this optimized SAT bifacial
array decreased by nearly 10% compared to the baseline,
monofacial SAT array. Compared to the non-optimized bifacial
cases, the optimized bifacial module LCOE decreased by 5.9%,
0.7%, and 3.0%, for the Southwest, Southeast, and Midwest
plants, respectively. This LCOE improvement range between
plants can be attributed to original plant design and size. For
plants where original site design was not optimal for bifacial
modules, greater opportunities exist to improve energy
optimization and, as a result, LCOE.

Table VIII shows the preliminary optimized annual energy
production for the three plants. In all cases, the optimized
configurations resulted in increased annual energy output over
both the baseline and non-optimized cases, indicating that the
cost increases associated with increased ground clearance
height and GCR were offset by the increased energy output.
These results show how system energy can be improved via
GCR and ground clearance height when optimized alongside
system costs to achieve the lowest possible LCOE.



TABLE VII.  BASELINE, NON-OPTIMIZED, AND PRELIMINARY OPTIMIZED TABLE X. PRELIMINARY OPTIMIZED LCOE RESULTS FOR UNGROOMED
LCOE ResULTS (NOMINAL) AND GROOMED ALBEDO
PV Plant Nominal LCOE ($/MWh) Ungroomed Albedo Alb?s(tje?]s(izt?\?ii;qmg
an
Baseline Non-Optimized | Optimized PV Plant Nominal 222:1;;: Nominal 222;196;:
Array 1 35.62 37.11 35.18 LCOE : LCOE 2
Southwest Array 2 35.62 3711 34.91 $/MWh Production $/MWh Production
Plant | Amay3 | 38.95 37.71 35.19 ( L mwhy | € )| mwh)
Array 1 53.05 51.14 50.17 B Array 1 35.18 99,087 35.99 104,266
Southeast | Array 2 52.15 50.32 49.79 E %
Plant | Array3 | 5190 5076 5019 £3 | Amay2 | 3491 28,313 35.72 29,800
: Array 4 47.50 45.14 45.10 3 Array 3 35.19 34,420 35.99 35,741
Midwest Plant 58.02 55.68 54.03
Array 1 50.17 394 50.97 420
TABLE VIII.  BASELINE, NON-OPTIMIZED, AND PRELIMINARY OPTIMIZED 4]
ANNUAL ENERGY PRODUCTION RESULTS 3 = Array 2 49.79 396 5048 423
) 2% | Amray3 50.19 432 50.89 456
Annual Energy Production (MWh) 2
PV Plant Array 4 45.10 474 46.12 495
Baseline Non-Optimized | Optimized -
Southest Array 1 89,014 90,674 99,087 Midwest Plant 54.03 4,701 54.99 4,949
Array 2 25,688 25,932 28,313 . L
Plant Arra§ 3 30,094 31,370 34,420 With an elevated albedo, preliminary annual energy
Array 1 367 383 394 production of the albedo-groomed sensitivity increases by an
Southeast | Array 2 373 389 396 average of 4.8%, 5.9% and 5.3% for the Southwest, Southeast,
Plant | Array 3 409 425 432 and Midwest plants, respectively, compared to the ungroomed
: Array 4 449 471 474 albedo cases’ optimized energy. However, this increased
Midwest Plant 4,313 4,517 4,701

As described in Sections C and D, an albedo grooming
scenario was incorporated into the models and optimized
utilizing the particle swarm evolutionary algorithm to
understand how optimal GCR and ground clearance height, and
as a result, optimal LCOE, may be impacted by albedo
grooming. Preliminary optimized GCR and ground clearance
heights, as well as LCOE and annual energy production results
from the albedo grooming optimization, are compared to the
ungroomed albedo case in Table IX and Table X, respectively.
Compared to the ungroomed albedo case, optimal GCR values
for the albedo grooming sensitivity increase slightly, resulting
in a smaller plant area, while optimal bifacial module ground
clearance height decreases. This signifies a point at which
decreasing GCR to mitigate row-to-row shading no longer
becomes cost effective due to the increased land preparation
costs associated with albedo grooming.

TABLE IX. PRELIMINARY OPTIMIZED GCR AND GROUND CLEARANCE
HEIGHT RESULTS FOR UNGROOMED AND GROOMED ALBEDO

Albedo Grooming
Ungroomed Albedo Sensitivity
Optimized Optimized
PV Plant Optimized Ground Optimized Ground
GCR Clearance GCR Clearance
Height (m) Height (m)
B Array 1 0.192 1.82 0.221 1.77
E g Array 2 0.189 1.74 0.214 170
=}
& | Amay3 | 0185 157 0.225 155
- Array 1 0.296 1.00 0.374 1.00
§ £ | Array 2 0.313 1.00 0.382 1.00
Sa| Amay3 0.345 1.00 0.382 1.00
? [ Amay4 | 0192 1.30 0.238 112
Midwest Plant 0.243 1.00 0.308 1.00

energy yield is not enough to overcome the additional land
preparation cost associated with groomed albedo, resulting in
slightly elevated LCOE results for the albedo-groomed
sensitivity compared to the optimized, ungroomed albedo
LCOE results. These results show the trade-off between
different approaches and associated costs to increase plant
output. However, they are dependent on the assumptions made
for this analysis and further sensitivities could reveal different
tipping points depending on cost assumptions.

These preliminary results show the economic viability of
strategic coordination between bifacial module technologies
and plant design aspects such as GCR, module ground
clearance height, and albedo grooming. Although these results
are plant-specific, similar optimization of plant performance
alongside costs may be able to decrease LCOE for future
bifacial PV plants.

IV. CONCLUSION

By identifying potential innovative technologies and
designs and their potential impact on cost reduction, this project
serves to highlight opportunities in new PV plant design and
focus resources on those technologies and designs that are
likely to have the greatest impact in reducing cost. Furthermore,
this project may serve as an important starting point for the
development of a PV plant roadmap. For example, the
International Technology Roadmap for PV Modules has been
useful for identifying known opportunities for reducing costs
and/or increasing efficiency, signaling what research is needed,
and forecasting commercialization timelines [12]. A similar
roadmap for plants is anticipated to aid decisions made by
financiers, performance modeling software vendors,
engineering, procurement, and construction (EPC) firms, and
owner/operators.

The future PV technologies listed in Table I have been
successfully incorporated into the baseline model and a bifacial




module case has been evaluated and optimized on a LCOE basis,
identifying plant-level configurations that may have the greatest
impact on future plant cost and performance. Using the selected
optimization algorithm, optimized plant configurations allow
for assessment of the effects of coordinated modifications to
ground clearance height, GCR, and albedo, based on expected
performance and estimated costs associated with these plant
changes, showing the value of strategic coordination between
bifacial module technologies and plant design aspects. As
bifacial module efficiency, size, and costs continue to develop,
this work may be utilized as a roadmap to optimize future
bifacial plant LCOE based on component-level performance
alongside system costs and locational characteristics.

Additional development opportunities for future technology
and cost improvements will be identified as the remainder of the
technologies identified in Table | are simulated and optimized in
future work.
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