

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-TR-50027-20

Lawrence Livermore National Laboratory Site Annual Environmental Report 2020

C. A. Rosene, M. Abri, P. M. Aquino, P. P. Bergeron, M. W. Buscheck, H. G. Byrnes, A. M. Chan, R. B. Draper, N. Graves, T. M. Jackson, C. Murphy, C. D. Noyes, H. L. Ottaway, L. E. Paterson, M. J. Taffet, A. M. Wegrecki, E. D. Will, K. R. Wilson

August 22, 2021

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Environmental Report

2020

Lawrence Livermore National Laboratory
UCRL-TR-50027-20

Cover photography by Caleb Murphy

Great-horned owl (*Bubo virginianus*)

This species is protected by the Migratory Bird Treaty Act and is known to nest at the Livermore Site and Site 300.

Artwork by Janet Orloff

For further information about this report, contact
LLNL Public Affairs Department
P.O. Box 808
Livermore, CA 94551
(925) 422-4599

This report can be accessed on the Internet at <https://saer.llnl.gov>

*This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.*

Lawrence Livermore National Laboratory

Environmental Report 2020

Authors

Crystal Rosene	Ada Chan	Heather Ottaway
Mohammad Abri	Richard Draper	Lisa Paterson
Paola Aquino	Nick Graves	Michael Taffet
Pete Bergeron	Tyler Jackson	Anthony Wegrecki
Mark Buscheck	Caleb Murphy	Elyse Will
Heather Byrnes	Charles Noyes	Kent Wilson

Contributors

John Arbelaez-Novak	Gary Ma	Ashley Thomas
Jon Blazo	Jeanette Price	Joseph Woods
Greg Lee	Brad Slininger	
Dolores Loll	Stanley Terusaki	

Scientific Editor

Crystal A. Rosene

October 1, 2021

UCRL-TR-50027-20

This page is intentionally left blank.

Preface

The purposes of the *Lawrence Livermore National Laboratory Environmental Report 2020* are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, "Environment, Safety and Health Reporting," and DOE Order 458.1, "Radiation Protection of the Public and Environment."

The report is distributed electronically and is available at <https://saer.llnl.gov/>, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning with 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website. Sampling location maps throughout this report were created using ArcGIS® software by Esri.

The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention.

The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2020: effluent and ambient air monitoring and dose assessment (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). The remaining two chapters discuss LLNL's groundwater remediation program (Chapter 7), and quality assurance for the environmental monitoring programs (Chapter 8). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A.

The report uses Système International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, "Metric Usage in Federal Government Programs" (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

The report is the responsibility of LLNL's Environmental Functional Area. Monitoring data were obtained through the combined efforts of the Environmental Functional Area; Environmental Restoration Department; Physical and Life Sciences Environmental Monitoring Radiological Laboratory; and the Radiation Protection Functional Area.

Preface

Special recognition is given to the technologists who gathered the data—Karl Brunckhorst, Ty Grace, Steven Hall, John Jursca, and Terrance Poole; and to the data management personnel—Kimberly Swanson, Bruce Curtis, Liz DaRosa, Tyler Jackson, Suzanne Chamberlain, Nancy Bowers, Lisa Graves, Della Burruss, Beth Schad, Courtney Scialabba, and Katelynn Keller. Special thanks to Melanie Winkler for compositing and distributing the report, to Sharon Cornelious of the Technical Information Department for editing support, and to John Jursca for updating ArcGIS maps of sampling locations.

Contents

Executive Summary

Purpose and Scope of the Environmental Report.....	EX-1
Regulatory Permitting and Compliance	EX-2
Integrated Safety Management System and Environmental Management System.....	EX-2
Pollution Prevention	EX-2
Air Monitoring.....	EX-3
Water Monitoring	EX-4
Terrestrial Radiological Monitoring.....	EX-5
Biota	EX-6
Radiological Dose	EX-6
Groundwater Remediation.....	EX-6
Conclusion.....	EX-7

1. Introduction

1.1 Location	1-1
1.2 Meteorology	1-2
1.3 Topography	1-3
1.4 Hydrogeology	1-4

2. Compliance Summary

2.1 Environmental Restoration and Waste Management.....	2-1
2.1.1 Comprehensive Environmental Response, Compensation and Liability Act..	2-1
2.1.2 Emergency Planning and Community Right-to-Know Act and Toxics Release Inventory Report	2-4
2.1.3 California Accidental Release Prevention Program	2-4
2.1.4 Resource Conservation and Recovery Act	2-5
2.1.5 California Medical Waste Management Act.....	2-5
2.1.6 Radioactive Waste and Mixed Waste Management	2-6
2.1.7 Release of Property	2-6
2.1.8 Federal Facility Compliance Act	2-6
2.1.9 Toxic Substances Control Act	2-7
2.2 Air Quality and Protection	2-7
2.2.1 Clean Air Act	2-7
2.2.2 National Emission Standards for Hazardous Air Pollutants, Radionuclides ...	2-9
2.3 Water Quality and Protection.....	2-9
2.4 Other Environmental Statutes	2-9
2.4.1 National Environmental Policy Act and Floodplains and Wetland Assessments	2-9
2.4.2 National Historic Preservation Act	2-10
2.4.3 Antiquities Act of 1906.....	2-11
2.4.4 Endangered Species Act and Sensitive Natural Resources.....	2-11
2.5 Environmental Permits, Inspections, and Occurrences.....	2-11

3. Environmental Program Information

3.1 Environmental Management System	3-1
3.1.1 ES&H Action Plans	3-1
3.1.2 EMS Audits and Reviews	3-2
3.2 Pollution Prevention/Sustainability Program.....	3-3

3.2.1	Routine Hazardous, Transuranic, and Radioactive Waste.....	3-4
3.2.2	Diverted Waste.....	3-4
3.2.3	Sustainable Acquisition	3-6
3.2.4	Pollution Prevention/Sustainability Activities	3-6
3.2.5	Pollution Prevention/Sustainability Employee Training and Awareness Programs	3-8
4. Air Monitoring and Dose Assessment		
4.1	Air Effluent Monitoring.....	4-1
4.1.1	Air Effluent Radiological Monitoring Results.....	4-2
4.1.2	Nonradiological Air Releases and Impact on the Environment.....	4-3
4.2	Ambient Air Monitoring	4-4
4.2.1	Ambient Air Radioactive Particulates	4-5
4.2.2	Ambient Air Tritium Concentrations.....	4-6
4.2.3	Ambient Air Beryllium Concentrations and Impact on the Environment	4-7
4.3	Radiological Air Dose Assessment.....	4-8
5. Water Monitoring Programs		
5.1	Sanitary Sewer Effluent Monitoring.....	5-1
5.1.1	Livermore Site Sanitary Sewer Monitoring Complex	5-1
5.1.2	Categorical Processes.....	5-4
5.1.3	Discharges of Treated Groundwater	5-5
5.1.4	Environmental Impact of Sanitary Sewer Effluent	5-5
5.2	Site 300 Sewage Ponds and Site 300 Waste Discharge Requirements.....	5-5
5.2.1	Sewage Evaporation and Percolation Ponds	5-6
5.2.2	Environmental Impact of Sewage Ponds	5-7
5.3	Storm Water Compliance and Surveillance Monitoring.....	5-7
5.3.1	Storm Water Inspections	5-9
5.3.2	Storm Water Compliance.....	5-9
5.4	Groundwater	5-10
5.4.1	Livermore Site and Environs	5-11
5.4.2	Site 300 and Environs	5-15
5.5	Other Monitoring Programs.....	5-20
5.5.1	Rainwater	5-20
5.5.2	Livermore Valley Surface Waters	5-22
5.5.3	Lake Haussmann Monitoring.....	5-23
5.5.4	Site 300 Drinking Water System Discharges.....	5-23
6. Terrestrial Monitoring		
6.1	Soil Monitoring.....	6-1
6.1.1	Radiological Monitoring Results	6-4
6.1.2	Nonradiological Monitoring Results.....	6-5
6.1.3	Environmental Impact on Soil	6-5
6.2	Vegetation and Foodstuff Monitoring	6-6
6.2.1	Vegetation Monitoring Results	6-7
6.2.2	Wine Monitoring Results.....	6-9
6.2.3	Environmental Impact on Vegetation and Wine.....	6-10
6.3	Biota Dose.....	6-12
6.3.1	Estimate of Dose to Biota	6-12
6.4	Ambient Radiation Monitoring.....	6-12

6.4.1	Ambient Radiation Monitoring Methods.....	6-13
6.4.2	Ambient Radiation Monitoring Results.....	6-13
6.4.3	Environmental Impact from Laboratory Operations.....	6-14
6.5	Special Status Wildlife and Plants	6-14
6.5.1	Surveillance Monitoring	6-17
6.5.2	Invasive Species Control Activities	6-20
6.5.3	Habitat Enhancement Projects and Compliance Activities	6-21
6.5.4	Environmental Impacts on Special Status Wildlife and Plants.....	6-23
7. Groundwater Investigation and Remediation		
7.1	Livermore Site Environmental Restoration Project.....	7-1
7.1.1	Physiographic Setting	7-1
7.1.2	Hydrogeology of the Livermore Site	7-2
7.1.3	Remediation Activities and Monitoring Results.....	7-2
7.1.4	Environmental Impacts	7-3
7.2	Site 300 Environmental Restoration Project.....	7-4
7.2.1	Physiographic Setting and Geology of Site 300	7-4
7.2.2	Contaminant Hydrogeology of Site 300	7-5
7.2.3	Remediation Activities and Monitoring Results.....	7-5
7.2.4	Environmental Impacts	7-8
8. Quality Assurance		
8.1	Quality Assurance Program Description	8-1
8.2	Analytical Laboratories.....	8-4
8.2.1	Analytical Laboratory Accreditations and Proficiency Demonstrations	8-5
8.2.2	Analytical Laboratory Observations, Assessments and/or Audits.....	8-9
8.2.3	LLNL Environmental and Waste Characterization Program Performance ...	8-10
8.3	Waste Management Facilities	8-12
8.4	Data Presentation	8-14
8.4.1	Radiological Data.....	8-14
8.4.2	Nonradiological Data	8-14
8.5	Statistical Comparisons and Summary Statistics.....	8-14
8.6	Reporting Uncertainty in Data Tables	8-16
8.7	Quality Assurance Process for the Environmental Report	8-17
8.8	Errata.....	8-18
References.....		R-1
Acronyms and Glossary		AC-1
Appendices		
Appendix A.	Data Tables.....	A-1
Appendix B.	Wildlife Survey Results.....	B-1
Appendix C.	Extra Resources	C-1
Appendix D.	Errata	D-1
Appendix E.	Percentage of In-Control Duplicate Pairs for Field Collocated Samples	E-1
Appendix F.	Number of Samples Collected with Valid Analytical Results Versus Planned.....	F-1

Figures

1-1	Locations of the two LLNL sites—the Livermore Site and Site 300	1-1
1-2	Wind roses showing wind direction and speed frequencies at the Livermore Site and Site 300 during 2020	1-4
4-1	Air effluent and ambient air monitoring locations at the Livermore Site, 2020.....	4-2
4-2	Air effluent and ambient air monitoring locations at Site 300, 2020.....	4-3
4-3	Air particulate and tritium monitoring locations in the Livermore Valley, 2020.....	4-5
5-1	WDR-R5-2008-0148 monitoring network, 2020.....	5-6
5-2	Storm water sampling locations, Livermore Site, 2020.....	5-8
5-3	Storm water sampling locations, Site 300, 2020.....	5-8
5-4	Off-site tritium monitoring wells in the Livermore Valley, 2020	5-11
5-5	Routine surveillance groundwater monitoring wells at the Livermore Site, 2020 ..	5-13
5-6	Surveillance groundwater wells and springs at Site 300, 2020	5-16
5-7	Livermore Site and Livermore Valley sampling locations for rain, surface water, and drinking water, 2020	5-21
5-8	Rainwater sampling locations at Site 300, 2020.....	5-21
6-1	Soil, vegetation, and TLD locations, Livermore Site	6-2
6-2	Soil, vegetation, and TLD locations, Livermore Valley	6-3
6-3	Soil, vegetation, and TLD locations, Site 300 and offsite	6-3
6-4	Median tritium concentrations in Livermore Site and Livermore Valley plant water samples, 1972 to 2020.....	6-8
6-5	Potential California red-legged frog aquatic habitat, Livermore Site.....	6-16
6-6	Protected habitat for species listed under the federal and California Endangered Species Acts at Site 300.....	6-17
8-1	Quality assurance documents for SAER related work processes	8-2
8-2	Plan – Do – Check – Act model.....	8-2

Tables

1-1	Summary of temperature, rainfall, and wind speed data at the Livermore Site and Site 300 during 2020.....	1-3
2-1	Compliance with EPCRA	2-4
2-2	Active permits in 2020 at Livermore Site and Site 300.....	2-12
2-3	Inspections of Livermore Site and Site 300 by external agencies in 2020	2-14
2-4	Environmental Occurrences reported under the Occurrence Reporting System in 2020	2-16
3-1	ES&H Action Plan summary	3-2
3-2	Routine hazardous waste at LLNL, FY 2016–2020	3-4
3-3	Routine transuranic and radioactive waste at LLNL, FY 2016–2020	3-4
3-4	Routine municipal waste in FY2020, Livermore Site and Site 300 combined.....	3-5
3-5	Construction and demolition waste in FY2020, Livermore Site and Site 300 combined.....	3-6
4-1	Nonradioactive air emissions, Livermore Site and Site 300, 2020.....	4-4
4-2	Ambient air tritium sampling summary for 2020	4-7
4-3	Radiation doses from ubiquitous background and man-made sources of radiation ..	4-8
5-1	Estimated total radioactivity in LLNL sanitary sewer effluent, 2020	5-2
5-2	Historical radioactive liquid effluent releases from the Livermore Site, 2010–2020.....	5-3

5-3	Summary of analytical results for permit-specified monthly, weekly 24-hour composite sampling of the LLNL sanitary sewer effluent, 2020.....	5-4
5-4	Radioactivity in surface and drinking waters in the Livermore Valley, 2020	5-22
6-1	Median and mean concentrations of tritium in plant water for the Livermore Site, Livermore Valley, and Site 300 sampled in 2020.....	6-9
6-2	Tritium in retail wine, 2020	6-10
6-3	Bulk transfer factors used to calculate inhalation and ingestion doses from measured concentrations in air, vegetation, and drinking water.....	6-11
6-4	5-year annual ambient radiation dose summary with standard deviation (SD) in units of mSv and numbers of samples	6-14
8-1	Commercial and on-site laboratories utilized in 2020	8-5
8-2	Laboratory certifications and accreditations in 2020	8-6
8-3	Laboratory participation in the Mixed Analyte Performance Evaluation Program... ..	8-8
8-4	2020 Laboratory observations, assessments and/or audits	8-10
8-5	Waste management facilities	8-12
8-6	Waste management facility observations, assessments, and/or audits in 2020	8-13

This page is intentionally left blank.

Executive Summary

Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation's nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences, bioscience and biotechnology, and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia.

LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored, and engineering and administrative controls are applied to minimize releases.

LLNL strives to maintain a safe, secure, and efficient operational environment for its employees and neighboring communities. Experts in environment, safety, and health (ES&H) support all Laboratory activities. LLNL's radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment.

LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System (EMS). The Laboratory encourages the public to participate in matters related to the Laboratory's environmental impact on the community by soliciting citizens' input on matters of significant public interest and through various communications. The Laboratory also provides public access to information on its ES&H activities with websites and public meetings.

LLNL consists of two sites—an urban site in Livermore, California, referred to as the "Livermore Site," which occupies 1.3 square miles; and a rural Experimental Test Site, referred to as "Site 300," near Tracy, California, which occupies 10.9 square miles. In 2020, the Laboratory had a staff of approximately 8,400.

Purpose and Scope of the Environmental Report

The purposes of the *Environmental Report 2020* are to record LLNL's compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring. Specifically, the report discusses LLNL's EMS; describes significant accomplishments in pollution prevention; presents the results of air, water, vegetation, and foodstuff monitoring; reports radiological doses from LLNL operations; summarizes LLNL's activities involving special status wildlife, plants,

Executive Summary

and habitats; and describes the progress LLNL has made in remediating groundwater contamination.

Environmental monitoring at LLNL, including analysis of samples and data, is conducted according to documented standard operating procedures. Duplicate samples are collected and analytical results are reviewed and compared to internal acceptance standards.

This report is prepared for DOE by LLNL's Environmental Functional Area (EFA). Submittal of the report satisfies requirements under DOE Order 231.1B, "Environment, Safety and Health Reporting," and DOE Order 458.1, "Radiation Protection of the Public and Environment." The report is distributed in electronic form and is available to the public at <https://saer.llnl.gov/>, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning with 1994 are also on the website.

Regulatory Permitting and Compliance

LLNL undertakes substantial activities to comply with many federal, state, and local environmental laws. The major permitting and regulatory activities that LLNL conducts are required by the Clean Air Act (CAA); the Clean Water Act (CWA) and related state programs; the Emergency Planning and Community Right-to-Know Act (EPCRA); the Resource Conservation and Recovery Act (RCRA) and state and local hazardous waste regulations; the National Environmental Policy Act (NEPA); the Endangered Species Act (ESA); the National Historic Preservation Act (NHPA); the Antiquities Act; and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA).

Integrated Safety Management System and Environmental Management System

LLNL established its EMS to meet the requirements of the International Organization for Standardization (ISO) 14001:1996 in June 2004 and has remained certified since that time, updating to revised standards in June 2006 (14001:2004) and May 2018 (14001:2015). Every three years LLNL identifies, documents, and updates its environmental aspects and each year plans actions to address the most significant aspects identified. In FY2020, six ES&H Action Plans addressed environmental aspects including implementing measures to meet site sustainability goals, rolling out the municipal waste reduction program to additional facilities, reducing energy and water use in laboratories, reducing risks associated with closed facilities and surrounding areas, demonstrating LLNL senior management commitment to employee safety and health and environmental protection, and developing outreach tools to educate waste generators.

Pollution Prevention

A strong Pollution Prevention/Sustainability Program (P2S) is an essential supporting element of LLNL's EMS. LLNL operations have reduced the quantity and toxicity of waste generated, eliminated or reduced pollutant releases, and recycled common and unique materials. The P2S

Program efforts in 2020 included significant progress toward recycling of the Lab's legacy refrigerants; outreach materials for the virtual Environment, Safety, Security, and Health fair; creation of an Earth Day video highlighting LLNL's sustainability and wildlife conservation programs; and initiation of a site sustainability map showcasing LLNL's sustainability features across the Livermore Site.

Air Monitoring

LLNL operations involving radioactive materials had minimal impact on ambient air during 2020. Estimated nonradioactive emissions are low compared to local air district emission criteria.

Releases of radioactivity to the environment from LLNL operations occur through stacks and from diffuse area sources. In 2020, radioactivity released to the atmosphere was monitored at five facilities on the Livermore Site and one at Site 300. In 2020, 55.11 Ci (2,039 GBq) of tritium was released from the Tritium Facility, and 2.65 Ci (98 GBq) of tritium was released from the National Ignition Facility (NIF). The Contained Firing Facility (CFF) at Site 300 had measured stack emissions in 2020 for depleted uranium. A total of 1.7×10^{-8} Ci (6.3×10^{-7} GBq) of uranium-234, 2.3×10^{-9} Ci (8.5×10^{-8} GBq) of uranium-235, and 1.2×10^{-7} Ci (4.4×10^{-6} GBq) of uranium-238 was released in particulate form. The doses to the hypothetical, site-wide maximally exposed individual (SW-MEI) members at the Livermore Site and Site 300 are less than one percent of the annual National Emissions Standards for Hazardous Pollutants (NESHAPs), which is 100 μ Sv/y (10 mrem/y) total site effective dose equivalent. None of the other facilities monitored for gross alpha and gross beta radioactivity had emissions in 2020.

The magnitude of nonradiological releases (e.g., reactive organic gases/precursor organic compounds [ROGs/POCs], nitrogen oxides, carbon monoxide, particulate matter, sulfur oxides) is estimated based on specifications of equipment and hours of operation. Livermore Site air pollutant emissions were very low in 2020 compared to the daily releases of air pollutants from all sources in the entire Bay Area. For example, the average daily emission of NOx in the Bay Area was approximately 2.3×10^5 kg/d, compared to the estimated daily release from the Livermore Site of 34.0 kg/d, which is 0.015% of total Bay Area source emissions for NOx. The 2020 Bay Area Air Quality Management District (BAAQMD) estimate for ROGs/POCs daily emissions throughout the Bay Area was approximately 2.2×10^5 kg/d, while the daily emission estimate for 2020 from the Livermore Site was 13.5 kg/d, or 0.0061% of the total Bay Area source emissions for ROGs/POCs. Nonradiological releases from LLNL continue to be a very small fraction of releases from all sources in the Bay Area or San Joaquin County.

In addition to air effluent monitoring, LLNL samples ambient air for tritium, radioactive particles, and beryllium. Some samplers are situated specifically to monitor areas of known contamination; some monitor potential exposure to the public; and others, distant from the two LLNL sites, monitor the natural background. In 2020, ambient air monitoring data was used to determine source terms for resuspended plutonium-contaminated soil, resuspended fallout from previous atmospheric testing, or resuspended fallout from the Fukushima nuclear accident; and tritium diffusing from area sources at the Livermore Site and resuspended uranium-contaminated soil at

Executive Summary

Site 300. In 2020, radionuclide particulate, tritium, and beryllium concentrations in air at the Livermore Site and in the Livermore Valley were well below the levels that would cause concern for the environment or public health.

Water Monitoring

Water monitoring is carried out to determine whether any radioactive or nonradioactive constituents released by LLNL might have a negative impact on public health and the environment. Data indicate LLNL has good control of its discharges to the sanitary sewer, and discharges to the surface water and groundwater do not have any apparent environmental impact.

Permits, including one for discharging treated groundwater from the Livermore Site Ground Water Project (GWP), regulate discharges to the City of Livermore sanitary sewer system. During 2020, monitoring data under the LLNL Wastewater Discharge Permit #1250 (2019–20, 2020–21) demonstrated full compliance with all discharge limits, and most of the measured values were a small fraction of the allowed limits. There were no discharges to the sanitary sewer from GWP activities. All discharges to the Site 300 sewage evaporation pond and percolation ponds were within permitted limits, and groundwater monitoring related to this area showed no measurable impacts.

Under the current storm water Industrial General Storm Water Permit (IGP) (2014-0057-DWQ), the only regulated industrial activities at the Livermore Site and Site 300 are those related to Treatment, Storage, and Disposal Facilities (TSDF). This includes the Decontamination and Waste Treatment Facility (DWTF) and Area 612 Facilities at Livermore and B-883, Explosive and Waste Treatment Facility (EWTF), and Explosives Waste Storage Facility (EWSF) at Site 300. LLNL has five storm water runoff sampling locations at the Livermore Site and two at Site 300. Storm water runoff samples were collected for one storm event at the Livermore Site and one storm event at Site 300 in 2020. Samples were collected from all five required storm water locations at the Livermore Site and Building 883 at Site 300. Based on annual sample results, both the Livermore Site and Site 300 remain at Exceedance Response Action Level 2 for magnesium. LLNL has provided data and analysis that show the exceedance of magnesium is due to aerial deposition from natural sources, not industrial activities at LLNL.

LLNL evaluated both sites for potential industrial sources of magnesium. The evaluation did not identify any significant sources of this metal as part of TSDF activities. Observations and data collected at both sites point to aerial deposition of natural sources, not industrial activities at LLNL, as the source of the high concentrations of this constituent in storm water runoff. Historical data of magnesium concentrations at upstream sample locations of the receiving waters show that the metal occurs at much higher concentrations than are measured at TSDF discharge locations.

The annual storm water reports for the Livermore Site, National Pollutant Discharge Elimination System (NPDES) General Permit 2014-0057-DWQ (Waste Discharge Identification Number [WDID] 2 01I025682) and Site 300, NPDES General Permit 2014-0057 (WDID 5S39I021179)

are available through the Stormwater Multiple Applications and Report Tracking System (SMARTS) managed by the California State Water Resources Control Board.

In addition to the CERCLA-driven monitoring (i.e., for volatile organic compounds [VOCs]) conducted by LLNL's Environmental Restoration Department (ERD), extensive surveillance monitoring of groundwater occurs at and near the Livermore Site and Site 300. Groundwater from wells downgradient from the Livermore Site is analyzed for anions, hexavalent chromium, and radioactivity. To detect any off-site contamination quickly, the well water is sampled in the uppermost water-bearing layers. Near Site 300, monitored constituents in off-site groundwater include explosives residue, nitrate, perchlorate, metals, volatile and semivolatile organic compounds, tritium, uranium, and other (gross alpha and beta) radioactivity. With the exception of VOCs in wells monitored for the CERCLA compliance, the constituents of all off-site samples collected at both the Livermore Site and Site 300 were below allowable limits for drinking water.

Surface waters and drinking water are analyzed for tritium and gross alpha and gross beta radioactivity. In the Livermore Valley, the maximum tritium activity was less than 1% of the drinking water standard, and the maximum gross alpha and gross beta measurements were less than 6% of their respective drinking water standards. At Site 300, maintenance and the operation of drinking water and cooling systems resulted in permitted discharges without adverse impact on surrounding waters.

Terrestrial Radiological Monitoring

The impact of LLNL operations on surface soil in 2020 was insignificant. Soil is analyzed for plutonium, gamma-emitting radionuclides, and tritium. Plutonium concentrations in soil at the Livermore Water Reclamation Plant continued to be high relative to other sampled locations, but even this concentration was only 1.6% of the screening level for cleanup recommended by the National Council on Radiation Protection (NCRP). At Site 300, soils are analyzed for gamma-emitting radionuclides and beryllium. In 2020, uranium-235 and uranium-238 concentrations in soils at Site 300 were below NCRP-recommended screening levels.

Vegetation and Livermore Valley wine were sampled for tritium. In 2020, the median of concentrations in all off-site vegetation samples was below the lower limit of detection of the analytical method. For Livermore Valley wines purchased in 2020, the highest concentration of tritium was just 0.5% of the EPA's standard for maximal permissible level of tritium in drinking water.

LLNL's extensive network of thermoluminescent dosimeters measures the natural terrestrial and cosmogenic background. In 2020, the method for calculating the quarterly doses was updated to better reflect recommendations in American National Standards Institute/Health Physics Society (ANSI/HPS) N13.37-2014 (R2019), resulting in higher annual averages. If these were calculated using previous methods, the results for 2020 would be consistent with those of previous years.

Biota

Through monitoring and compliance activities in 2020, LLNL avoided most impacts to special status species and enhanced some habitats. LLNL studies, preserves, and tries to improve the habitat of five species at Site 300 that are covered by the federal or California Endangered Species Acts—California tiger salamander (*Ambystoma californiense*), California red-legged frog (*Rana draytonii*), Alameda whipsnake (*Masticophis lateralis euryxanthus*), valley elderberry longhorn beetle (*Desmocerus californicus dimorphus*), and the large-flowered fiddleneck (*Amsinckia grandiflora*)—as well as species that are rare and otherwise of special interest. At Site 300, LLNL monitors populations of birds and rare species of plants and continues restoration activities for the four rare plant species known to occur at Site 300—the large-flowered fiddleneck, the big tarplant (*Blepharizonia plumosa*), the diamond-petaled California poppy (*Eschscholzia rhombipetala*), and shining navarretia (*Navarretia nigelliformis* ssp. *radians*).

LLNL took several actions to control invasive species in 2020. Measures taken at the Livermore Site to control bullfrogs, which are a significant threat to California red-legged frogs, included dispatching adults and removing egg masses in Lake Haussmann and Arroyo Las Positas. To remove bullfrog tadpoles and invasive fish, the LLNL reach of Arroyo Las Positas was allowed to dry out in September of 2020 by temporarily halting groundwater discharges to the arroyo.

The 2020 radiological doses calculated for biota at the Livermore Site and Site 300 were far below screening limits set by DOE, even though highly conservative assumptions maximized the potential effect of LLNL operations on biota.

Radiological Dose

Annual radiological doses at the Livermore Site and Site 300 in 2020 were found to be well below the applicable standards for radiation protection of the public. Dose calculated to the SW-MEI for 2020 was $1.9 \times 10^{-2} \mu\text{Sv}$ ($1.9 \times 10^{-3} \text{ mrem}$) for the Livermore Site and $1.8 \times 10^{-7} \mu\text{Sv}$ ($1.8 \times 10^{-8} \text{ mrem}$) at Site 300. These doses are well below the federal NESHAPs of $100 \mu\text{Sv}$ (10 mrem) and are significantly less than the doses from natural background radiation.

Groundwater Remediation

Groundwater at both the Livermore Site and Site 300 is contaminated from historical operations; the contamination, for the most part, is confined to each site. Groundwater at both sites is undergoing cleanup under the CERCLA. Remediation activities removed contaminants from groundwater and soil vapor at both sites, and documentation and investigations continue to meet regulatory milestones.

At the Livermore Site, contaminants include VOCs, fuel hydrocarbons, metals, and tritium, but only the VOCs in groundwater and saturated and unsaturated soils need remediation. Combinations of VOCs, nitrate, perchlorate, tritium, high explosives, depleted uranium,

organosilicate oil, polychlorinated biphenyls, dioxins, furans, and metals have been identified for remediation at one or more of the nine Operable Units (OUs) at Site 300.

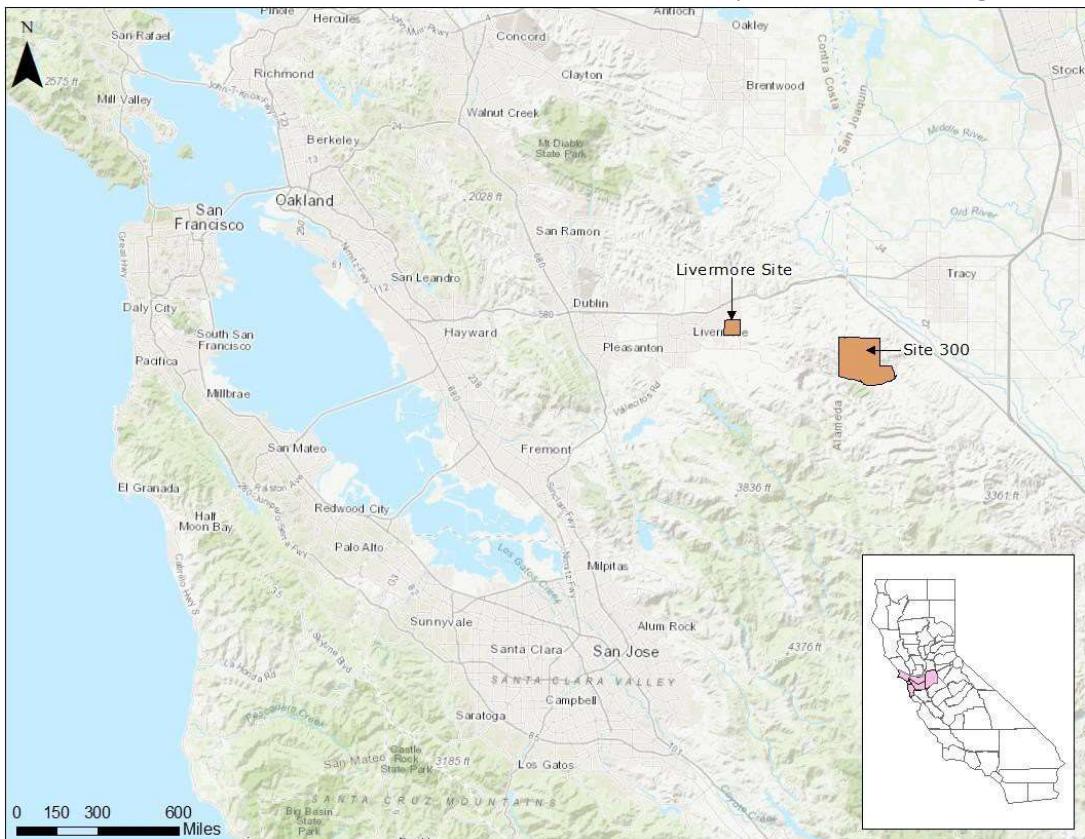
In 2020, concentrations continued to decrease in most of the Livermore Site VOC plumes due to active remediation and the removal of more than 34 kg of VOCs from both groundwater and soil vapor. Groundwater concentration and hydraulic data indicate subtle but consistent declines in the VOC concentrations and areal extent of the contaminant plumes in 2020.

In 2020 at Site 300, perchlorate, nitrate, the high explosive RDX, and organosilicate oil were removed from groundwater in addition to about 4.2 kg of VOCs. Each Site 300 OU has a different profile of contaminants, but overall, groundwater and soil vapor extraction and natural attenuation continue to reduce the mass of contaminants in the subsurface. Cleanup remedies have been fully implemented and are operational at eight of the nine OUs at Site 300. The CERCLA pathway for the last OU, Building 812, was negotiated with the regulatory agencies in 2011 and characterization activities continued. All milestones were met or renegotiated with the regulatory agencies (see **Chapter 2**).

Conclusion

LLNL's EMS provides a framework that integrates environmental protection into all work planning processes. The success of EMS is evidenced by LLNL's certification to the ISO 14001:2015 standard, coupled with a consistent record of good environmental stewardship and compliance. The combination of surveillance and effluent monitoring, source characterization, and dose assessment showed that the radiological dose to the hypothetical, maximally-exposed individual member of the public caused by LLNL operations in 2020 was substantially less than the dose from natural background. Potential dose to biota was well below DOE screening limits. LLNL demonstrated good compliance with permit conditions for releases to air and to water. Analytical results and evaluations of air and various waters potentially impacted by LLNL operations showed minimal contributions from LLNL operations. Remediation efforts at both the Livermore Site and Site 300 further reduced concentrations of contaminants of concern in groundwater and soil vapor.

This page is intentionally left blank.


1. Introduction

Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). LLNL is managed and operated by Lawrence Livermore National Security, LLC (LLNS); the LLNS management team includes Bechtel National, University of California, BWX Technologies, and Amentum¹. LLNS manages LLNL under NNSA Contract Number DE-AC52-07NA27344.

As a national security laboratory, LLNL is responsible for ensuring that the nation's nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security; conducting major research in atmospheric, earth, and energy sciences, bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory staff of approximately 8,400 serves as a scientific resource to the U.S. government and a partner to industry and academia.

1.1 Location

LLNL consists of two sites—an urban site in Livermore, California, referred to as the “Livermore Site,” and a rural test site, referred to as “Site 300,” near Tracy, California. See **Figure 1-1**.

Figure 1-1. Locations of the two LLNL sites—the Livermore Site and Site 300.

¹Amentum became a member of LLNS as of January 31, 2020, when it acquired the interest previously held by AECOM.

1. Introduction

The Livermore Site, LLNL's general research site, is within the eastern limits of Livermore, a city with a population of about 90,000 in Alameda County.

The Livermore Site occupies 1.3 mi², including the land that serves as a buffer zone along its north and west perimeters.

Within a 50-mi radius of the Livermore Site are cities such as Tracy and Pleasanton and the more distant (and more densely populated) cities of Oakland, San Jose, and San Francisco. Of the 7.7 million people within 50 mi of the Laboratory, only about 10% are within 20 mi.

Site 300, LLNL's Experimental Test Site, is located in the Altamont Hills of the Diablo Range in Central California and straddles the San Joaquin and Alameda county line. The site is 12 mi east of the Livermore Site and occupies 10.9 mi².

The city of Tracy, with a population of about 98,000, is approximately 6 mi to the northeast of Site 300 (measured from the northeastern border of Site 300 to Sutter Tracy Community Hospital). Of the 7.1 million people who live within 50 mi of Site 300, 95% are more than 20 mi away in large metropolitan areas, which include Oakland, San Jose, and Stockton.

1.2 Meteorology

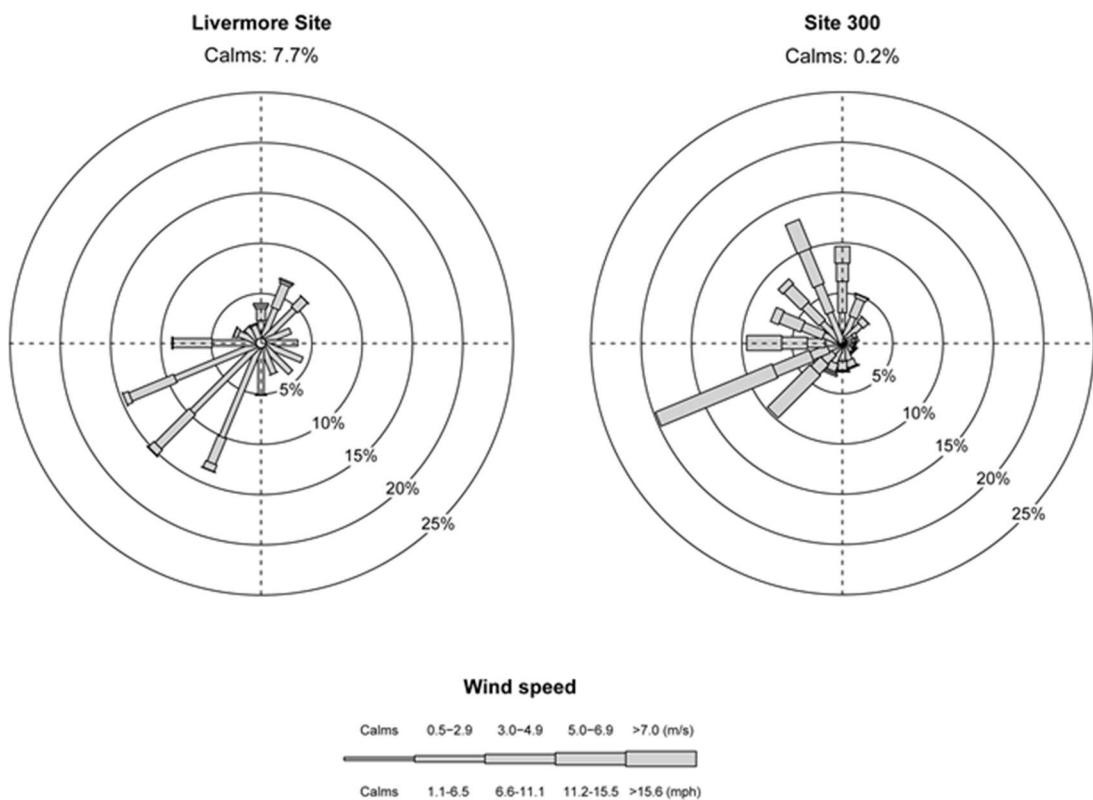
The climate at both sites is characterized by mild, rainy winters and warm-to-hot, dry summers, with strong seasonal wind and rainfall patterns. Wind patterns at both sites tend to be dominated by the thermal draw of the warm San Joaquin Valley that results in wind blowing from the cool ocean toward the warm valley during the warm season, increasing in intensity as the valley heats up. During the winter, the wind blows from the northeast more frequently as cold, dense air spills out of the San Joaquin Valley. The meteorological conditions at Site 300 are also strongly influenced by higher elevation and more pronounced topographical relief. Approximately 55% of the rain at both sites falls in January, February, and March and approximately 80% falls in the five months from November through March, with very little rain falling during the warmer months. For a detailed review of rainfall at LLNL, see Bowen (2007). For a detailed review of the climatology at LLNL, see Gouveia and Chapman (1989).

Meteorological towers at both the Livermore Site and Site 300 continuously gather data including wind speed, wind direction, rainfall, humidity, solar radiation, and air temperature. Temperature, rainfall, and wind speed data from the Livermore Site and Site 300 towers during 2020 are summarized in **Table 1-1**. Annual wind data for the Livermore Site and Site 300 are shown in **Figure 1-2**.

Table 1-1. Summary of temperature, rainfall, and wind speed data at the Livermore Site and Site 300 during 2020.

	Livermore Site		Site 300	
Temperature	°C	°F	°C	°F
Mean daily maximum	23.6	74.4	23.1	73.6
Mean daily minimum	8.4	47.0	13.8	56.9
Average	15.4	59.6	18.2	64.7
High	43.5	110.3	40.7	105.3
Low	-2.1	28.1	1.0	33.8
Rainfall	cm	in.	cm	in.
Total	16.7	6.6	13.6	5.4
Climatological normal ^(a)	32.4 ^(b)	12.8 ^(b)	26.5 ^(b)	10.4 ^(b)
Wind	m/s	mph	m/s	mph
Average speed	2.1	4.7	5.5	12.3
Peak gust speed	23.5	52.7	33.5	74.9

^(a) Climatological normal is based on a 30-year period (1991–2020).


^(b) 1991–2020 (Mean re-calculated every 10 years).

1.3 Topography

The Livermore Site is located in the southeastern portion of the Livermore Valley, a prominent topographic and structural depression oriented east–west within the Diablo Range. The most prominent valley in the Diablo Range, the Livermore Valley is bounded on the west by the Pleasanton Ridge and on the east by the Altamont Hills. The valley is approximately 14 mi long and varies in width generally between 2.5 and 7 mi. The highest elevation of the valley floor is 720 ft above sea level along its eastern margin near the Altamont Hills; it descends gradually to 300 ft at the southwestern corner. The valley floor is covered primarily by alluvial and floodplain deposits consisting of gravels, sands, silts, and clays with an average thickness of about 325 ft. Ephemeral waterways flowing through the Livermore Site include Arroyo Seco along the southwestern corner and Arroyo Las Positas along the eastern and northern perimeters.

Site 300 consists of a series of steep hills and ridges separated by intervening ravines oriented in a generally northwest–southeast direction. The Altamont Hills, where Site 300 is located, are part of the California Coast Range Province and separate the Livermore Valley to the west from the San Joaquin Valley to the east. The elevation of Site 300 ranges from about 1,740 ft above sea level at the northwestern corner of the site to approximately 490 ft in the southeastern portion. Corral Hollow Creek, an ephemeral stream that drains toward the San Joaquin Basin, runs along the southern and eastern boundaries of Site 300.

1. Introduction

Figure 1-2. Wind roses showing wind direction and wind speed frequencies at the Livermore Site and Site 300 during 2020. The length of each spoke is proportional to the frequency at which the wind blows from the indicated direction. Different line widths of each spoke represent wind speed classes.

1.4 Hydrogeology

Geologically the Livermore Formation and overlying alluvial deposits contain the primary aquifers of the Livermore Valley groundwater basin. Natural recharge occurs primarily along the basin margins and arroyos during wet winters. In general, groundwater flows toward the central east-west axis of the valley and then westward through the central basin. Groundwater flow in the basin is primarily horizontal, although a significant vertical component probably exists along the basin margins under localized sources of recharge and near heavily used extraction or water production wells. Beneath the Livermore Site, the depth to the water table varies from about 35 to 125 ft below the ground surface. See Thorpe et al. (1990) for a detailed discussion of Livermore Site hydrogeology.

Site 300 is generally underlain by gently dipping sedimentary bedrock dissected by steep ravines. The bedrock primarily consists of interbedded sandstone, siltstone, and claystone. Groundwater occurs principally in the Neroly Formation upper and lower blue sandstone units and in the underlying Cierbo Formation. Significant groundwater is also locally present in permeable Quaternary alluvium valley fill and underlying decomposed bedrock, especially during wet winters. Minor quantities of groundwater are present within perched aquifers in the unnamed Pliocene nonmarine unit. Perched aquifers contain unconfined groundwater separated from an

underlying main body of groundwater by impermeable layers; normally these perched zones are laterally discontinuous. Recharge occurs predominantly in locations where saturated alluvial valley fill is in contact with underlying permeable bedrock or where permeable bedrock strata crop out along the canyon bottom because of structure or topography. The thick Neroly Formation lower blue sandstone unit, stratigraphically near the base of the formation, generally contains unconfined groundwater. Wells located in the southern part of Site 300 that historically pumped water from this aquifer for on-site drinking and process supply are available for backup purposes. In this area in southern Site 300, the Neroly Formation lower blue sandstone is confined. See Webster-Scholten et al. (1994) and Ferry et al. (2006) for a detailed discussion of Site 300 hydrogeology.

Contributing Authors

Mark Buscheck, Crystal Rosene, Anthony Wegrecki

This page is intentionally left blank.

2. Compliance Summary

Lawrence Livermore National Laboratory (LLNL) activities comply with applicable federal, state, and local environmental regulations, internal requirements, Executive Orders, and U.S. Department of Energy (DOE) Orders as specified in Contract DE-AC52-07NA27344. This chapter provides an overview of LLNL's compliance programs and activities during 2020, as well as a listing of all active environmental permits.

2.1 Environmental Restoration and Waste Management

2.1.1 Comprehensive Environmental Response, Compensation and Liability Act

Ongoing remedial investigations and cleanup activities for legacy contamination of environmental media at LLNL fall under the jurisdiction of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Title I of the Superfund Amendments and Reauthorization Act (SARA). CERCLA is commonly referred to as the Superfund law.

CERCLA compliance activities for the Livermore Site and Site 300 are summarized in **Sections 2.1.1.1 and 2.1.1.2**. Community relations activities conducted by DOE/LLNL are also part of these projects. See **Chapter 7** for more information on the activities and findings of the investigations.

2.1.1.1 Livermore Site Groundwater Project

The Livermore Site came under CERCLA in 1987 when it was placed on the National Priorities List. The Livermore Site Groundwater Project (GWP) complies with provisions specified in a Federal Facility Agreement (FFA) entered into by the U.S. Environmental Protection Agency (EPA), DOE, the California Department of Toxic Substances Control (DTSC), and the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). As required by the FFA, the GWP addresses compliance issues by investigating potential contamination source areas (e.g., suspected old release sites, solvent-handling areas, leaking underground tank systems), monitoring water quality through an extensive network of wells, and remediating contaminated soil and groundwater. The primary soil and groundwater contaminants (constituents of concern) are volatile organic compounds (VOCs), primarily trichloroethylene (TCE) and perchloroethylene (PCE). Background information on LLNL Livermore Site environmental characterization and restoration activities is presented in the *CERCLA Remedial Investigation Report for the LLNL Livermore Site* (Thorpe et al., 1990). The *LLNL Groundwater Project 2020 Annual Report* (Noyes et al., 2021) presents the current status of cleanup at the Livermore Site.

Regulatory Deliverables. In calendar year 2020, the following Livermore Site deliverables were submitted to the regulatory agencies:

- *The Livermore Site Fourth Quarter 2019 Self-Monitoring Report*
- *LLNL Groundwater Project 2019 Annual Report*

2. Compliance

- *First, Second, and Third Quarter 2020 Self-Monitoring Reports*
- Work plans for well and borehole drilling at the Livermore Site in Fiscal Year 2020
- *Quality Assurance Project Plan* revision

Treatment Facilities. During 2020, the Livermore GWP maintained 27 groundwater and 8 soil vapor treatment facilities. The groundwater extraction wells and dual extraction wells extracted about 814 million L of groundwater during 2020. The dual extraction wells and soil-vapor extraction wells together removed approximately 3.4 million m³ of soil vapor.

In 2020, the Livermore GWP treatment facilities removed about 34 kg of VOCs. Since remediation efforts began in 1989, more than 25.5 billion L of groundwater and approximately 32.6 million m³ of soil vapor have been treated, removing about 3,430 kg of VOCs.

Livermore Site restoration activities in 2020 were focused on enhancing and optimizing ongoing operations at treatment facilities. Evaluation of technologies that may accelerate cleanup of the Livermore Site contaminant source areas, and address areas of co-mingled VOC and low-level tritium plumes, also continued. Beneath the site, groundwater concentration and hydraulic data indicate subtle but consistent declines in VOC concentrations and areal extent of contaminant plumes in 2020. Hydraulic containment along the western and southern boundaries of the site was fully maintained in 2020, and progress was made toward interior plume and source area cleanup. See Noyes et al. (2021) for more information.

Community Relations. Livermore Site community relations activities in 2020 included maintaining information repositories and an administrative record; sending letters to near neighbors living to the west of LLNL providing an update on the progress of the off-site groundwater plume cleanup; and meeting with members of Tri-Valley Communities Against a Radioactive Environment (Tri-Valley CAREs) and the organization's scientific advisor. In addition, DOE/LLNL environmental documents, letters, and public notices were posted on a public website: <https://enviroinfo.llnl.gov/>. DOE/LLNL was unable to conduct CERCLA community tours of the Livermore Site during 2020 due to LLNL Minimum Safe Operations in response to the COVID-19 pandemic.

2.1.1.2 Site 300 Environmental Restoration Project

Remedial activities are ongoing at Site 300, which became a CERCLA site in 1990 when it was placed on the National Priorities List. Remedial activities are overseen by the EPA, the Central Valley Regional Water Quality Control Board (CVRWQCB), and DTSC, under the authority of an FFA for the site. Contaminants of concern at Site 300 include VOCs (primarily TCE), high-explosive compounds, tritium, depleted uranium, silicone-based oils, nitrate, perchlorate, polychlorinated biphenyls, dioxins, furans, and metals. The contaminants present in environmental media vary within the different environmental restoration operable units (OUS) at the site. See Webster-Scholten (1994) and Ferry et al. (1998) for background information on LLNL environmental characterization and restoration activities at Site 300. The *Annual 2020 Compliance Monitoring Report* (Buscheck et al., 2021) presents the current status of cleanup at Site 300.

Regulatory Deliverables. In calendar year 2020, the following Site 300 deliverables were submitted to the regulatory agencies:

- *Annual 2019 Compliance Monitoring Report*
- *First Semester 2020 Compliance Monitoring Report*
- Work plans for well drilling at Site 300 in Fiscal Year 2020
- *Quality Assurance Project Plan* revision

All calendar year 2020 milestones were met or renegotiated with the regulatory agencies.

Treatment Facilities. During 2020, the Site 300 Environmental Restoration Project (ERP) operated 16 groundwater and 5 soil vapor treatment facilities at Site 300. The groundwater extraction wells and dual extraction wells extracted about 22.2 million L of groundwater during 2020. The dual extraction wells and soil-vapor extraction wells together removed 1.4 million m³ of soil vapor.

In 2020, the Site 300 treatment facilities removed approximately 4.2 kg of VOCs, 0.057 kg of perchlorate, 962 kg of nitrate, 0.092 kg of the high explosive compound RDX, and 0.003 kg of uranium. Since groundwater remediation began in 1990, approximately 1,786 million L of groundwater and 38 million m³ of soil vapor have been treated, resulting in removal of approximately 635 kg of VOCs, 1.9 kg of perchlorate, 22,000 kg of nitrate, 2.9 kg of RDX, 9.5 kg of silicone oils, and 0.1 kg of uranium.

Site 300 restoration activities in 2020 were focused on enhancing and optimizing ongoing operations at treatment facilities, continuing bioremediation treatability studies, and ongoing monitoring of groundwater remediation progress. Groundwater monitoring data indicate declines in contaminant concentrations in 2020 and progress toward off-site and on-site plume and source area cleanup. See Buscheck et al. (2021) for more information.

Community Relations. Site 300 community relations activities in 2020 included maintaining information repositories and an administrative record, and one meeting with members of Tri-Valley CAREs and the organization's scientific advisor. DOE/LLNL environmental documents, letters, and public notices were posted on a public website: <https://enviroinfo.llnl.gov/>.

DOE/LLNL was unable to conduct CERCLA community tours of Site 300 during 2020 due to LLNL Minimum Safe Operations in response to the COVID-19 pandemic.

2. Compliance

2.1.2 Emergency Planning and Community Right-to-Know Act and Toxics Release Inventory Report

Title III of SARA, known as the Emergency Planning and Community Right-to-Know Act (EPCRA), requires owners and operators of facilities who handle certain hazardous chemicals on-site to provide information on the release, storage, and use of these chemicals to organizations responsible for emergency response planning. Executive Order 13834, Efficient Federal Operations, directs all federal agencies to comply with the requirements of the EPCRA, including SARA, Section 313, the Toxic Release Inventory (TRI) Program. EPCRA requirements and LLNL compliance are summarized in **Table 2-1**.

LLNL has reported lead release data via the Form R for Site 300 since 2002. The Form R is used for reporting TRI chemical releases and includes information about waste management and waste minimization activities. Over 99 percent of lead releases are associated with activities at the Site 300 Small Firearms Training Facility (SFTF). Data for the 2019 TRI Form R for lead at Site 300 was submitted to DOE/National Nuclear Security Administration (NNSA) on April 28, 2020.

Table 2-1. Compliance with EPCRA

EPCRA section	Brief description of requirement	LLNL action
302	Notify SERC of presence of extremely hazardous substances.	Originally submitted 05/87.
303	Designate a facility representative to serve as emergency response coordinator.	Last update submitted 12/29/20 to San Joaquin County for Site 300 and 12/30/20 to the LPFD for Livermore Site.
304	Report releases of certain hazardous substances to SERC and LEPC.	No EPCRA-listed extremely hazardous substances were released above reportable quantities in 2020.
311	Submit SDSs or chemical list to SERC, LEPC, and Fire Department.	Per the California Office of Emergency Services, the EPCRA Section 311 requirement is satisfied by the EPCRA Section 312 submittal and the filing of necessary amendments within 30 days of handling a previously undisclosed hazardous material subject to Section 312 inventory requirements.
312	Submit hazardous chemical inventory to local administering agency (county).	Submitted to San Joaquin County and the LPFD on 01/06/20 and 02/11/20, respectively.
313	Submit Form R to U.S. EPA and California EPA for toxic chemicals released above threshold levels.	Form R for lead for Site 300 submitted to DOE on 06/10/20, DOE forwarded it to U.S. EPA and California EPA on 06/16/20.

Note: See the **Acronyms and Glossary** section for acronym definitions.

2.1.3 California Accidental Release Prevention Program

The California Accidental Release Prevention (CalARP) Program is the combined federal and state program for the prevention of accidental release of regulated toxic and flammable substances. The goal of the combined program is to eliminate the need for two separate and distinct chemical risk management programs. The purpose of the CalARP program is to prevent accidental releases of substances that can cause serious harm to the public and the environment, to minimize the damage if releases do occur, and to satisfy Community Right-to-Know laws. The CalARP program is implemented at the local government level by Certified Unified Program Agencies (CUPAs). The related federal regulations are the Clean Air Act (CAA) Section 112(r) and Title 40, Code of Federal Regulations, Part 68 (40 CFR Part 68).

LLNL submitted a revised Livermore Site CalARP Level 1 risk management plan (RMP) in September 2016. The Livermore Site RMP includes lithium hydride, hydrofluoric acid, and nitric acid.

2.1.4 Resource Conservation and Recovery Act

The Resource Conservation and Recovery Act (RCRA) provides the framework at the federal level for regulating solid wastes, including wastes designated as hazardous. The California Hazardous Waste Control Law (HWCL) and California Code of Regulations (CCR) Title 22 set requirements for managing hazardous wastes and implementing RCRA in California. LLNL works with DTSC and CUPA to comply with these regulations and obtain hazardous waste permits.

The hazardous waste management facilities at the Livermore Site consist of permitted units in Area 612 and Building 625 plus Buildings 693, 695, and 696, which make up the Decontamination and Waste Treatment Facility (DWTF). Permitted waste-management units include container storage, tank storage, and various treatment processes (e.g., wastewater filtration, blending, and size reduction). LLNL submitted the permit renewal application to DTSC in April 2009, followed by submittal of the human health risk assessment (HHRA) in December 2010 as part of the permit renewal process. DTSC issued the Hazardous Waste Facility Permit on March 11, 2016. However, DTSC stayed the permit on April 29, 2016 to address three comments that were accepted on December 1, 2016. Resolution of the three appeal comments was in the DTSC appeal process as of December 31, 2020.

The hazardous waste management facilities at Site 300 consist of three operational RCRA-permitted facilities. The Explosives Waste Storage Facility (EWSF) and the Explosives Waste Treatment Facility (E WTF) are permitted to store and treat explosives waste, respectively. The Building 883 container storage area (CSA) is permitted to store routine facility-generated hazardous waste such as spent acids, bases, contaminated oil, and spent solvents. Site 300 has one post-closure permit for the RCRA-closed Building 829 High Explosives Burn Pits. DTSC issued the Hazardous Waste Facility Permit (HWFP) for EWSF, E WTF and the CSA on June 29, 2017. The HWFP is effective for 10 years, from August 7, 2017–August 7, 2027. DTSC issued the Building 829 post-closure permit on April 28, 2017. The post-closure permit is effective for 10 years, from April 27, 2017–April 27, 2027. Transportation of hazardous or mixed waste over public roads occurs by DTSC-registered transporters, including LLNL.

2.1.5 California Medical Waste Management Act

All LLNL medical waste management operations are conducted in accordance with the California Medical Waste Management Act (MWMA). The program is administered by the California Department of Public Health (CDPH) and is enforced by the Alameda County Department of Environmental Health (ACDEH) at the Livermore Site, and San Joaquin County Environmental Health Department (SJCEHD) at Site 300. LLNL's medical waste permits are renewed on an annual basis and cover medical waste generation and treatment activities for the Biosafety Level (BSL) 2 facilities, and one BSL 3 facility. LLNL revised the BSL 2 and 3 Medical Waste Management Plans to incorporate new requirements pursuant to California Assembly Bill (AB)

2. Compliance

333, which became effective in January 2016. The BSL 2 and 3 Medical Waste Management Plans and Emergency Action Plans were most recently submitted to the ACDEH in August 2020.

2.1.6 Radioactive Waste and Mixed Waste Management

LLNL manages radioactive waste and mixed waste in compliance with applicable sections of DOE Order 435.1, DOE Manual 435.1-1, DOE Notice 435.1, and the LLNL-developed Radioactive Waste Management Basis for the Lawrence Livermore National Laboratory (LLNL 2019), which summarizes radioactive waste management controls relating to waste generators and treatment and storage facilities.

2.1.7 Release of Property

LLNL does not release property (e.g., vehicles, equipment, or other materials) to the public with residual radioactivity above the limits specified in DOE Order 458.1. Pursuant to written procedures, items that are potentially contaminated or activated are either surveyed prior to the release to the public, or a process knowledge evaluation is conducted to verify that the material has not been exposed to radioactive material or to energy capable of inducing radioactivity in the material. In some cases, both a radiological survey and a process knowledge evaluation are performed. Excessed items that meet the requirements for unrestricted release are donated to interested state agencies, federal agencies, or universities; redeployed to other on-site users; or released to LLNL's Donation, Utilization and Sales group. In 2020, approximately 2,935 equipment release swipes were processed by LLNL's Radiological Measurements Laboratory; the equipment may have subsequently been used on-site or released to the public. Utilizing a graded approach, LLNL only keeps track of high value released items (e.g., those items worth greater than \$100,000). In 2020, no high value items were released.

DOE issued a moratorium in January 2000 prohibiting the release of volume-contaminated metals and subsequently suspended the release of metals for recycling purposes from DOE radiological areas in July 2000. No metals subject to the moratorium or suspension were released from LLNL in 2020.

Excess property with residual radioactivity above the limits in DOE Order 458.1 is either transferred to other DOE facilities for reuse or transferred to LLNL's Radioactive and Hazardous Waste Management for disposal as radioactive waste.

2.1.8 Federal Facility Compliance Act

LLNL continues to work with DOE to maintain compliance with the Federal Facilities Compliance Act (FFCA) Site Treatment Plan (STP) for LLNL, which was signed in February 1997. LLNL completed 7 milestones during 2020. An additional 43.5 m³ of newly generated mixed waste was accepted into the approved storage facilities and added to the STP. LLNL removed approximately 74.6 m³ of mixed waste from LLNL in 2020.

Reports and certification letters were submitted to DOE as required. LLNL continued the use of available commercial treatment and disposal facilities that are permitted to accept LLNL mixed waste. These facilities provide LLNL greater flexibility in pursuing the goals and milestones set forth in the STP.

2.1.9 Toxic Substances Control Act

The Federal Toxic Substances Control Act (TSCA) and implementing regulations found in 40 CFR Parts 700–789 govern the uses of newly developed chemical substances and TSCA-governed waste. In 2020, 13 containers of TSCA-regulated polychlorinated biphenyl (PCB) waste with an aggregate weight of 1,109 kilograms were transported to and disposed at RCRA-permitted, Clean Harbors Treatment, Storage, and Disposal Facilities in Aragonite, Utah and Buttonwillow, California.

2.2 Air Quality and Protection

2.2.1 Clean Air Act

All activities at LLNL are evaluated to determine the need for air permits or equipment registrations. Air permits are obtained from the Bay Area Air Quality Management District (BAAQMD) for the Livermore Site and from the San Joaquin Valley Air Pollution Control District (SJVAPCD) and/or BAAQMD for Site 300. The BAAQMD also administers a boiler registration program for natural gas fueled boilers with rated heat input capacities greater than 2 million British Thermal Units per hour (BTU/hr) and less than 10 million BTU/hr.

Both the BAAQMD and the SJVAPCD are overseen by the California Air Resources Board (CARB), which also oversees the statewide permitting for portable diesel fuel-driven equipment such as portable generators and portable air compressors. In addition, CARB presides over the state-wide registration of in-use off-road diesel vehicles (e.g., diesel-powered forklifts, loaders, backhoes, graders, and cranes), on-road heavy-duty diesel vehicles with a gross vehicle weight rating > 14,000 pounds (e.g., garbage trucks, street sweepers, and bucket trucks) and large spark-ignition (LSI) engine vehicles (e.g., gasoline, propane and electric forklifts, scrubbers/sweepers, and industrial tow tractors).

In 2020, LLNL operated 111 permitted air-pollutant emission sources at the Livermore Site and 36 permitted air-pollutant emission sources at Site 300. In addition, LLNL maintained the registrations for 36 natural gas-fired boilers with the BAAQMD at the Livermore Site. LLNL also maintained registrations for 10 portable diesel engines powering various portable equipment, 89 in-use off-road diesel vehicles, 14 on-road heavy-duty diesel vehicles, and 131 LSI engine vehicles with CARB at the Livermore Site and Site 300.

In 2020, LLNL continued to maintain a Synthetic Minor Operating Permit (SMOP) with the BAAQMD to ensure that facility-wide actual emissions of regulated air pollutants from the Livermore Site did not exceed federal CAA Title V emission limits. The source categories covered under the SMOP include solvents, fuel dispensing, remediation and wastewater, and combustion. LLNL was initially issued the SMOP by the BAAQMD in 2002 after it was determined that LLNL had the potential to emit regulated air pollutants in excess of federal CAA Title V emission limits if all emission sources at the Livermore Site were to operate at maximum capacity. As a result, LLNL agreed to receive federally enforceable permit conditions in the SMOP that limit actual emissions of regulated air pollutants from sources rather than potential emissions from sources. As such, LLNL has been able to demonstrate through extensive

2. Compliance

monitoring and record keeping practices of emissions for sources and meeting significantly reduced air pollutant emissions limits in the SMOP, that its actual emissions are well below CAA Title V emission limits, and thus, LLNL is not a “major facility” of air pollutant emissions per 40 CFR Part 70.2.

On July 15, 2016, Site 300 was reclassified by SJVAPCD from a Title V Major Facility to a Minor Facility with potential to emit (PTE) less than 10 tons per year for VOCs. As a Minor Facility, Site 300 is no longer mandated to tally its rolling 12-month emissions, as previously required by SJVAPCD. In addition, Site 300 is no longer subject to annual compliance inspections, but falls under a biennial schedule.

Under the authority of AB 32, the State of California adopted several regulations to reduce greenhouse gas emissions. California’s Mandatory Reporting of Greenhouse Gas Emissions Regulation initially (for calendar years 2008-2011) required certain facilities to annually report greenhouse gas emissions from natural gas combustion when annual emissions exceeded 25,000 metric tons of CO₂ equivalent. The regulation was amended, and the reporting threshold was lowered to 10,000 metric tons per year of CO₂ equivalent beginning with calendar year 2012.

Since 2008, the Livermore Site’s annual greenhouse gas emissions from natural gas combustion have been slightly below 25,000 metric tons CO₂ equivalent. LLNL began reporting the Livermore Site’s greenhouse gas emissions from natural gas combustion for calendar year 2012 and has reported each year since.

The CARB regulation to reduce greenhouse gas emissions from semiconductor operations applies to semiconductor (or related devices) operations that use fluorinated gases or fluorinated heat transfer fluids (HTFs). The regulation aims to reduce fluorinated compound air emissions which are very potent greenhouse gases. Facilities with semiconductor operations using fluorinated gases or HTFs are required to report fluorinated gas emissions beginning with calendar year 2010 and each calendar year thereafter. In 2020 LLNL’s annual emissions of fluorinated gases from semiconductor operations were below the 800 metric ton carbon dioxide equivalent (MT CO₂e) threshold. Facilities that exceed the 800 MT CO₂e threshold are required to meet strict emission standards for semiconductor operations.

Also, under the authority of AB 32, California has adopted regulations pertaining to sulfur hexafluoride (SF₆), because of its high global warming potential. LLNL was required to submit an annual report to CARB describing the research uses of SF₆ and the measures taken to control the SF₆ emissions from such research activities, and was required to keep records on the amounts of SF₆ contained in and used for electrical switchgear during calendar year 2020.

In addition, LLNL continues to implement reductions and controls to minimize CO₂ emissions. LLNL is replacing diesel engines, boilers, and hot water heaters on a continuing basis, and the new equipment is more efficient in terms of fuel use and air emissions, such as CO₂. Site 300 emissions of CO₂ are much lower than Livermore Site emissions, and there is no natural gas service at Site 300 that would generate CO₂ emissions.

The EPA has a Mandatory Reporting of Greenhouse Gases regulation for stationary emission

sources, similar to California's regulation. LLNL is currently below the mandatory reporting threshold for the EPA of 25,000 metric tons per year at both the Livermore Site and Site 300.

2.2.2 National Emission Standards for Hazardous Air Pollutants, Radionuclides

To demonstrate compliance with 40 CFR Part 61, Subpart H (National Emission Standards for Hazardous Air Pollutants [NESHAPs] for radiological emissions from DOE facilities), LLNL monitors certain air-release points and evaluates the maximum potential dose to the public. The *LLNL NESHAPs 2020 Annual Report* (Wilson et al. 2021) reported that the estimated maximum radiological dose from radioactive air emissions were $1.9 \times 10^{-2} \mu\text{Sv}$ ($1.9 \times 10^{-3} \text{ mrem}$) for the Livermore Site and $1.8 \times 10^{-7} \mu\text{Sv}$ ($1.8 \times 10^{-8} \text{ mrem}$) for Site 300. The totals are well below the $100 \mu\text{Sv}/\text{y}$ (10 mrem/y) site-wide dose limits defined by the NESHAPs regulation. The *LLNL NESHAPs 2020 Annual Report* is in Appendix C of this report.

2.3 Water Quality and Protection

LLNL complies with requirements of the Federal Clean Water Act (CWA), Porter-Cologne Water Quality Control Act, Safe Drinking Water Act (SDWA), the California Aboveground Petroleum Storage Act, Water Code, Health and Safety Code, and City of Livermore ordinances by complying with regulations and obtaining permits issued by the appropriate regulatory agencies whose mission is to protect water quality.

LLNL complies with the requirements of National Pollutant Discharge Elimination System (NPDES) and Waste Discharge Requirement (WDR) permits; and Water Quality Certifications issued by Regional Water Quality Control Boards (RWQCBs) and the State Water Resources Control Board (SWRCB) for discharges to waters of the U.S. and waters of the state. Discharges to the City of Livermore's sanitary sewer system are governed by permits issued by the Water Resources Division (WRD). The SDWA requires that LLNL register Class V injection wells with the EPA, and LLNL obtains permits from the Army Corps of Engineers (ACOE) for work in wetlands and waters of the U.S.

The CWA and California Aboveground Petroleum Storage Act require LLNL to have and implement Spill Prevention Control and Countermeasure (SPCC) plans for aboveground, oil-containing containers. The Livermore-Pleasanton Fire Department (LPFD) and the SJCEHD also issue permits for operating underground storage tanks (USTs) containing hazardous materials or hazardous waste (see **Table 2-2**). LLNL's USTs, for which permits are required, contain diesel fuel or gasoline; aboveground storage tanks, for which permits are not required, contain fuel, insulating oil, and process wastewater.

2.4 Other Environmental Statutes

2.4.1 National Environmental Policy Act and Floodplains and Wetland Assessments

The National Environmental Policy Act (NEPA) of 1969 is the U.S. government's basic environmental charter. When considering a proposed project or action at LLNL, DOE/NNSA must (1) consider how the action would affect the environment, and (2) make certain that

2. Compliance

environmental information is available to public officials and citizens before decisions are made and actions are taken. The results of the evaluations and notice requirements are met through publication of “NEPA documents,” such as environmental impact statements (EISs) and environmental assessments (EAs) under DOE NEPA Implementing Procedures in 10 CFR Part 1021.

In 2005, DOE/NNSA completed the Final Site-Wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement (2005 SWEIS) (U.S. DOE/NNSA 2005). In 2011, DOE/NNSA prepared a Supplement Analysis (SA) (DOE/EIS-0348-SA-03) of the 2005 SWEIS to consider whether the 2005 SWEIS should be supplemented, a new EIS should be prepared, or no further NEPA documentation is required (U.S. DOE/NNSA 2011). The SA concluded that a supplement to the 2005 SWEIS or a new SWEIS was not needed. Both the 2011 SA and the 2005 SWEIS are available online at <https://enviroinfo.llnl.gov/nepa>. DOE/NNSA is currently preparing a new SWEIS to analyze the impacts of continued operations at LLNL for the foreseeable future.

In 2020, no EISs or EAs were completed. Several Categorical Exclusions under DOE NEPA Regulations (10 CFR Part 1021) were completed as follows:

- *Diffraction experiments using insensitive high explosives (IHE) at the National Ignition Facility (NIF) (NA-20-1)*
- *Livermore Valley Open Campus (LVOC) Advanced Biotechnology Research and Response Laboratory (NA-20-2)*

As mandated under DOE regulations in 10 CFR Part 1021, a floodplain and wetlands assessments were prepared as required information for the upcoming SWEIS.

2.4.2 National Historic Preservation Act

The National Historic Preservation Act (NHPA) provides protection and preservation of historic properties that are significant in the nation’s history. LLNL resources subject to NHPA consideration range from prehistoric archeological sites to remnants of LLNL’s own history of scientific and technological endeavors. The responsibility to comply with the provisions of the NHPA rests with DOE/NNSA as the lead federal agency in this undertaking. LLNL supports the agency’s NHPA responsibilities with direction from DOE/NNSA.

LLNL and DOE/NNSA have completed the necessary inventory, evaluations, and consultations to identify National Register of Historic Places (NRHP) eligible buildings and archaeological sites at the both the Livermore Site and Site 300. In 2005, in consultation with DOE/NNSA, the California State Historic Preservation Officer (SHPO) formally determined that 5 archaeological resources, 5 individual buildings, 2 historic districts (encompassing 13 non-contiguous individual buildings), and selected objects in another building at LLNL are eligible for listing in the NRHP. As of 2020, based on DOE consultations with the SHPO and the Advisory Council on Historic Preservation (AHP), all previously eligible facilities have been removed from the eligibility list. As final mitigation for loss of integrity for the period of historic significance, LLNL and DOE/NNSA prepared an Historic American Engineering Report (HAER) documentation for

these facilities.

2.4.3 Antiquities Act of 1906

The Antiquities Act provides for protection of items of antiquities (i.e., archaeological sites and paleontological remains). The NRHP-eligible archaeological sites noted in Section 2.4.2 are protected under the Antiquities Act. No paleontological remains subject to the provisions of the Antiquities Act were identified in 2020.

2.4.4 Endangered Species Act and Sensitive Natural Resources

LLNL meets the requirements of the Federal and State Endangered Species Acts (ESAs), the Eagle Protection Act, the Migratory Bird Treaty Act, and other applicable regulations as they pertain to endangered species, threatened species, and other special-status species (including their habitats) and designated critical habitats that exist at the LLNL sites.

On August 29, 2018, the U.S. Fish and Wildlife Service issued a sitewide biological opinion to DOE/NNSA for continued operations and maintenance of the LLNL Experimental Test Site, Site 300. Three projects, the Eastern General Services Area Well Decommissioning Project, construction of the Small Firearms Training Facility (Building 899), and the Building 855 Fence Line Project, were completed under this biological opinion in 2020.

At the Livermore Site, the Building 453 Exascale Computing Facility Modernization (ECFM), Building 031 Emergency Operations Center (EOC), Building 223 Polymers & Engineering Facility, Building 224 Office Building, Building 225 New AME Joining Capabilities & Vapor Deposition Facility, Building 642 Office Building, and Building 654 LCW Installation projects were conducted under the 2013 biological opinion for infill construction and redevelopment. Annual flood control maintenance within the Livermore Site reach of Arroyo Las Positas was completed under the 1997 biological opinion, and subsequent amendments, for the arroyo maintenance project on Arroyo Las Positas.

All Terms and Conditions and Conservation Measures required by the biological opinions described above were successfully implemented in 2020.

2.5 Environmental Permits, Inspections, and Occurrences

LLNL's various missions require a variety of permits. **Table 2-2** is a summary of active permits in 2020 at the Livermore Site and Site 300. The external agencies that issue the permits may also perform inspections required by the permits. **Table 2-3** lists environmental inspections and findings from both LLNL sites in 2020.

Notification of environmental occurrences is required under a number of environmental laws and regulations as well as DOE Order 232.2A (Occurrence Reporting and Processing of Operations Information). **Table 2-4** provides a list of environmental incidents reportable under DOE Order 232.2A.

2. Compliance

Table 2-2. Active permits in 2020 at the Livermore Site and Site 300.

Type of Permit	
Livermore Site	Site 300
Hazardous Waste	
EPA ID No. CA2890012584. Hazardous Waste Facility Permit Number 99-NC-006 and RCRA Part A/B permit application—to operate hazardous waste management facilities. Agency—DTSC. Registered Hazardous Waste Hauler authorized to transport regulated wastes on public roadway. Permit number 1351. Agency—DTSC. Facility I.D. # 10697. Hazardous Waste Generator Program, On-site treatment of hazardous waste (tiered permitting) program: Conditionally Exempt Specified Wastestream, CE231-1, Hazardous Materials Business Program, Above Ground Petroleum Tank Program, and CA Accidental Release Program. Agency – LPFD CUPA.	EPA ID No. CA2890090002. Hazardous Waste Facility Permit and RCRA Part A/B permit application to operate CSA (Building 883), EWT and EWSF. Agency—DTSC. EPA ID No. CA2890090002. Hazardous Waste Facility Post-Closure Permit and RCRA Site 300 Building 829 Post-Closure Operation Plan. Agency—DTSC. Facility I.D. # FA0003934 RCRA Hazardous Waste Generator category: waste generation in an amount equal to or more than 50 tons, but less than 250 tons. Agency—SJCEHD CUPA.
Medical Waste	
ACDEH issued a Large Quantity Medical Waste Generator permit (PT0200461/PT0305526) that covers medical waste generation and treatment activities for BSL 2 facilities at B132 North and South, B150 Complex, B360 Complex, B663, and the BSL 3 facility.	Registered with SJCEHD as a Small Quantity Medical Waste Generator.
Air	
BAAQMD renewed the Permit-to-Operate (PTO) issued to LLNL Livermore Site (Plant No. 255) which covers 165 existing various air emission sources (111 permitted sources, 36 registered sources, and 18 exempt sources). BAAQMD issued one new PTO for a standby diesel engine powering an emergency generator at the LLNL Livermore Site. BAAQMD conducted compliance inspections on 90 air emission sources and one asbestos compliance inspection. BAAQMD issued a revision to the SMOP in 2015, which was initially issued in 2002 to ensure the NOx and HAPs emissions from the site do not exceed federal Clean Air Act Title V emission limits. BAAQMD issued one Asbestos Renovation Permit.	SJVAPCD renewed the PTO issued to LLNL Site 300 (Facility ID N-472) which covers 35 existing various air emission sources. BAAQMD renewed the PTO issued to LLNL Site 300 (Plant No. 15611) which covers one existing standby diesel engine powering an emergency generator. SJVAPCD approved a Prescribed Burn Plan for the burning of 2,104.4 acres of grassland at LLNL Site 300. SJVAPCD conducted one compliance inspection on two air emission sources. SJVAPCD issued one Asbestos Renovation Permit. SJVAPCD issued one new PTO for a chemistry drying oven and one Authority to Construct (ATC) permit for a standby diesel engine powering an emergency generator at LLNL Site 300. BAAQMD approved a Prescribed Burn Plan for the burning of 139.1 acres of grassland at LLNL Site 300. CARB renewed four PERP registrations for portable diesel engines powering various portable equipment.
Underground Storage Tanks	
One operating permit (1016-09202018) issued by LPFD covering operation of 9 USTs from September 20, 2018—September 19, 2023.	One operating permit covering 3 underground petroleum storage tanks assigned individual permit numbers (PT0006785 [879TFUD01], PT0006530 [882TFUD01], and PT0007967 [879TFUG01]).

Table 2-2. (cont.) Active permits in 2020 at the Livermore Site and Site 300.

Type of Permit	
Livermore Site	Site 300
Sanitary Sewer	
Discharge Permit 1250 ^(b) for discharges of wastewater to the sanitary sewer. Permit 1510G for discharges to the sanitary sewer of groundwater from CERCLA restoration activities.	WDR R5-2008-0148 for operation of sewage evaporation pond.
Water	
WDR No. 88-075 for discharges of treated groundwater from Treatment Facility A to recharge basin. ^(c) NPDES General Permit 2014-0057-DWQ (Waste Discharge Identification Number [WDID] 2 01I025682) for discharge of storm water associated with industrial activities. NPDES General Permit 2009-0009-DWQ for discharges of storm water associated with construction activities affecting 0.4 hectares (1 acre) or more. FFA for groundwater investigation/remediation.	WDR No. 93-100 for post-closure monitoring requirements for two Class I landfills. ^(d) WDR R5-2008-0148 for operation of sewage evaporation pond and percolation ponds, and groundwater discharges from septic systems, cooling tower blowdown, mechanical equipment wastewater, and other low-threat discharges. NPDES General Permit 2014-0057-DWQ (WDID 5S39I021179) for discharge of storm water associated with industrial activities. NPDES General Permit 2009-0009-DWQ for discharges of storm water associated with construction activities affecting 0.4 hectares (1 acre) or more. Regional Limited Threat General Order R5-2016-0076-025 and NPDES Permit No. CAG995002 for discharges from the drinking water system. Domestic Water Supply Permit Amendment No. 01-10-16PA-003. FFA for groundwater investigation/remediation. Approximately 32 registered Class V injection wells.

Note: See the **Acronyms and Glossary** section for acronym definitions.

- (a) Numbers of permits are based on actual permitted units or activities maintained and/or renewed by LLNL during 2020.
- (b) Permit 1250 includes some wastewater generated at Site 300 and discharged at the Livermore Site.
- (c) Recharge basin referenced in WDR Order No. 88-075 is located south of East Avenue within Sandia National Laboratories/California boundaries. The discharge no longer occurs; however, the agency has not rescinded the permit.
- (d) On July 22, 2020, the transfer of Site 300 Closed Landfill Pit 1 from Resource Conservation and Recovery Act (RCRA) Post-Closure Monitoring to Comprehensive Environmental Compensation and Liability Act (CERCLA) was completed. WDR No. 93-100 was rescinded and Pit 1 post-closure compliance monitoring will be conducted under CERCLA oversight.

2. Compliance

Table 2-3. Inspections of Livermore Site and Site 300 by external agencies in 2020.

Medium			
Description	Agency	Date	Finding
Air			
Air pollutant emission sources (Livermore Site)	BAAQMD	01/29/20 01/30/20 02/27/20 07/30/20 08/27/20 10/01/20 11/03/20	No violations No violations No violations No violations No violations No violations No violations
Synthetic Minor Operating Permit (SMOP) (Livermore Site)	BAAQMD	12/21/20	No violations
Air pollutant emission sources (Site 300)	SJVAPCD	02/05/20	No violations
Hazardous Materials Business Plan			
CUPA Inspection (Livermore Site)	LPFD	N/A	No inspection during 2020 due to COVID-19 pandemic.
CUPA Inspection (Site 300)	SJCEHD	N/A	No inspection during 2020 due to COVID-19 pandemic.
Sanitary sewer			
Annual Inspection of the Sewer Monitoring Complex (Livermore Site)	WRD	11/03/20	No violations
Categorical sampling and inspection, Building 153 (Livermore Site)	WRD	05/20/20 11/04/20	No violations No violations
Annual compliance sampling at the Sewer Monitoring Complex (Livermore Site)	WRD	11/04/20	No violations
Café grease interceptor inspections, Buildings 125 and 471 (Livermore Site)	WRD	N/A	Cafeterias closed as of March 2020 due to COVID-19 shut-down. Inspections not required by WRD under closure conditions.
Quarterly BOD/TSS sampling at Outfall (Livermore Site)	WRD	02/20/20 N/A N/A	No violations No 2 nd quarter inspection due to COVID-19 pandemic. No inspections 3 rd & 4 th quarters due to change in Wastewater Discharge Permit 1250 requirements.

2. Compliance

Table 2-3. (cont.) Inspections of Livermore Site and Site 300 by external agencies in 2020.

Storage tanks			
Annual Spill Bucket/ Monitoring Equipment Inspection (Site 300)	SJCEHD	7/29/20	SJCEHD issued two violations as a result of an Underground Storage Tank (UST) inspection: 1. "Designated Underground Storage Tank Operator Identification Form" not submitted within 30 days. 2. Failure to conduct the designated UST operator visual inspection at least once every 30 days. The second violation was rescinded.
Annual Spill Bucket/ Monitoring Equipment Inspection (Five emergency generators at the Livermore Site)	LPFD	07/15/20–07/16/20	No violations
Annual Spill Bucket/ Monitoring Equipment Inspection (B611 at the Livermore Site)	LPFD	08/12/20–8/13/20	No violations
491TFAD01	LPFD	03/05/20	No violations
U295TFBD01		08/19/20	No violations
U295TFAD02			
Tank Closures (Livermore Site)			
Waste			
CUPA Inspection (Livermore Site)	LPFD	NA	No inspections in 2020 due to COVID-19 pandemic.
CUPA Inspection (Site 300)	SJCEHD	10/13/20	No violations
Hazardous waste facilities Compliance Evaluation Inspection (CEI) (Livermore Site)	DTSC	NA	No inspections in 2020 due to COVID-19 pandemic
Hazardous waste facilities Compliance Evaluation Inspection (CEI) (Site 300)	DTSC	02/19/20–02/20/20 11/17/20	DTSC issued one violation for stacking totes in EWSF M2. No violations
Medical Waste facilities inspection	ACDEH	NA	No inspection in 2020 due to COVID-19 pandemic
Water			
Permitted operations (Site 300 Drinking Water)	SWRCB	N/A	No inspection during 2020.
Waste Discharge Requirements for sewage pond, percolation pits, and septic systems	CVRWQCB	11/23/20	No violations

Note: See the **Acronyms and Glossary** section for acronym definitions

2. Compliance

Table 2-4. Environmental Occurrences reported under the Occurrence Reporting System in 2020.

Date^(a)	Occurrence category/group	Description
03/05/20	Report Level I Occurrence under Group 9(1) OR 2020-0009	On February 20, 2020, LLNL received a Summary of Violation following a CEI inspection of S300. The inspection report identified one violation for failing to comply with a Special Condition within the Final Hazardous Waste Facility Permit that states; "the permittee shall not stack containers holding explosives waste on top of another container."
08/03/20	Report Level I Occurrence under Group 9(1) OR 2020-0022	On July 29, 2020, LLNL received a Notice of Violation from SJCEHD as a result of an Underground Storage Tank (UST) inspection that identified the following two violations: 1. "Designated Underground Storage Tank Operator Identification Form" not submitted within 30 days. 2. Failure to conduct the designated UST operator visual inspection at least once every 30 days. This violation has been rescinded.

Note: See the **Acronyms and Glossary** section for acronym definitions.

^(a) Date the occurrence was categorized, not discovered.

2. Compliance

Contributing Authors

Mohammad Abri, Jhon Arbelaez-Novak, Jon Blazo, Mark Buscheck, Heather Byrnes, Ada Chan, Greg Lee, Dolores Loll, Gary Ma, Caleb Murphy, Charles Noyes, Lisa Paterson, Jeanette Price, Crystal Rosene, Brad Slininger, Stan Terusaki, Ashley Thomas, Anthony Wegrecki, Elyse Will, Kent Wilson, Joseph Woods

This page is intentionally left blank.

3. Environmental Program Information

Heather Ottaway

Lawrence Livermore National Laboratory (LLNL) is committed to enhancing its environmental stewardship and reducing any impacts its operations may have on the environment. This chapter describes LLNL's Environmental Management System (EMS) and Pollution Prevention/Sustainability Program (P2S).

3.1 Environmental Management System

LLNL continues to enhance its EMS through systematic process improvements and increased focus on establishing specific environmental objectives and performance measures contained in Environment, Safety & Health (ES&H) Action Plans. Progress toward goals is regularly measured and provided to senior management and other interested parties through a variety of means, including periodic senior management reports and the yearly update of this Environmental Report. The Laboratory's EMS has successfully maintained its International Organization for Standardization (ISO) 14001 registration since 2009 and is audited annually by a third-party internationally recognized ISO registrar for continued conformance and certification. In Fiscal Year (FY) 2018, the Laboratory successfully migrated to the revised 2015 ISO 14001 standard and continued its certification under this standard in FY2020.

3.1.1 ES&H Action Plans

ES&H Action Plans are established each year to detail the objectives and track progress toward meeting environmental goals focused on decreasing climate impacts, conserving water, and reducing waste. Each ES&H Action Plan is championed by a senior manager who is responsible for developing objectives, assigning a process owner to lead the project successfully to meet objectives, providing adequate resources such as team members and data, holding the team accountable to goals and objectives, and presenting interim reviews to the senior management team. All ES&H Action Plans are reviewed and approved by the Laboratory Deputy Director. Senior managers championed nine ES&H Action Plans during FY2020. **Table 3-1** lists the six ES&H Action Plans that address environmental aspects along with progress made in FY2020 toward meeting the objectives (three other ES&H Action Plans address health & safety issues). The Action Plans in place also help to ensure that related U.S. Department of Energy (DOE) sustainability goals are addressed. LLNL's status toward meeting the DOE sustainability goals, along with planned actions (including ES&H Action Plans) to ensure continued progress toward attaining these goals can be found in the *LLNL FY2020 Site Sustainability Plan* in **Appendix C**.

Table 3-1. ES&H Action Plan summary

Action Plan	Related DOE SSP Goal Category	Objectives	FY2020 Progress
AP-01 Meet all Site Sustainability Plan (SSP) Goals	All	In the annual SSP, goals are evaluated for high, medium, or low risk of non-attainment as follows: Low risk – high feasibility goal will be met Medium risk – medium feasibility goal will be met High risk – low feasibility goal will be met.	All SSP goals except energy and water intensity are attainable or trending positively in that direction.
AP-02 Develop a Municipal Waste Reduction Strategy	Waste Management	Continue working toward diversion of 100% of recyclable and compostable waste.	Main objectives met including implementation plan, communications plan, and roll out to 511 complex, therefore this plan was archived. Program will be rolled out if funded to additional buildings under Action Plan 1 FY2021 objectives.
AP-03 Implement Smart Labs Initiative	Energy Management, Water Management, Waste Management	Using available data and modeling, estimate the baseline annual kWh/ft ² and water/ft ² and identify opportunities for reduction, reuse, or recycling for in-scope Laboratory buildings.	Associated objectives have been incorporated into Action Plan 1 for FY2021, therefore this plan was archived.
AP-07 Operational Stewardship	Waste Management	Address safety and environmental risks associated with closed facilities and trailers and surrounding areas that may contain hazardous and/or radioactive materials and equipment, and other potential hazards.	Demolished T43XX Complex and T1736. Completed T&D characterization and mobilizing demo for B175. Contract planning initiated for several buildings.
AP-08 Management Commitment	All	Demonstrate management commitment to ES&H through various reports, communications, and activities.	Director introduced ES&H briefing; new Take 5 for Safety, Security, and Environment videos were released.
AP-10 Hazardous Waste Compliance	Waste Management	Inspect identified high-risk areas and satellite accumulation areas (SAA) on a routine basis. Principal Directorates (PDs) will continue to inspect high-risk areas and SAAs at least quarterly. Implement institutional SAA/waste accumulation area (WAA) tracking software in Engineering and Physics and Life Sciences (PLS) Directorates. Develop outreach tools to educate waste generators (e.g., Take 5 for Safety & Security video, one page checklist for work areas). Develop a communication strategy for ES&H and RHWM to provide timely feedback to PDs regarding hazardous waste compliance issues.	Conducted a Management Self-Assessment (MSA) to evaluate hazardous waste generation and satellite accumulation activities. MSA found 37 deficiencies, 5 observations, and 5 strengths. Continue to implement.

3.1.2 EMS Audits and Reviews

The Laboratory successfully completed one external third-party independent audit of its ISO 14001 EMS program (May 2018) with recommendations from the auditor to continue LLNL's ISO 14001:2015 registration through 2021. This independent audit was conducted by NSF International Strategic Registrations and validated the Laboratory's solid commitment to environmental stewardship. The Laboratory completed a surveillance audit of ISO 14001:2015 in August 2020 to continue its certification to ISO 14001:2015.

3.1.2.1 Internal Assessments and Reviews

In February-March 2020, an internal audit (Joint Functional Area Line Management Assessment [JFLMA]) was performed to assess if LLNL continued to meet the requirements of the standard. This audit used a management assessment model to ensure objectivity and impartiality were maintained during the process.

In accordance with LLNL's EMS, the Laboratory's environmental compliance is regularly evaluated through reviews of internal assessments including Management Self Assessments (MSAs); Management Observations and Inspections (MOIs); regulatory inspections; internal and external monitoring and compliance reports; and facility walk-throughs and work-control assessments. As a result of these reviews, LLNL identified specific practices and recommendations for corrective and preventive measures, demonstrating the Laboratory's commitment to environmental compliance.

3.2 Pollution Prevention/Sustainability Program

LLNL's P2S Program operates within the framework of the Integrated Safety Management System (ISMS) and EMS and in accordance with applicable laws, regulations, and DOE orders as required by contract. It encompasses stewardship and maintenance, waste stream analysis, reporting of waste generation and P2S accomplishments, and fostering of P2S awareness through presentations, articles, and events. The P2S Program supports institutional and directorate P2S activities via environmental teams and includes implementation and facilitation of source reduction and/or reclamation, recycling, and reuse programs for hazardous and nonhazardous waste; facilitation of sustainable acquisition; and preparation of P2S opportunity assessments.

The P2S Program at LLNL strives to systematically reduce all types of waste generated and eliminate or minimize pollutant releases to all environmental media from all aspects of the operations at the Livermore Site and Site 300. These efforts help protect public health and the environment by reducing or eliminating waste, improving resource usage, and reducing inventories and releases of hazardous chemicals. These efforts also benefit LLNL by reducing compliance costs and minimizing the potential for civil and criminal liabilities under environmental laws. In accordance with United States Environmental Protection Agency (EPA) guidelines and DOE policy, the P2S Program uses a hierarchical approach to waste reduction (i.e., source elimination or reduction, material substitution, reuse and recycling, and, lastly, treatment and disposal), which is applied to all types of waste. Radioactive and hazardous waste

generation is tracked using Radioactive and Hazardous Waste Management's (RHWM's) HazTrack database (a system used to track all waste managed by RHWM). By reviewing the information in this database, program managers and P2S Program staff can monitor and analyze waste streams managed by RHWM to determine cost-effective improvements to LLNL operations. The P2S Program efforts primarily focus on opportunities to reduce routine waste from ongoing operations and non-routine waste from construction and demolition activities. Data on non-routine hazardous, transuranic, and radioactive waste can be found in the *2019 Annual Yearbook for the LLNL SW/SPEIS* (Quinly 2020).

3.2.1 Routine Hazardous, Transuranic, and Radioactive Waste

Routine waste listed in **Tables 3-2** and **3-3** includes waste from ongoing operations produced by any type of production, analysis, and research and development taking place at LLNL.

Table 3-2. Routine hazardous waste at LLNL, FY2016–2020 (Metric Tons [MT])

Waste Category	FY2016	FY2017	FY2018	FY2019	FY2020
Routine hazardous waste generated	142	110	167	155	111

Table 3-3. Routine transuranic and radioactive waste at LLNL, FY2016–2020 (m³)

Waste Category	FY2016	FY2017	FY2018	FY2019	FY2020
Routine LLW generated	284	318	526	369	297
Routine mixed LLW generated	25.5	14	38	40	28
Routine TRU/mixed TRU waste generated	14	3.2	17	22	5

3.2.2 Diverted Waste

LLNL maintains an active waste-diversion program, encouraging recycling and reuse of both routine and non-routine waste, which prevents waste from going to the landfill. Site sustainability goals require separate accounting for construction/demolition and municipal solid wastes as reflected in **Tables 3-4** and **3-5**.

3.2.2.1 Municipal Solid Waste

Together, the Livermore Site and Site 300 generated 2,683 MT of routine nonhazardous solid waste in FY2020. This volume includes diverted waste (e.g., material diverted through recycling and reuse programs) and landfill waste.

Both sites combined diverted a total 1,919 MT of routine nonhazardous waste in FY2020, which represents a diversion rate of 72%. The portion of routine nonhazardous waste sent to landfill was 764 MT, see **Table 3-4**. In 2020, LLNL recycled over 3,000 computers, monitors, and laptops, which were resold or managed as universal waste. LLNL recycled 24 MT of large and small

batteries, which were also managed as universal waste. Cell phones and tablets that are no longer needed by LLNL are sold to a vendor who refurbishes the items for reuse.

The comingled recycling and composting program initiated in May 2011 was continued during 2020, diverting an estimated 33 MT of comingled recycling and 33 MT of compostable material from the landfill. In early FY2020, the recycling and composting program was expanded to include the Building 511 complex. Due to China's continued and stricter National Sword policy, plastics recycling options continue to be very limited. Where possible, LLNL looks for alternatives to disposable plastic items and works with vendors to take back plastic items such as containers and drums that can be reused or recycled.

Table 3-4. Routine municipal waste in FY2020, Livermore Site and Site 300 combined

Destination	Waste Description	Amount in FY2020 (MT)
Diverted	Baled paper	46.5
	Corrugated cardboard	18
	Cooking grease (including grease traps)	12.5
	Mixed metals	876
	Scrap lead (Pb)	9
	Plastic	0
	Office paper	29
	Toner cartridges	1
	Greenwaste (chips, compost, mulch, clean wood)	861
	Comingled recycling	33
	Compost (food scraps, paper towels, food containers)	33
	TOTAL diverted	1,919
Landfill	Compacted (landfill)	764
	TOTAL landfill	764
	TOTAL routine nonhazardous waste	2,683

3.2.2.2 Construction and Demolition (C&D) Waste

C&D wastes include excavated soils, wastes and metals from construction, decontamination, and demolition activities. The Livermore Site and Site 300 generated a total of 1,381 MT of waste related to construction and demolition activities in FY2020. The two sites combined diverted 1,249 MT of non-routine nonhazardous solid waste through reuse or recycling, which represents a diversion rate of 90% in FY2020. Diverted C&D waste includes soil and concrete reused either on-site for other projects or as cover at Class II landfills. See **Table 3-5**.

Table 3-5. Construction and demolition waste in FY2020, Livermore Site and Site 300 combined

Destination	Waste Description	Amount in FY2020 (MT)
Diverted	Class II cover soil (reused on-site or as landfill cover)	481
	Class II concrete (reused at the landfill for roads, pads, etc. or as cover)	759
	Scrap metals (recycled)	9
TOTAL diverted		1,249
Landfill	Construction and demolition (non-compacted landfill)	132
TOTAL landfill		132
TOTAL non-routine non-hazardous waste		1,381

3.2.3 Sustainable Acquisition

LLNL has a comprehensive Sustainable Acquisition program that includes preferential purchasing of recycled content and bio-based products. In 2020, the Sustainable Acquisition program continued to include a preference for Electronic Product Environmental Assessment Tool (EPEAT) registered computers and monitors, imaging equipment, and televisions. Over 90% of all desktop electronics, imaging equipment, television, server and cell phone purchases in FY2020 were EPEAT Bronze, EPEAT Silver or EPEAT Gold, indicating that the products meet or exceed the Institute of Electrical and Electronics Engineers (IEEE) environmental performance standards for electronic products (1680.1-2018; 1680.2-2012; 1680.3-2012).

Additional sustainable acquisition highlights can be found in the *LLNL FY2020 Site Sustainability Plan* in **Appendix C**.

3.2.4 Pollution Prevention/Sustainability Activities

3.2.4.1 Sustainability Accomplishments

LLNL's P2S Program assists the site in meeting Site Sustainability Plan goals related to municipal waste reduction, acquisition, and electronic stewardship by conducting and responding to opportunity assessments; these include direct calls from program areas as well as Green Hotline inquiries. During FY2020 the P2S Program assisted with several sustainability projects including participating in a workgroup to identify a scrap metal vendor to recycle 100s of data center cooling nodes, finding opportunities for reusable containers in place of disposing of numerous poly drums, creation of a survey for current and potential electric vehicle drivers, and assistance with the roll out of the recycling and composting program to additional buildings.

3.2.4.2 High-Performance Sustainable Buildings and Energy Conservation

Four Leadership in Energy and Environmental Design (LEED) building certifications (B142, B264, B451, and B453) were completed in 2008–2011, one LEED Gold certification (B655) was completed in 2019, two buildings are CalGreen compliant, six initial building assessments using the DOE High Performance Sustainable Building (HPSB) assessment tool were completed in 2011–2012. In FY2020, one LEED Certified certification facility (B223) and one LEED Silver certification facility (B224) were constructed in the Applied Materials and Engineering (AME) complex.

In FY2020 a Sustainable Design facilities standard was prepared to ensure that new construction and major renovations address the HPSB requirements in DOE Order 413.3B, *Program and Project Management for the Acquisition of Capital Assets*, implement the Guiding Principles for Sustainable Federal Buildings required in DOE Order 430.1C, *Real Property Asset Management*, and support DOE Order 436.1, *Departmental Sustainability*.

Applying best practices continues to help reduce LLNL's energy intensity and greenhouse gas (GHG) emissions. These best practices include alerting facility managers of excessive use in their facilities, updating and adapting equipment operating schedules to meet the changing requirements of occupants, providing staff with the training and tools they need, and tracking energy use and comparing against expected performance. LLNL's Livermore Site and Site 300 each have a site-wide direct digital control (DDC) system that is used to control temperatures, pressures, and humidity in many buildings. The system is state-of-the-art and as of the end of 2020 had approximately 674 high-speed, connected digital processors in 58 buildings with several more installations planned.

Significant progress was made on installation and replacement of existing site-wide exterior lighting fixtures with LEDs. Approximately 800 LEDs have been installed including the entire site perimeter and high traffic areas at the Livermore Site, and when re-lamping opportunities arise. In addition, exterior LEDs are installed for all new construction and major repairs. Funding in FY2020 allowed for the purchase of additional LEDs for future installation; sodium vapor lamps are no longer purchased unless necessary (<10%).

LLNL has also implemented many on-going sustainability efforts to increase the energy efficiency of data center facilities including the installation of Cold Aisle Containment systems, increasing ambient temperatures and reducing occupancy lighting in several key data center facilities, server consolidation, and server virtualization (i.e., using software to divide one physical server into multiple isolated virtual environments). LLNL continues to identify and decommission data centers that are no longer needed.

Additional information on energy conservation goals can be found in the *LLNL FY2020 Site Sustainability Plan* in **Appendix C**.

3.2.5 Pollution Prevention/Sustainability Employee Training and Awareness Programs

The P2S Program conducted awareness activities during the year, however due to the COVID-19 pandemic many activities normally held were cancelled or converted to virtual platforms. P2S provided outreach materials for the virtual Environment, Safety, Security, and Health fair, and helped create an Earth Day video highlighting LLNL's sustainability and wildlife conservation programs. The video was part of the Department of Energy's virtual Earth Day celebration held in April 2020.

In May, LLNL, Sandia National Laboratories (SNL/CA), and the Livermore Laboratory Employee Services Association (LLESA) (a non-profit employee services group that supports both sites) normally host a joint Bike to Work and Share Your Ride event, however this event was not held in FY 2020 due to COVID-19.

In FY2020 a sustainability map showcasing LLNL's sustainability features across the Livermore Site was created by a P2S Program student intern. The P2S Program continued to conduct training for purchasing staff on Sustainable Acquisition requirements and support the Green Hotline to provide assistance for employees with questions, suggestions, or ideas regarding LLNL's pollution prevention and waste diversion endeavors, as well as other environmental issues.

4. Air Monitoring and Dose Assessment

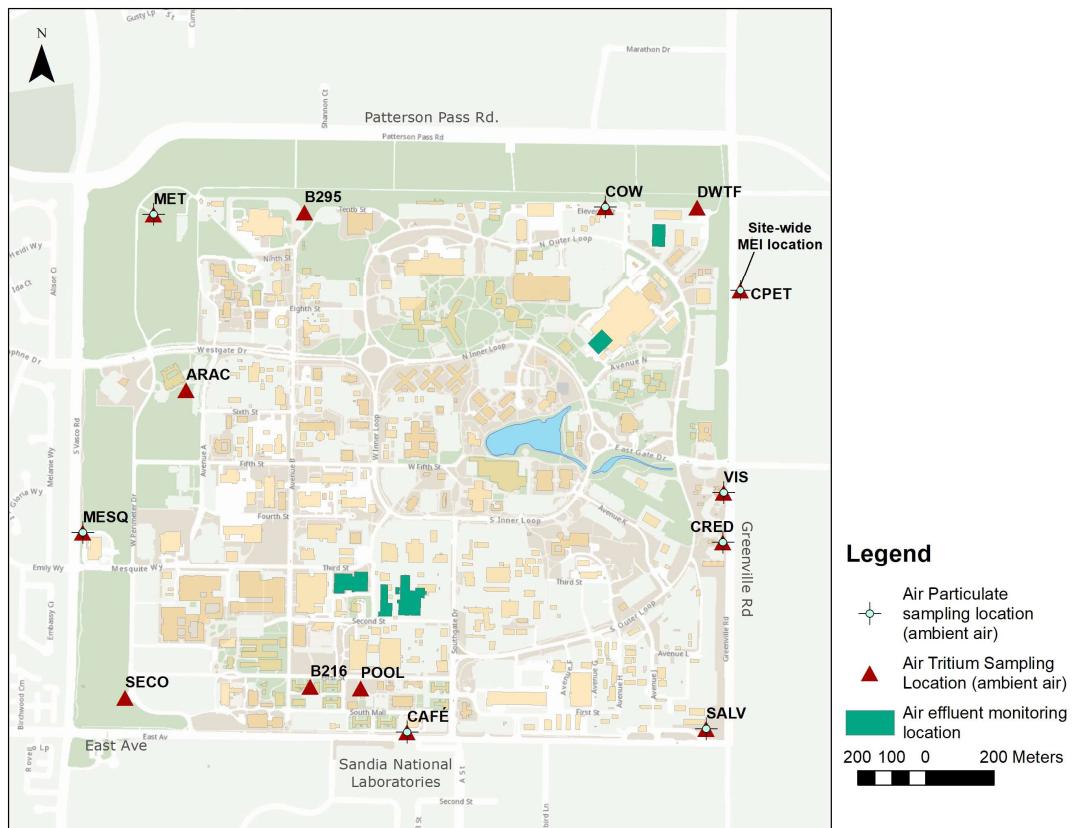
Heather Byrnes • Nick Graves • Kent Wilson

Lawrence Livermore National Laboratory (LLNL) performs continuous air sampling to evaluate its compliance with local, state, and federal laws and regulations and to ensure that human health and the environment are protected. Federal environmental air quality laws and U.S. Department of Energy (DOE) regulations include Title 40, Code of Federal Regulations, Part 61 (40 CFR 61), Subpart H—the National Emission Standards for Hazardous Air Pollutants (NESHAPs) section of the Clean Air Act; applicable portions of DOE Order 458.1; and American National Standards Institute (ANSI) standards (N13.1-1969, 1999 [reaffirmed 2011]). The *Environmental Radiological Effluent Monitoring and Environmental Surveillance* (DOE 2015) handbook provides the guidance for implementing DOE Order 458.1.

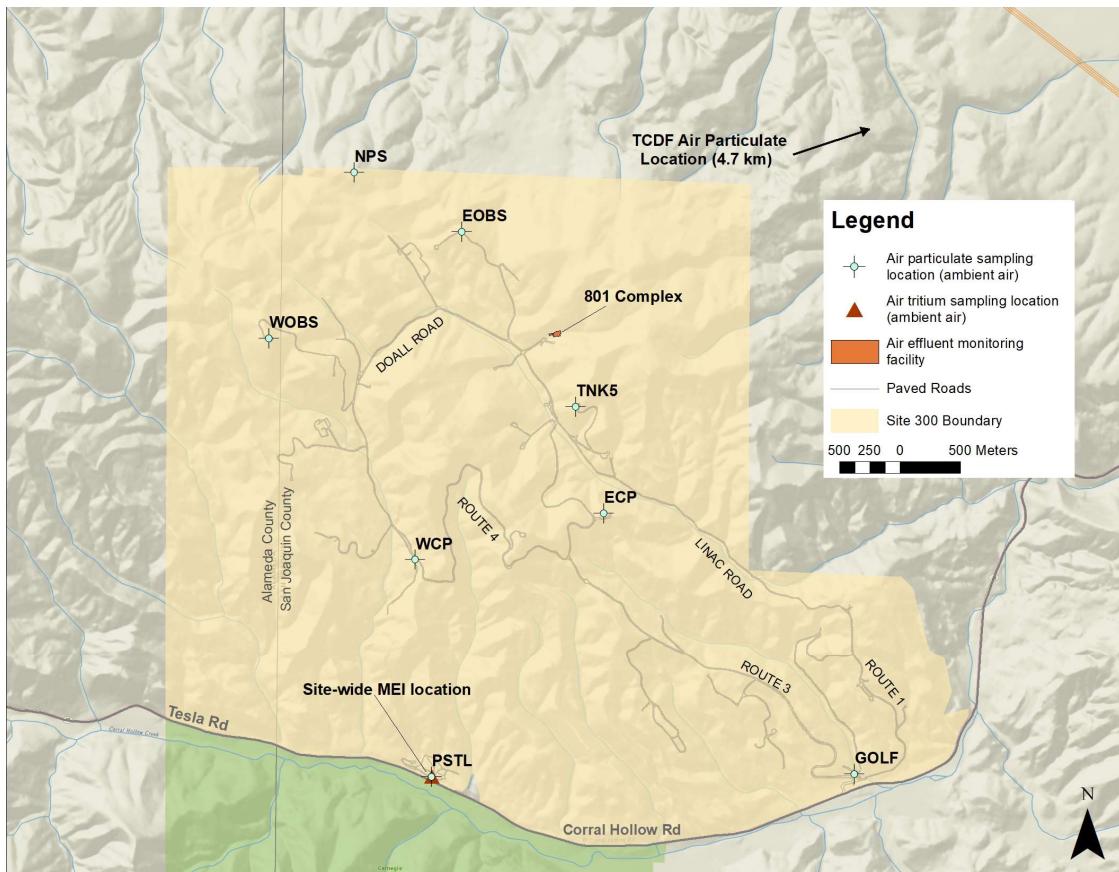
The U.S. Environmental Protection Agency (EPA) Region IX has enforcement authority for LLNL compliance with radiological air emission regulations. Enforcement authority for the Clean Air Act regulations, pertaining to nonradiological air emissions, belongs to two local air districts: The Bay Area Air Quality Management District (BAAQMD) and the San Joaquin Valley Air Pollution Control District (SJVAPCD).

4.1 Air Effluent Monitoring

Air effluent monitoring of atmospheric discharge points is in place for compliance with 40 CFR 61, Subpart H and is used to determine the actual radionuclide releases from individual facilities during routine and nonroutine operations and to confirm the operation of facility emission control systems. Subpart H requires continuous monitoring of facility radiological air effluents if the potential off-site (fence-line) dose equivalent is greater than $1 \mu\text{Sv}/\text{y}$ (0.1 mrem/y), as calculated using the U.S. EPA-mandated air dispersion dose model, CAP88-PC, without credit for emission control devices. The results of monitoring air discharge points provide the actual emission source information for modeling, which is used to ensure that the NESHAPs standard of $100 \mu\text{Sv}/\text{y}$ (10 mrem/y) total site effective-dose equivalent from the airborne pathway is not exceeded. See **Appendix C** for the *LLNL 2020 NESHAPs Annual Report* (Wilson et al., 2021).


The air effluent sampling program measures only radiological emissions. For LLNL operations with nonradiological discharges, LLNL obtains permits and registrations from local air districts (i.e., BAAQMD and SJVAPCD) for stationary emission sources and from the California Air Resources Board (CARB) for portable emission sources such as diesel air compressors and generators and for off-road diesel vehicles. Current permits and registrations do not require monitoring of air effluent but do require monitoring of equipment inventory, equipment usage, material usage, and/or record keeping during operations. Based on air toxics emissions inventory and risk assessment required by the California Air Toxics “Hot Spots” Information and Assessment Act of 1987, BAAQMD and SJVAPCD have ranked LLNL as a low-risk facility for nonradiological air emissions.

4.1.1 Air Effluent Radiological Monitoring Results


In 2020, LLNL measured releases of radioactivity from air exhausts at five facilities at the Livermore Site and at one facility at Site 300. Air effluent monitoring locations at the Livermore Site and Site 300 are shown in **Figures 4-1** and **4-2**, respectively.

Three facilities had measurable emissions in 2020. A total of 55.11 Ci (2,039 GBq) of measured tritium was released from the stack exhausts at the Tritium Facility. Of this, approximately 56% of tritium was released as vapor (HTO). The remaining 44% released was gaseous tritium (HT). The National Ignition Facility (NIF) released a total of 2.65 Ci (98 GBq) of tritium from the stack exhaust in 2020. Of this, approximately 92% of tritium was released as HTO. The remaining 8% was released as HT. The Contained Firing Facility (B801A) at Site 300 had measured depleted uranium stack emissions in 2020 consisting of 1.7×10^{-8} Ci (6.3×10^{-7} GBq) of uranium-234, 2.3×10^{-9} Ci (8.5×10^{-8} GBq) of uranium-235, and 1.2×10^{-7} Ci (4.4×10^{-6} GBq) of uranium-238 in particulate form.

None of the other facilities monitored for radionuclides had reportable emissions in 2020. The data tables in **Appendix A, Section A.1** provide summary results of all air effluent monitored facilities and include upwind locations (control stations), which are used for gross alpha and gross beta background comparison to stack effluent gross alpha and gross beta results.

Figure 4-1. Air effluent and ambient air monitoring locations at the Livermore Site, 2020.

Figure 4-2. Air effluent and ambient air monitoring locations at Site 300, 2020.

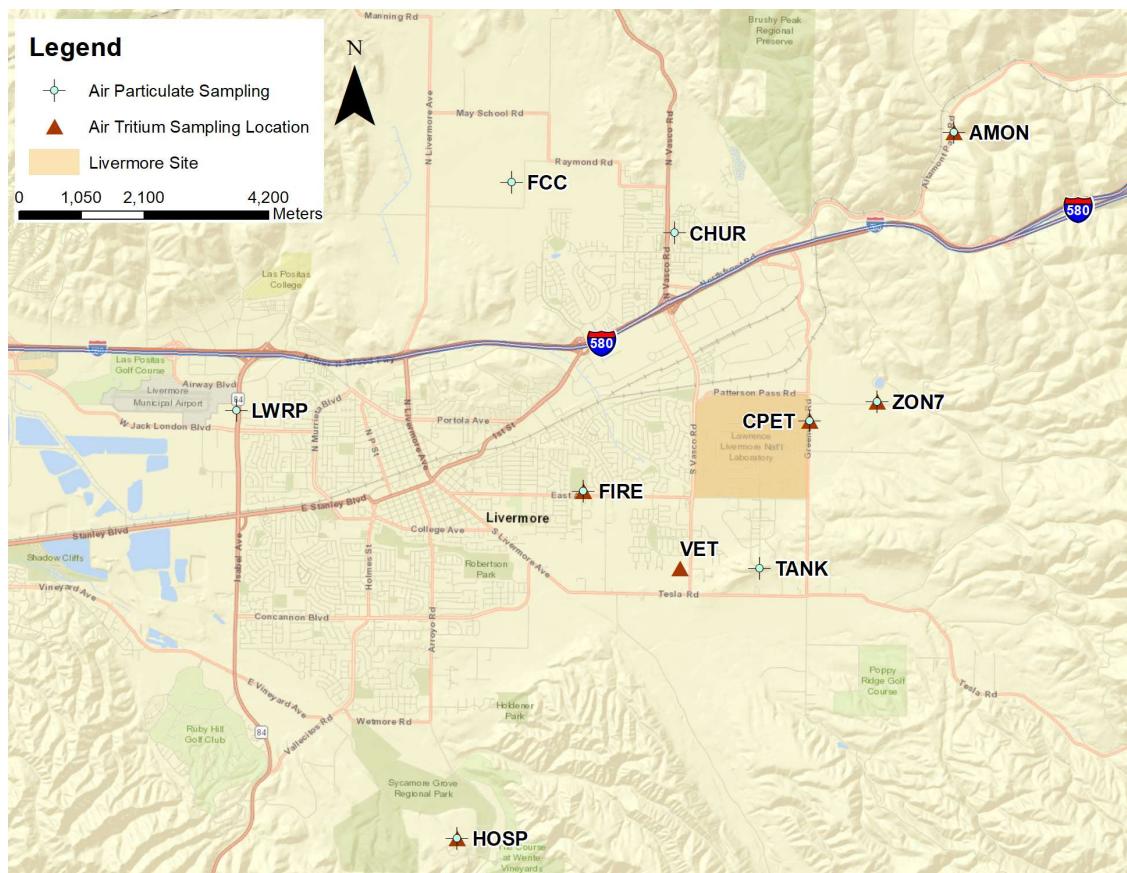
4.1.2 Nonradiological Air Releases and Impact on the Environment

In 2020, the Livermore Site emitted approximately 92.5 kg/d of regulated air pollutants as defined by the Clean Air Act, including nitrous oxides (NO_x), sulfur oxides (SO_x), particulate matter (PM10), carbon monoxide (CO), and reactive organic gases/precursor organic compounds (ROGs/POCs) (see **Table 4-1**). The stationary emission sources that released the greatest amount of regulated pollutants at the Livermore Site were natural gas fired boilers, internal combustion engines (such as diesel generators), solvent cleaning, and surface coating operations (such as painting). Pollutant emission information was primarily derived from monthly material and equipment usage records.

Table 4-1. Nonradioactive air emissions, Livermore Site and Site 300, 2020.

Pollutant	Estimated releases (kg/d)	
	Livermore Site	Site 300
ROGs/POCs	13.5	0.25
Nitrogen oxides	34.0	2.37
Carbon monoxide	39.5	0.90
Particulates (PM10)	4.0	1.19
Sulfur oxides	1.5	0.01
Total	92.5	4.72

Livermore Site air pollutant emissions were very low in 2020 compared to the daily releases of air pollutants from all sources in the entire Bay Area. For example, the average daily emission of NOx in the Bay Area is estimated to be 2.3×10^5 kg/d, compared to the estimated daily release from the Livermore Site of 34.0 kg/d, which is 0.015% of total Bay Area source emissions for NOx. The 2020 BAAQMD estimate for ROGs/POCs daily emissions throughout the Bay Area was approximately 2.2×10^5 kg/d, while the daily emission estimate for 2020 from the Livermore Site was 13.5 kg/d, or 0.0061% of the total Bay Area source emissions for ROGs/POCs.


Certain operations at Site 300 require permits from the SJVAPCD. The estimated daily air pollutant emissions during 2020 from operations (permitted and exempt stationary sources) at Site 300 are listed in **Table 4-1**. The stationary emission sources that release the greatest amounts of regulated air pollutants at Site 300 include internal combustion engines (such as diesel-powered generators), a gasoline-dispensing facility, and general research operations. Combustion pollutant emissions, including NOx, CO, PM10, SOx, and ROGs/POCs increased in 2020. The diesel-powered generators were the primary source of the pollutants.

4.2 Ambient Air Monitoring

LLNL conducts ambient air monitoring at on- and off-site locations to determine whether airborne radionuclides or beryllium are being released to the environs in measurable quantities by LLNL operations. Ambient air monitoring also serves to verify the air concentrations predicted by air dispersion modeling and to determine compliance with NESHPs regulations.

Beryllium is the only nonradiological emission from LLNL that is monitored in ambient air. LLNL requested and was granted a waiver by the BAAQMD for source-specific monitoring and record keeping for beryllium operations, provided that LLNL can demonstrate that monthly average beryllium concentrations in air are well below regulatory limits of 10,000 pg/m³. LLNL meets this requirement by sampling for beryllium at perimeter locations.

Based on air-dispersion modeling using site-specific meteorological data, the ambient air samplers, particularly those on the site perimeters, have been placed to monitor locations where elevated air concentrations due to LLNL operations may occur. Sampling locations for each monitoring network are shown in **Figures 4-1, 4-2, and 4-3**.

Figure 4-3. Air particulate and tritium monitoring locations in the Livermore Valley, 2020.

4.2.1 Ambient Air Radioactive Particulates

Composite samples for the Livermore Site and Site 300 were analyzed by gamma spectroscopy for an environmental suite of gamma-emitting radionuclide concentrations in air that include fission products, activation products, actinides, and naturally occurring isotopes. The isotopes detected at both sites in 2020 were beryllium-7 (cosmogenic) and lead-210, both of which are naturally occurring in the environment. The composite samples for both sites were non-detections for potassium-40 in 2020.

Composite samples were analyzed by alpha spectroscopy for plutonium-239+240, which was detected in 12 out of 203 samples taken in 2020. Detections at the Livermore Site, Site 300, and Livermore off-site locations for plutonium-239+240 are attributed to a number of factors that include: resuspension of plutonium-contaminated soil (see **Chapter 6**), resuspended fallout from previous atmospheric testing, or resuspended fallout from the Fukushima nuclear accident.

The derived concentration standard (DCS), which complements DOE Order 458.1, specifies the concentrations of a radionuclide that can be inhaled continuously 365 days a year without exceeding the DOE primary radiation protection standard for the public, which is 1 mSv/y (100 mrem/y) effective dose equivalent.

The DCS was formerly published in DOE Order 5400.5 (Radiation Protection of the Public and the Environment) in 1993. The current radiation protection standards approach, which has changed from the previously adopted 1993 guidance, uses age and gender-specific attributes for the population subgroups of members of the public subject to exposure incorporating more sophisticated biokinetic and dosimetric information from the International Commission on Radiological Protection (ICRP).

The highest values and percentage of the DCS for the plutonium-239+240 detections were as follows:

- Livermore Site perimeter: 47.7 nBq/m³ (1.29 aCi/m³), 0.0005% of the DCS.
- Livermore off-site locations: 31.7 nBq/m³ (0.86 aCi/m³), 0.00035% of the DCS.
- Site 300 composite: All results were non-detections in 2020.

Uranium-235 and uranium-238 were detected at all sample locations. Uranium ratios, which can be calculated by mass or by atom, are used to determine the type of uranium present in the environment. Natural uranium has a mathematical uranium-235/uranium-238 ratio of 0.00725, and depleted uranium has a typical uranium-235/uranium-238 ratio of 0.002. The annual median uranium-235/uranium-238 isotopic ratios for 2020 at the Livermore Site and off-site location were:

- Livermore Site perimeter composite: 0.00726.
- Off-site TCDF (located 4.7 km northeast from Site 300): 0.00727.

The annual uranium-235/uranium-238 isotopic ratio medians are consistent with naturally occurring uranium.

Site 300 has not had open-air depleted uranium shots since September 2007. However, there are still areas of depleted uranium contaminated soil. Wind-driven resuspension as well as soil disturbance from construction-type activities and fire road maintenance has occasionally shown a depleted uranium signature at the location of the site-wide maximally exposed individual (SW-MEI) member of the public (see **Figure 4-2**). The uranium-235 to uranium-238 isotopic ratio at the SW-MEI in 2020 was consistent with naturally occurring uranium.

All of the individual uranium-235 and uranium-238 results, including on-site samples showing a depleted uranium signature, were less than one tenth of one percent of the DCS as shown in **Appendix A, Section A.2**.

All locations were sampled for gross alpha and gross beta. The primary sources of alpha and beta activities are naturally occurring radioisotopes. Routine isotopic gamma results indicate the activities are the result of naturally occurring isotopes (uranium, radium, and lead), which are also routinely found in local soils. See **Appendix A, Section A.2**.

4.2.2 Ambient Air Tritium Concentrations

LLNL emits tritium to the air from multiple sources. These sources include monitored stack sources, such as the Tritium Facility and NIF, unmonitored stack sources having minor emissions

of tritium, and area sources. Area (diffuse) sources include stored containers of tritium waste or tritium-contaminated equipment from which HTO diffuses into the atmosphere. LLNL does not directly measure diffuse emissions, but estimates the emitted radiation source term from these sources given measurements taken using the ambient air tritium sampling network. The ambient air tritium sampling network measures HTO concentrations in the air from all sources. This information, along with measured stack emissions, is used to estimate of the radiation source term from unmonitored sources, which is then used to estimate the total radiation dose to the public. The approach used to characterize the area emission sources is discussed in the *LLNL NESHAPS 2020 Annual Report* (Wilson et al., 2021). See **Appendix C** for a copy of this report. The biweekly air tritium data that are provided in **Appendix A, Section A.2** are summarized in **Table 4-2**.

Table 4-2. Ambient air tritium sampling summary for 2020.

Sampling location	Detection frequency ^(a)	Concentration (mBq/m ³)				Median as % of DCS ^(d)	Mean dose ^(e) (nSv)
		Mean	Median	IQR ^(b)	Maximum ^(c)		
Livermore Site perimeter	278 of 295	69.4	41.4	44.3	1050	0.00053	16.3
Livermore Valley	96 of 143	21.6	17.3	20.0	108	0.00022	5.07
Site 300	11 of 21	9.76	10.7	12.1	31.2	0.00014	<5

(a) Detection frequency indicates the number of samples that measure greater than 100% of 2-Sigma uncertainty (see Chapter 8).

(b) IQR = Interquartile Range

(c) The maximum concentration in 2020 was 0.013% of the DCS. (DCS for tritium is 7.8E+03 Bq/m³, DOE-STD-1196-2011).

(d) Median as a percent of DCS is not used when the median is a negative value (see Chapter 8).

(e) Based on an annual breathing rate of 8103 m³ and inhalation dose conversion factor of 1.93×10^{-11} Sv/Bq (DOE-STD-1196-2011). Dose due to HTO absorption through skin is accounted for. It is estimated as equaling one-half of the dose due to inhalation (2001 Environmental Report, Appendix A).

For a location at which the mean concentration is at or below the minimal detectable concentration, dose from tritium is assumed to be less than 5 nSv/y (0.5 μ rem/y).

4.2.3 Ambient Air Beryllium Concentrations and Impact on the Environment

LLNL measures the monthly concentrations of airborne beryllium at the Livermore Site, Site 300, and at the off-site sampler northeast of Site 300. The highest value recorded at the Livermore Site perimeter in 2020 for airborne beryllium was 200 pg/m³. This value is 2.0% of the BAAQMD ambient concentration limit for beryllium (10,000 pg/m³). There is no regulatory requirement to monitor beryllium in San Joaquin County; however, LLNL analyzes samples from three Site 300 perimeter locations as a best management practice. The highest value recorded at the Site 300 perimeter in 2020 was 250 pg/m³ and the highest value at the off-site location was 240 pg/m³. These data are similar to data collected from previous years.

Beryllium is naturally occurring and has a soil concentration of approximately 1 part per million. The sampled results are believed to be from naturally occurring beryllium that was resuspended from the soil and collected by the samplers. There is also good comparison in results to the off-site control sampling station. Even if the concentrations of beryllium detected were from LLNL

activities, the amount is still less than three percent of the BAAQMD ambient air concentration limit.

4.3 Radiological Air Dose Assessment

Dose is assessed for two types of receptors. First is the dose to the SW-MEI member of the public. Second is the collective or “population” dose received by people who reside within 80 km of either of the two LLNL sites.

In 2020, the SW-MEI at the Livermore Site was located at the Integrative Veterinary Care facility (CPET) about 35 meters outside the site’s eastern perimeter. The SW-MEI at Site 300 was located on the site’s south-central perimeter (PSTL), which borders the Carnegie State Vehicular Recreation Area. The two SW-MEI locations are shown in **Figures 4-1 and 4-2**. **Table 4-3** shows average doses received in the United States from exposure to sources of radiation as well as the collective dose for people residing within 80 km of the Livermore Site.

Table 4-3. Radiation doses from ubiquitous background and man-made sources of radiation.

Source category ^(a)	Individual dose (μ Sv) ^(b, c)	Collective dose ^(d) (person-Sv) ^(e)
Natural radioactivity ^(f)		
Cosmic radiation	330	2,570
Terrestrial radiation	210	1,640
Internal (food and water consumption)	290	2,260
Radon and Thoron	2,280	17,800
Medical radiation procedures	3,000	23,400
Consumer	130	1,010
Industrial plus occupational	8	62

(a) From National Council on Radiation Protection and Measurements, Report No. 160, Table 8.1 (NCRP 2009).

(b) 1 μ Sv = 0.1 mrem.

(c) This dose is an average over the U.S. population.

(d) The collective dose is the combined dose for all individuals residing within an 80-km radius of LLNL (approximately 7.8 million people for the Livermore Site and 7.1 million for Site 300), calculated with respect to distance and direction from each site. The Livermore Site population estimate of 7.8 million people was used to calculate the collective doses for the source categories.

(e) 1 person-Sv = 100 person-rem.

(f) These values vary with location.

The annual radiological doses from all air emissions at the Livermore Site and Site 300 in 2020 were found to be well below the applicable standards for radiation protection of the public, in particular the NESHAPs 100 μ Sv/y (10 mrem/y) site-wide standard. Using an EPA-mandated computer model and LLNL site-specific meteorology appropriate to the two sites, the doses to the LLNL SW-MEI members of the public from LLNL operations in 2020 were:

- Livermore Site: 1.9×10^{-2} μ Sv (1.9×10^{-3} mrem).

- Site 300: 1.8×10^{-7} μSv (1.8×10^{-8} mrem).

The collective effective dose equivalent (EDE) attributable to LLNL airborne emissions in 2020 was calculated to be 0.0015 person-Sv (0.15 person-rem) for the Livermore Site and 3.9×10^{-8} person-Sv (3.9×10^{-6} person-rem) for Site 300. These doses include potentially exposed populations of 7.8 million people for the Livermore Site and 7.1 million people for Site 300 living within 80 km of the site centers.

The doses to the SW-MEI, which represent the maximum doses that could be received by members of the public where there is a residence, school, business, or office, resulting from Livermore Site and Site 300 operations in 2020, were less than one percent of the NESHAPs 100 $\mu\text{Sv}/\text{y}$ (10 mrem/y) site-wide standard.

LLNL operations involving radioactive materials had minimal impact on ambient air during 2020. The measured radionuclide particulate and tritium concentrations in ambient air at the Livermore Site and Site 300 were all less than one percent of the DOE primary radiation protection standard for the public (DCS). The SW-MEI doses from both sites for 2020 are much less than one-tenth of one percent of the total dose from sources of natural occurring radioactivity shown in **Table 4-3**.

This page is intentionally left blank.

5. Water Monitoring Programs

*Mohammad Abri • Ada Chan • Crystal Rosene
• Michael Taffet • Elyse Will • Kent Wilson*

Lawrence Livermore National Laboratory (LLNL) monitors water systems including wastewaters, storm water, and groundwater, as well as rainfall and local surface water. Water systems at the two LLNL sites (the Livermore Site and Site 300) operate differently. For example, the Livermore Site is serviced by a publicly owned treatment works (POTW) but Site 300 is not, resulting in different methods of treating and disposing of sanitary wastewater at the two sites. Many drivers determine the appropriate methods and locations of the various water monitoring programs, as described below.

In general, water samples are collected according to written, standardized procedures appropriate for the medium (LLNL's *Environmental Monitoring Plan*, Brunckhorst 2019). Sampling plans are prepared by the LLNL network analysts who are responsible for developing and implementing monitoring programs or networks. Network analysts decide which analytes are sampled and at what frequency, incorporating any permit-specified requirements. Except for analyses of certain sanitary sewer and retention tank analytes, analyses are usually performed by off-site, California-certified contract analytical laboratories.

5.1 Sanitary Sewer Effluent Monitoring

In 2020, the Livermore Site discharged an average of 979,112 L/d (258,682 gal/d) of wastewater to the City of Livermore sewer system or 4.8% of the total flow into the City's system. This volume includes wastewater generated by Sandia National Laboratories/California (SNL) and a very small quantity from Site 300. In 2020, SNL generated approximately 9.6% of the total effluent discharged from the Livermore outfall. Wastewater from SNL and Site 300 is discharged to the LLNL collection system and combined with LLNL sewage before it is released at a single point to the municipal collection system.

LLNL's effluent contains both domestic waste and process wastewater and is discharged in accordance with Wastewater Discharge Permit (Permit #1250) requirements administered by the Water Resources Division (WRD) of the City of Livermore, and the City of Livermore Municipal Code, as discussed below. Most of the process wastewater generated at the Livermore Site is collected in retention tanks and discharged to LLNL's collection system following characterization and approval from LLNL's Environmental Functional Area (EFA) Water Team Staff Wastewater Discharge Authorization Record (WDAR) approval process.

5.1.1 Livermore Site Sanitary Sewer Monitoring Complex

Permit #1250 requires continuous monitoring of the effluent flow rate and pH. Samplers at the Sewer Monitoring Station (SMS) collect flow-proportional composite samples and instantaneous grab samples that are analyzed for metals, radioactivity, total toxic organics, and other water-quality parameters.

5. Water Monitoring Programs

5.1.1.1 Radiological Monitoring Results

Department of Energy (DOE) orders and federal regulations establish the standards of operation at LLNL (see **Chapter 2**), including the standards for sanitary sewer discharges. Primarily the standards for radioactive material releases are contained in sections of DOE Order 458.1.

For sanitary sewer discharges, DOE Order 458.1 provides the criteria DOE has established for the application of best available technology to protect public health and minimize degradation of the environment. The Derived Concentration Standards (DCS), which complement DOE Order 458.1, limit the concentration of each radionuclide discharged to publicly owned treatment works. If the measured monthly average concentration of a radioisotope exceeds its concentration limit, LLNL is required to improve discharge control measures until concentrations are again below the DOE limits.

The DOE Order 458.1 sanitary sewer discharge numerical limits include the following annual discharge limits for radioactivity: tritium, 185 GBq (5 Ci); carbon-14, 37 GBq (1 Ci); and all other radionuclides combined, 37 GBq (1 Ci). The radioisotopes with the potential to be found in sanitary sewer effluent at LLNL and their discharge limits are discussed below. All analytical results are provided in **Appendix A, Section A.3**.

LLNL determines the total radioactivity contributed by tritium, gross alpha emitters, and gross beta emitters from the measured radioactivity in the monthly effluent samples. As shown in **Table 5-1**, the 2020 combined release of alpha and beta sources was 0.155 GBq (0.004 Ci), which is 0.42% of the corresponding DOE Order 458.1 limit (37 GBq [1.0 Ci]). The tritium total was 8.006 GBq (0.22 Ci), which is 4.3% of the DOE Order 458.1 limit (185 GBq [5 Ci]).

Table 5-1. Estimated total radioactivity in LLNL sanitary sewer effluent, 2020.

Radioactivity	Estimate based on effluent activity (GBq)	MDC ^(a) (GBq)
Tritium	8.006	0.607
Gross alpha	0.010	0.084
Gross beta	0.145	0.050

(a) Minimum detectable concentration.

Discharge limits and a summary of the measurements of tritium in the sanitary sewer effluent from LLNL and the Livermore Water Reclamation Plant (LWRP) are reported in LLNL monthly reports. The maximum daily concentration for tritium was 0.11 Bq/mL (3.02 pCi/mL).

Calendar year 2020 data for measured concentrations of cesium-137 and plutonium-239 in the sanitary sewer effluent from LLNL and the LWRP, and plutonium-239 in LWRP sludge are reported in the LLNL January and February 2021 Reports (Rosene 2021b; 2021c). Cesium and plutonium results are from monthly composite samples of LLNL and LWRP effluent and from quarterly composites of LWRP sludge. For 2020, the annual total discharges of cesium-137 and plutonium-239 were far below the DOE DCSs. Plutonium discharged in LLNL effluent is

ultimately concentrated in LWRP sludge. The highest plutonium concentration observed in 2020 sludge was 0.052 mBq/g (0.0014 pCi/g), which is many times lower than the National Council on Radiation Protection and Measurements (NCRP) recommended soil screening limit of 470 mBq/g (12.7 pCi/g) for commercial or industrial property.

LLNL also compares annual discharges with historical values to evaluate the effectiveness of ongoing discharge control programs. **Table 5-2** summarizes the radioactivity in sanitary sewer effluent over the past 10 years. During 2020, a total of 8.01 GBq (0.22 Ci) of tritium was discharged to the sanitary sewer. While this is moderately higher than tritium activities discharged during the past 10 years, this amount is in a similar range to historical values, well within regulatory limits, and fully protective of the environment.

Table 5-2. Historical radioactive liquid effluent releases from the Livermore Site, 2010–2020.

Year	Tritium (GBq)	Plutonium-239+240 (GBq)
2010	1.47	5.25×10^{-6}
2011	1.37	2.00×10^{-6}
2012	1.57	7.00×10^{-6}
2013	1.94	5.91×10^{-5}
2014	1.54	3.21×10^{-5}
2015	2.21	1.10×10^{-5}
2016	0.64	9.38×10^{-6}
2017	4.50	1.44×10^{-5}
2018	5.46	8.7×10^{-6}
2019	5.54	2.01×10^{-5}
2020	8.01	7.99×10^{-6}

5.1.1.2 Nonradiological Monitoring Results

LLNL monitors sanitary sewer effluent for chemical and physical parameters at different frequencies depending on the intended use of the result. Permit #1250 requires LLNL to collect grab samples once per month, 24-hour flow-proportional composite samples once per week, weekly composite samples collected over a 7-day period, and daily flow-proportional composite samples collected over a 24-hour period. All samples are collected continuously throughout the year.

A summary of the analytical results from the permit-specified weekly composite sampling program is presented in **Table 5-3**. The permit also requires that grab samples of effluent be collected on a monthly and quarterly basis and analyzed for total toxic organic (TTO) compounds. Samples for cyanide and metals are collected quarterly. Results from LLNL's 2020 sanitary sewer effluent monitoring program are provided in **Appendix A, Section A.3**.

5. Water Monitoring Programs

Table 5-3. Summary of analytical results for permit-specified monthly, weekly 24-hour composite sampling of the LLNL sanitary sewer effluent, 2020.

Parameter (mg/L)	Detection frequency ^(a)	Minimum	Maximum	Median
Biochemical oxygen demand (BOD)	29 of 29 ^(b)	3.8	120	25
Total dissolved solids (TDS)	12 of 12 ^(b)	270	1,300	750
Total suspended solids (TSS)	29 of 29 ^(b)	3.2	450	12

(a) The number of times an analyte was positively identified, followed by the number of samples that were analyzed.

(b) As of July 2020, BOD and TSS are sampled once per week, TDS is sampled once per month.

As previously noted, grab samples of LLNL's sanitary sewer effluent are collected monthly for TTO analysis (permit limit = 1.0 mg/L) and quarterly for cyanide and metals analysis. In 2020, LLNL did not exceed any of these discharge limits. Results from the monthly TTO analyses for 2020 show that no priority pollutants, listed by the U.S. Environmental Protection Agency (EPA) as toxic organics, were identified in LLNL effluent above the 10 µg/L permit-specified reporting limit. As shown in **Appendix A, Section A.3**, one non-regulated organic compound, acetone, was identified in monthly grab samples at concentrations above the 10 µg/L permit-specified reporting limit.

5.1.2 Categorical Processes

The EPA has established pretreatment standards for categories of industrial processes that they have determined are major contributors to point-source water pollution. These federal standards include prescribed sampling, self-monitoring, reporting, and numerical limits for the discharge of category-specific pollutants. At LLNL, the categorical pretreatment standards are incorporated into Permit #1250.

The processes at LLNL that are determined to be regulated under the Categorical Standards may change as programmatic requirements dictate. Categorical processes identified at LLNL (from both the Metal-Finishing Category, 40 CFR 433, and the Electrical and Electronic Components Category, 40 CFR 469) are listed in Permit #1250.

Only processes that discharge to the sanitary sewer require semiannual sampling, inspection, and reporting. During 2020, two processes discharged wastewater to the sanitary sewer: semiconductor processes located in the Building 153 (microfabrication facility), and the abrasive jet machining located in Building 321C. The abrasive jet machine in Building 321C was permanently taken out of service in February 2020 due to the age of the machine and maintenance costs. In 2020, LLNL analyzed compliance samples for all regulated parameters from the Building 153 wastewater retention tanks and demonstrated compliance with all federal categorical and local discharge limits. As a further environmental safeguard, LLNL sampled the wastewater in each wastewater tank designated as receiving regulated waste, prior to each

discharge to the sanitary sewer. These monitoring data were reported to the WRD in July 2020 and January 2021 Semiannual Wastewater Point-Source Monitoring Reports (Rosene 2020; 2021a).

In addition, WRD source control staff performed their required annual inspection and sampling of the Building 153 discharging categorical process in November 2020. The compliance samples were analyzed for all regulated parameters, and the results demonstrated compliance with all federal and local pretreatment limits.

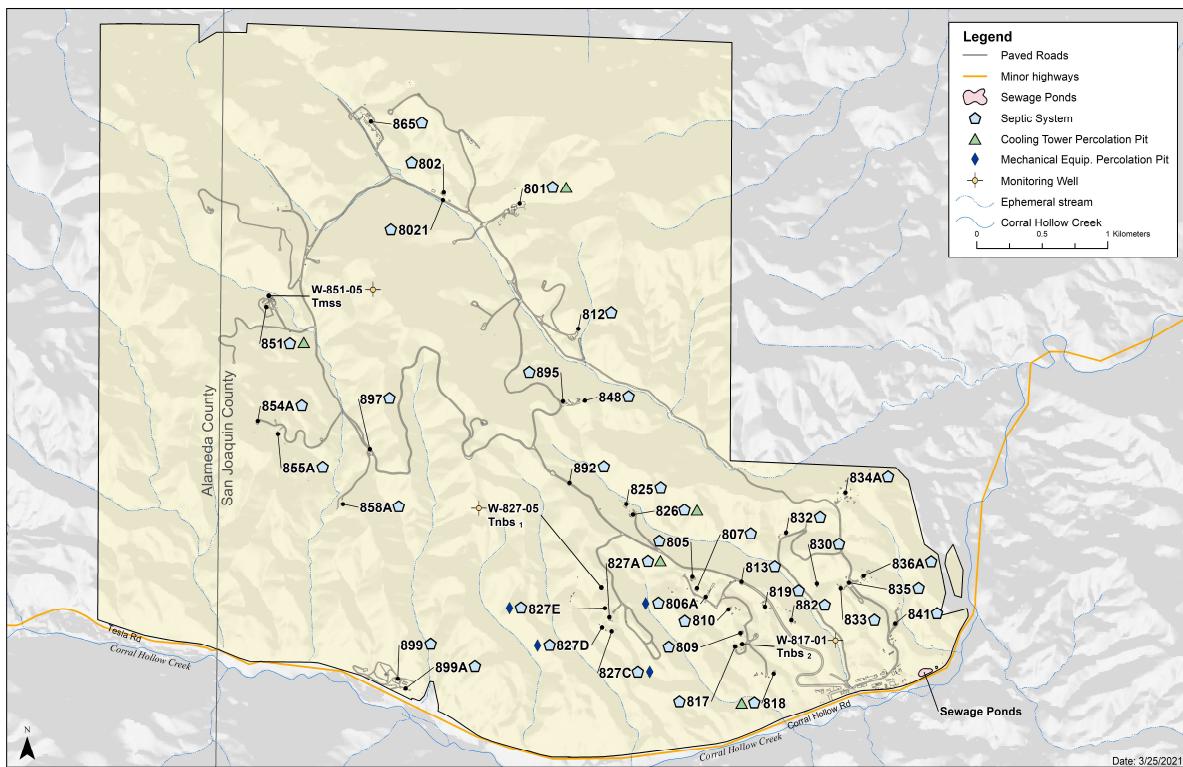
If any of the non-discharging regulated processes were to discharge process wastewater to the sanitary sewer, they would be regulated under 40 CFR Part 433 and reported in the Semiannual Wastewater Point-Source Monitoring Report. Currently, wastewater from these processes is either recycled on-site or contained for eventual removal and appropriate disposal by LLNL's Radioactive and Hazardous Waste Management (RHWM).

5.1.3 Discharges of Treated Groundwater

LLNL's groundwater discharge permit (1510G, 2021–2025) allows treated groundwater from the Livermore Site Ground Water Project (GWP) to be discharged in the City of Livermore sanitary sewer system (see **Chapter 7** for more information on the GWP). During 2020, there were no discharges (from on-site or off-site locations) to the sanitary sewer from the Environmental Restoration Department GWP activities. When such discharges occur, permit compliance is maintained by Treatment Facility Operators through the systematic use of engineering and administrative controls, including WDARs generated for each discharge. This information is reported to the City of Livermore.

5.1.4 Environmental Impact of Sanitary Sewer Effluent

During 2020, no discharges exceeded any discharge limits for either radioactive or nonradioactive materials to the sanitary sewer. The data are comparable to the lowest historical LLNL values. All the values reported for radiological releases are a fraction of their corresponding limits.


The data demonstrate that LLNL continues to have excellent control of both radiological and nonradiological discharges to the sanitary sewer. Monitoring results for 2020 reflect an effective year for LLNL's wastewater discharge control program and indicate no adverse impact to the LWRP or the environment from LLNL sanitary sewer discharges.

5.2 Site 300 Sewage Ponds and Site 300 Waste Discharge Requirements

Grab wastewater samples were collected for the permit Waste Discharge Requirements (WDR) Order No. R5-2008-0148 network comprising the sewage evaporation and percolation ponds, mechanical equipment discharge and cooling tower blowdown discharge to percolation pits, and septic systems as shown in **Figure 5-1**.

5. Water Monitoring Programs

Figure 5-1. WDR-R5-2008-0148 monitoring network, 2020.

The Site 300 sewage evaporation pond is sampled semi-annually at two locations—a location internal to the evaporation pond itself, and at the effluent from the evaporation pond prior to flow to the sewage percolation pond. All samples were obtained in accordance with the written, standardized procedures summarized in Brunckhorst (2019).

5.2.1 Sewage Evaporation and Percolation Ponds

Sanitary effluent (nonhazardous wastewater) generated at buildings in the General Services Area (GSA) at Site 300 is managed in an evaporation pond lined with catalytically-blown asphalt. Occasionally, during winter rains when the minimum 12 inches of freeboard depth cannot be maintained, treated wastewater from the sewage evaporation pond may be released into an unlined percolation pond to the east where it enters the ground and the shallow groundwater. Although this potential exists, it did not occur during 2020.

In September 2008, WDR 96-248 was replaced by WDR R5-2008-0148, a new permit issued by the Central Valley Regional Water Quality Control Board (CVRWQCB) for discharges to ground at Site 300.

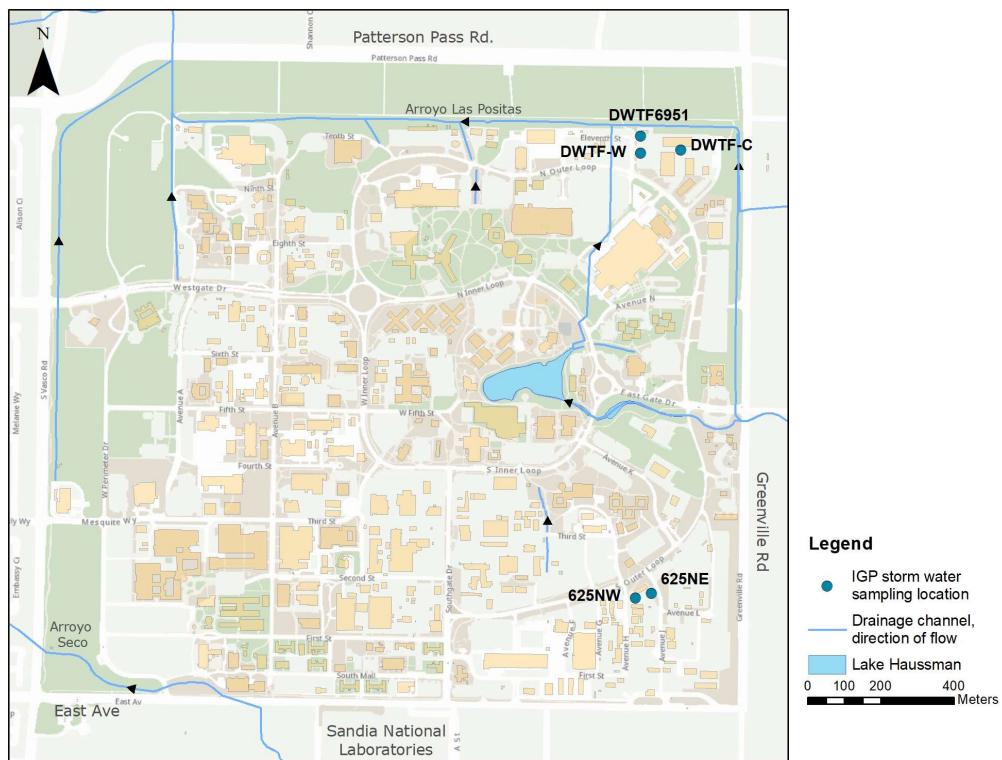
Under the terms of this Monitoring and Reporting Program (MRP), LLNL submits semiannual and annual monitoring reports detailing its Site 300 discharges of domestic and wastewater effluent to sewage evaporation and percolation ponds in the GSA, and cooling tower blow down

to percolation pits and septic systems, and mechanical equipment discharges to percolation pits located throughout the site.

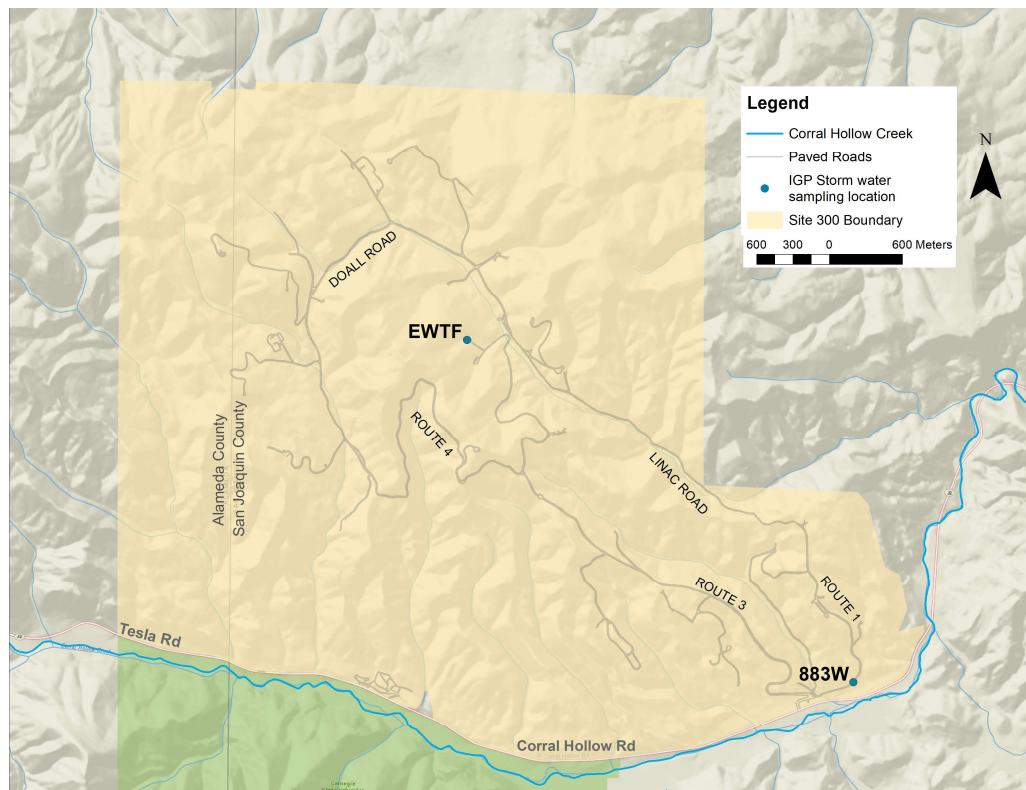
The monitoring data collected for the 2020 semi-annual and annual reports show compliance with all MRP and permit conditions and limits (Chan 2021). All networks were in compliance with the permit requirements. Compliance certification accompanied this report, as required by federal and state regulations.

5.2.2 Environmental Impact of Sewage Ponds

There were no discharges from the Site 300 sewage evaporation pond to the percolation pond. Groundwater monitoring related to this area indicated there were no measurable impacts to the groundwater from the sewage pond operations (Chan 2021).


5.3 Storm Water Compliance and Surveillance Monitoring

The State Water Quality Control Board issued a new Storm Water Industrial General Permit (IGP) (2014-0057-DWQ) that took effect July 1, 2015. LLNL modified the storm water monitoring plan for both sites to achieve compliance with this new permit. Storm water monitoring at both sites also follows the requirements in the U.S. DOE handbook *Environmental Radiological Effluent Monitoring and Environmental Surveillance* (U.S. DOE 2015) and meets the applicable requirements of DOE Order 458.1. See **Figures 5-2 and 5-3** for storm water sampling locations for the Livermore Site and Site 300, respectively.


For construction projects that disturb one acre of land or more, LLNL also meets storm water compliance monitoring requirements of the California National Pollutant Discharge Elimination System (NPDES) General Permit for Storm Water Discharges Associated with Construction Activity (Order Number 2009-0009-DWQ) (SWRCB, 2009). The Energy Independence and Security Act, Section 438 specifically calls for federal development that has a footprint that exceeds 5,000 square feet to maintain or restore predevelopment hydrology.

Under the IGP, LLNL is required to collect and analyze samples at specified locations two times during the period from July 1 to December 31 and two times during the period from January 1 to June 30, if specific criteria are met and the sampling window coincides with regular working hours. The State storm water reporting period is offset from the reporting period in this *Environmental Report*. Runoff samples were collected for one storm event at the Livermore Site and one storm event at Site 300 in 2020. Samples were collected from all five required storm water locations at the Livermore Site, and Building 883 at Site 300. Samples were collected on January 16, 2020, at the Livermore Site and Site 300. All other precipitation events at Site 300 and the Livermore Site during 2020 were not qualifying and could not be sampled in compliance with the IGP. LLNL is required to visually inspect the storm drainage system during up to four qualifying storm events to observe runoff quality and once each month during dry periods to identify any dry weather flows. Annual facility inspections are performed to ensure that the Best Management Practices (BMPs) for controlling storm water pollution are implemented and adequate.

5. Water Monitoring Programs

Figure 5-2. Storm water sampling locations, Livermore Site, 2020.

Figure 5-3. Storm water sampling locations, Site 300, 2020.

5.3.1 Storm Water Inspections

Each principal directorate at LLNL conducts an annual inspection of its facilities to verify implementation of BMPs and to ensure that those measures are adequate. LLNL's principal associate directors identified some corrections to the BMPs and certified in 2020 that their facilities complied with the provisions of LLNL's Storm Water Pollution Prevention Plans (SWPPPs). LLNL submits storm water analytical results to the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) and to the CVRWQCB through an online database called the Storm Water Multiple Application and Report Tracking System (SMARTS) for each Qualifying Storm Event (QSE).

For each construction project permitted by Order Number 2009-0009-DWQ, LLNL or designated subcontractors conduct visual monitoring of construction sites before, during, and after storms to assess the effectiveness of the BMPs. Annual compliance certifications, if necessary, summarize the inspections.

5.3.2 Storm Water Compliance

LLNL is required to meet the requirements of the IGP, which identifies two types of Numeric Action Levels (NALs).

Annual NAL exceedance – occurs when the average of all the analytical results for a parameter from samples taken within a reporting year exceeds an annual NAL value for that parameter.

Instantaneous maximum NAL exceedance – occurs when two or more analytical results for Total Suspended Solids (TSS), Oil and Grease (O&G), or pH from samples taken within a reporting year exceed the instantaneous maximum NAL value (or are outside the NAL pH range).

An NAL exceedance is determined as follows:

- a. For annual NALs, an exceedance occurs when the average of all analytical results from all samples taken at a facility during a reporting year for a given parameter exceeds an annual NAL value listed in Table 2 of the General Permit; or
- b. For the instantaneous maximum NALs, an exceedance occurs when two or more analytical results from samples taken for any parameter within a reporting year exceed the instantaneous maximum NAL value (for Total Suspended Solids, and Oil and Grease), or are outside of the instantaneous maximum NAL range (for pH) listed in Table 2 of the General Permit.

Please refer to **Appendix A, Tables A.4.1 to A.4.4.** for storm water sample analytical results. Both the Livermore Site and Site 300 remain at Exceedance Response Action Level 2 for magnesium. LLNL has provided data and analysis that show the exceedance of magnesium is due to aerial deposition from natural sources, not industrial activities at LLNL.

Storm water visual observations and BMP inspections indicated that LLNL's storm water program continues to protect water quality.

A full report of storm water runoff samples for January 1, 2020 to June 30, 2020 is available in the 2020 Annual Storm Water Reports for the Livermore Site and Site 300 in SMARTS. A report

5. Water Monitoring Programs

of storm water compliance for the Livermore Site and Site 300 from July 1, 2020 to December 31, 2020 will be available in SMARTS after July 15, 2021.

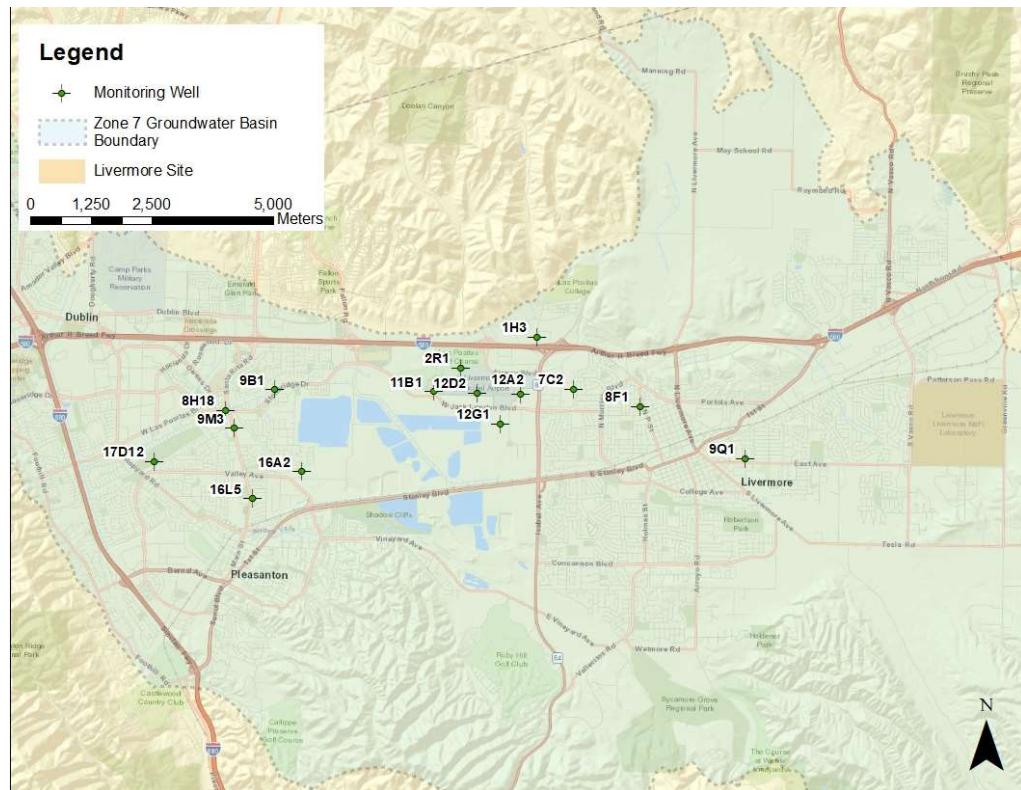
5.4 Groundwater

LLNL conducts surveillance monitoring of groundwater in the Livermore Valley and at Site 300 through networks of wells and springs that include off-site private wells and on-site Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) wells. To meet the goal of maintaining a comprehensive, cost-effective monitoring program, LLNL determines the number and locations of surveillance wells, the analytes to be monitored, the frequency of sampling, and the analytical methods to be used. A wide range of analytes is monitored to assess the impact, if any, of current LLNL operations on local groundwater resources. Because surveillance monitoring is geared to detecting substances at very low concentrations in groundwater, contamination can be detected before it significantly impacts groundwater resources. Groundwater monitoring wells at the Livermore Site, in the Livermore Valley, and at Site 300 are included in LLNL's *Environmental Monitoring Plan* (Brunckhorst 2019).

In 2009, LLNL implemented a CERCLA comprehensive compliance monitoring plan at Site 300 (Dibley et al. 2009) to fulfill the DOE and regulatory requirements for on-site groundwater surveillance. LLNL also monitors two surveillance networks to supplement the CERCLA compliance monitoring and provide additional data to characterize potential impacts of LLNL operations. LLNL monitoring related to CERCLA activities is described in **Chapter 7**. Additional monitoring programs at Site 300 comply with numerous federal and state controls such as state-issued permits associated with closed landfills containing solid wastes and with continuing discharges of liquid waste to sewage ponds and percolation pits; the latter are discussed in **Section 5.2.1**. Compliance monitoring is specified in WDRs issued by the CVRWQCB and in landfill closure and post-closure monitoring plans. (See **Chapter 2, Table 2-2** for a summary of LLNL permits.)

The WDRs and post-closure plans specify wells and discharges to be monitored, constituents of concern (COCs) and parameters, frequency of measurement, inspections, and the frequency and form of required reports. These monitoring programs include quarterly, semiannual, and annual monitoring of groundwater, monitoring of various influent waste streams, and visual inspections. LLNL performs the maintenance necessary to ensure the physical integrity of closed facilities, such as those that have undergone CERCLA or Resource Conservation and Recovery Act (RCRA) closure, and their monitoring networks.

During 2020, representative samples of groundwater were obtained from monitoring wells in accordance with the *LLNL Livermore Site and Site 300 Environmental Restoration Project Standard Operating Procedures* (Goodrich and Lorega 2016). The procedures cover sampling techniques and information about groundwater monitoring parameters. Different sampling techniques were employed at different wells depending on whether they were fitted with submersible pumps or had to be bailed. All the chemical and radioactivity analyses of


groundwater samples were performed by California-certified analytical laboratories. For comparison purposes only, some of the results were compared with drinking water limits (maximum contaminant levels [MCLs]).

5.4.1 Livermore Site and Environs

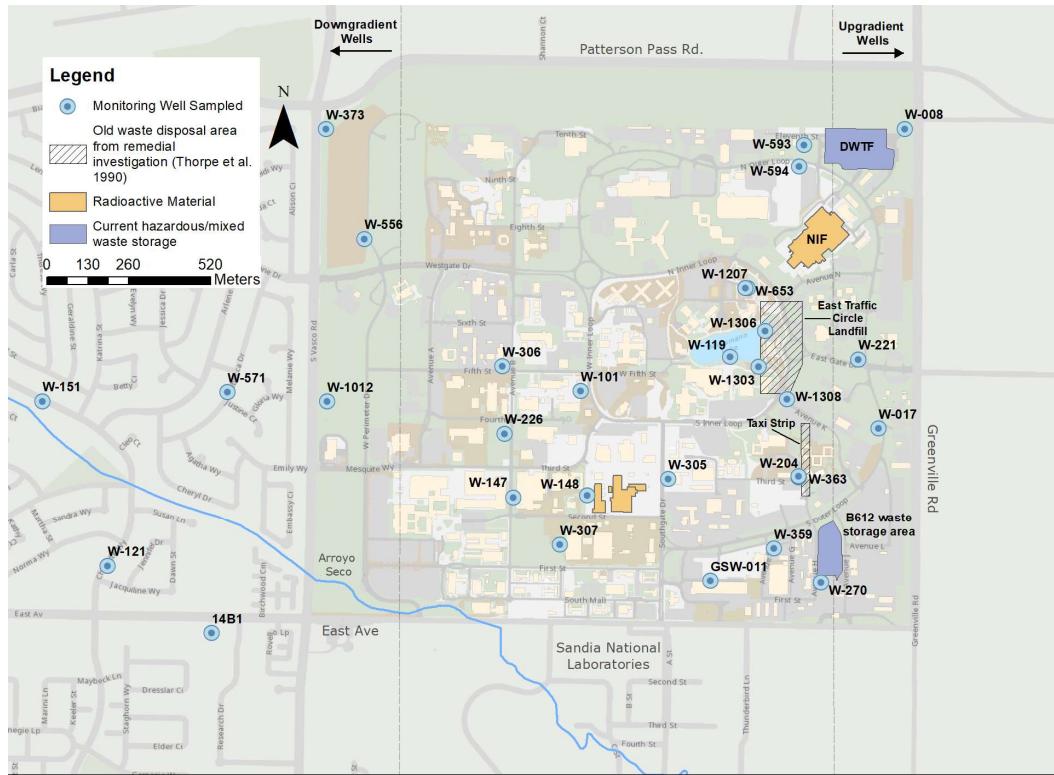
5.4.1.1 Livermore Valley

LLNL has monitored tritium in water hydrologically downgradient of the Livermore Site since 1988. HTO (tritiated water) is potentially the most mobile groundwater contaminant from LLNL operations. Groundwater samples were obtained during 2020 from 13 of 15 wells in the Livermore Valley (see **Figure 5-4**) and measured for tritium activity. Wells 8F1 and 9Q1 were not sampled in 2020 due to COVID-19 restrictions. Since well 16B1 is out of service and well 7P3 was decommissioned, both wells have been removed from the monitoring plan.

Tritium measurements of Livermore Valley groundwater are provided in **Appendix A, Section A.5**. The measurements continue to show very low activities compared with the 740 Bq/L (20,000 pCi/L) MCL established for drinking water in California. The maximum tritium activity estimated off-site was in the groundwater at well 11B1, located approximately 10.0 km (6.2 mi) west of LLNL (see **Figure 5-4**). The estimated activity at well 11B1 was 2.1 ± 2.7 Bq/L (56.8 pCi/L) in 2020 which is less than 0.5% of the MCL.

Figure 5-4. Off-site tritium monitoring wells in the Livermore Valley, 2020.

5. Water Monitoring Programs


5.4.1.2 Livermore Site Perimeter

LLNL's groundwater surveillance monitoring program was designed to complement the Livermore Site GWP (see **Chapter 7**). The intent of the program is to monitor for potential groundwater contamination from LLNL operations. The perimeter portion of the surveillance groundwater monitoring network consists of three upgradient (background) monitoring wells (wells W-008, W-221, and W-017) near the eastern boundary of the site and seven downgradient monitoring wells located near the western boundary (wells 14B1, W-121, W-151, W-1012, W-571, W-556, and W-373) (see **Figure 5-5**). As discussed in **Chapter 7**, the alluvial sediments have been divided into nine hydrostratigraphic units (HSUs), which are water bearing zones that exhibit similar hydraulic and geochemical properties. The nine HSUs dip gently westward. Screened intervals (depth range from which groundwater is drawn) for these monitoring wells range from the shallow HSU-1B to the deeper HSU-5. Two of the background wells, W-008 and W-221, are screened partially in HSU-3A; well W-017 is considered a background well for the deeper HSU-5. To detect contaminants as quickly as possible, the seven western downgradient wells (except well 14B1, screened over a depth range that includes HSU-2, HSU-3A, and HSU-3B) were screened in shallower HSU-1B and HSU-2, the uppermost water-bearing HSUs at the western perimeter. These perimeter wells were sampled and analyzed at least once during 2020 for general minerals (including nitrate) and for certain radioactive constituents (gross alpha, gross beta, and tritium). Analytical results for the Livermore Site perimeter wells are provided in **Appendix A, Section A.5**. Although there have been variations in these concentrations since regular surveillance monitoring began in 1996, the concentrations detected in the 2020 groundwater samples from the upgradient wells represent current background values.

Historically, hexavalent chromium has been detected above the MCL (50 µg/L) in groundwater samples from western perimeter well W-373. However, concentrations of this analyte started dropping below the MCL in 2002. Except for 2006, hexavalent chromium levels at well W-373 have been below the MCL from 2002–2020. The 2020 sample from this location had a concentration of 17 µg/L, which is consistent with the range of hexavalent chromium concentrations (5 µg/L to 52 µg/L) detected at well W-373 since 2002. Groundwater samples collected in 2020 from the nearby wells W-556 and W-1012, also along the western perimeter of the Livermore Site, showed hexavalent chromium concentrations of 26 µg/L and 9 µg/L, respectively.

From 1996 through 2004, concentrations of nitrate detected in groundwater samples from downgradient well W-1012 were greater than the MCL of 45 mg/L. The nitrate concentration detected in the 2020 sample from this well (20 mg/L) was again, as in the past 16 years, below the MCL. During 2020, the concentration of nitrate in the on-site shallow background well W-221 was 49 mg/L, which is down from levels in 2018 and 2019. Detected concentrations of nitrate in western perimeter wells ranged from 15 mg/L (in well W-373) to 47 mg/L (in well W-151), a range consistent with results reported in previous years.

During 2020, gross alpha, gross beta, and tritium results for the Livermore Site's perimeter wells were consistent with the results from past years. The concentrations continue to remain below drinking water MCLs.

Figure 5-5. Routine surveillance groundwater monitoring wells at the Livermore Site, 2020.

5.4.1.3 Livermore Site

Groundwater sampling locations within the Livermore Site include areas where releases to the ground may have occurred in the recent past, where previously detected COCs have low concentrations that do not require CERCLA remedial action, and where baseline information needs to be gathered for the area near a new facility or operation. Wells selected for monitoring are screened in the uppermost aquifers and are downgradient from and as near as possible to the potential release locations. Well locations are shown in **Figure 5-5**. All analytical results are provided in **Appendix A, Section A.5**.

The Taxi Strip and East Traffic Circle Landfill areas (see **Figure 5-5**) are two potential sources of historical groundwater contamination. Samples from monitoring wells screened in HSU-2 (W-204) and HSU-3A (W-363) downgradient from the Taxi Strip area are analyzed for copper, lead, zinc, and tritium. Samples from monitoring wells screened at least partially in HSU-2 (W-119, W-1207, W-1303, W-1306, and W-1308) within and downgradient from the East Traffic Circle Landfill are analyzed for the same elements as the Taxi Strip area. Well W-1306 was unable to be sampled in 2020 because it was idle; all other wells were sampled in 2020. Concentrations of tritium remained well below the drinking water MCLs at all six locations that

5. Water Monitoring Programs

were sampled. As in 2019, zinc was the only metal detected at these wells. The 2020 zinc concentration at well W-1303 was 110 µg/L, which is slightly higher than the 2019 concentration of 97 µg/L at this location. No metals were detected at the other 5 monitoring wells in 2020.

Near the National Ignition Facility (NIF), LLNL measures pH, conductivity, and tritium concentration of nearby groundwater to establish a baseline. Downgradient of NIF, groundwater samples are collected from wells W-653 and W-1207 (screened in HSU-3A and HSU-2, respectively). Since well W-653 was unable to be sampled because it was idle, well W-1207 was the only NIF downgradient well sampled in 2020. Downgradient from the Decontamination and Waste Treatment Facility (DWTF), wells W-593 and W-594 (screened in HSU-3A and HSU-2, respectively) are sampled and analyzed annually for tritium. Tritium monitoring results from the wells near NIF and DWTF were well below the drinking water MCLs.

The former storage area around Building 514 and the hazardous waste/mixed waste storage facilities around Building 612 are also potential sources of contamination. The area and facilities are monitored by wells W-270 and W-359 (both screened in HSU-5), and well GSW-011 (screened in HSU-3A). Well W-359 was non-operational and was not sampled during 2020. Groundwater from these wells was sampled and analyzed for gross alpha, gross beta, and tritium. No significant contamination was detected in the groundwater samples collected downgradient from these areas in 2020.

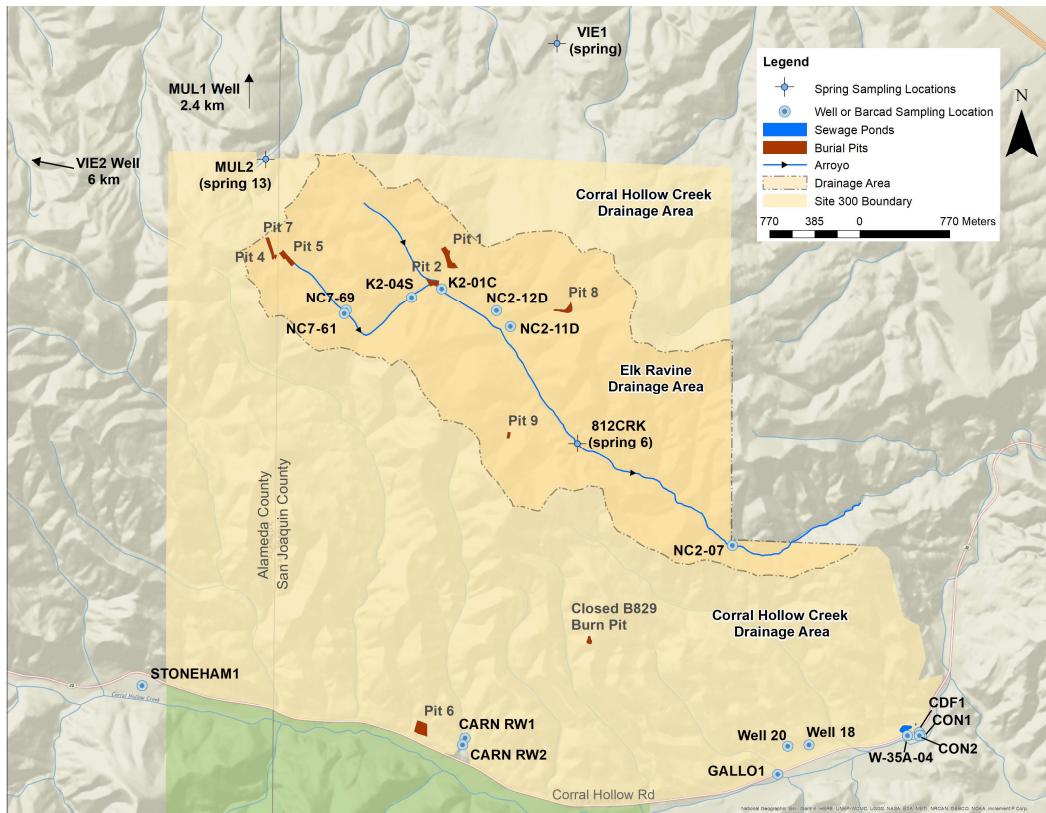
Groundwater samples are obtained annually from monitoring well W-307 (screened in HSU-1B), downgradient from Building 322. Soil samples previously obtained from this area showed concentrations elevated above the Livermore Site's background levels for total chromium, copper, lead, nickel, zinc, and occasionally other metals. LLNL removed contaminated soils near Building 322 in 1999 and replaced them with clean fill. The area was then paved over, making it less likely that metals would migrate from the site. In 2020, concentration of metals at well W-307 were within typical concentrations reported in recent years. The concentration of manganese, which had shown some fluctuations in 2012 and 2013, remained below the analytical reporting limit in 2020. LLNL will continue to track these results as additional data become available.

Groundwater samples were obtained downgradient from a location where sediments containing metals (including cadmium, chromium, copper, lead, mercury, and zinc) had accumulated in a storm water catch basin near Building 253. In 2020, the samples obtained from monitoring wells W-226 and W-306 (screened in HSU-1B and HSU-2, respectively) again contained chromium at concentrations above the analytical reporting limit. Additionally, well W-226 contained hexavalent chromium above the analytical reporting limit. However, these concentrations remained low and were consistent with past years.

Additional surveillance groundwater sampling locations, established in 1999, are in areas surrounding the Plutonium Facility and Tritium Facility. Potential contaminants include plutonium and tritium from these facilities, respectively. Plutonium is much more likely to bind to the soil than migrate into the groundwater. Tritium, as HTO, can migrate into groundwater if spilled in sufficient quantities. Upgradient of these facilities, well W-305 is screened in HSU-2.

In 2020, well W-305 was non-operable and was unable to be sampled. Downgradient wells W-101, W-147, and W-148 are screened in HSU-1B. As in 2012 through 2019, well W-101 was dry and could not be sampled in 2020. In August 2000, elevated tritium activity was detected in the groundwater sampled at well W-148 (115 ± 5.0 Bq/L [3100 ± 135 pCi/L]). The activity was most likely related to local infiltration of storm water containing elevated tritium activity. Tritium activities in groundwater in this area had remained at or near the same level through 2005, but samples collected from well W-148 in 2006 through 2020 have shown significantly lower values—a downward trend ranging from approximately one-fifth to one-half of the August 2000 value due to the natural decay and dispersion of tritium. Well W-147 tritium results for 2020 were also consistent with past years. LLNL continues to collect groundwater samples from these wells periodically for surveillance purposes, primarily to demonstrate that tritium concentrations remain below MCLs.

5.4.2 Site 300 and Environs


For surveillance and compliance groundwater monitoring at Site 300, LLNL uses CERCLA wells and springs on-site, and private wells and springs off-site. Representative groundwater samples are obtained at least once per year at every monitoring location; they are routinely measured for various inorganic constituents (primarily metals), a wide range of organic compounds, general radioactivity (gross alpha and gross beta), uranium activity, and tritium activity. Groundwater from the shallowest water-bearing zone is the target of most of the monitoring because it would be the first to show contamination from LLNL operations at Site 300.

Brief descriptions of the Site 300 groundwater monitoring networks that are reported in this chapter are given below. (All analytical data from 2020 are included in **Appendix A, Section A.6.**)

5.4.2.1 Elk Ravine Drainage Area

The Elk Ravine drainage area, a tributary to the Corral Hollow Creek drainage system, includes most of northern Site 300 (see **Figure 5-6**). Storm water runoff in the Elk Ravine drainage area collects in arroyos and generally quickly infiltrates into the ground. Groundwater from wells in the Elk Ravine drainage area is monitored for COCs to determine the impact of current LLNL operations on the water-bearing zones in the area. Elk Ravine and the immediate area contain eight closed landfills, Pits 1 through 5 and 7 through 9, and the firing tables where explosives tests were or are conducted. None of these closed landfills have a liner, which is consistent with the disposal practices when the landfills were constructed. The following descriptions of monitoring networks within Elk Ravine begin with the headwaters area and proceed downstream. (See **Chapter 7** for a review of groundwater monitoring in this drainage area conducted under CERCLA.)

5. Water Monitoring Programs

Figure 5-6. Surveillance groundwater wells and springs at Site 300, 2020.

Pit 7 Complex The Pit 7 landfill was closed in 1992 in accordance with U.S. EPA and California Department of Health Services (now Department of Toxic Substances Control, or DTSC) approved RCRA Closure and Post-Closure Plans using the LLNL CERCLA Federal Facility Agreement (FFA) process. From 1993 until 2009, monitoring requirements were specified in WDR 93-100, administered by the CVRWQCB (1993, 1998), and in *LLNL Site 300 RCRA Closure and Post-Closure Plans—Landfill Pits 1 and 7* (Rogers/Pacific Corporation 1990). An Amendment to the Interim Record of Decision (ROD) for the Pit 7 Complex (Site 300 U.S. DOE, 2007) was signed in 2007 under CERCLA. The remedial actions specified in the Interim ROD, including a hydraulic drainage diversion system, extraction and treatment of groundwater, and Monitored Natural Attenuation for tritium in groundwater were implemented in 2008. In 2010, detection monitoring and reporting for the Pit 7 complex were transferred to CERCLA. Analytes and frequencies of sampling are documented in the CERCLA Compliance Monitoring Plan and Contingency Plan for Site 300 (Dibley et al. 2009). The objective of this monitoring continues to be the early detection of any new release of COCs from Pit 7 to groundwater.

For compliance purposes, during 2020 LLNL obtained annual or more frequent groundwater samples from the Pit 7 detection monitoring well network. Samples were analyzed for tritium, volatile organic compounds (VOCs), fluoride, high explosive compounds (HMX and RDX), nitrate, perchlorate, uranium (isotopes or total), metals, lithium, and polychlorinated biphenyls (PCBs). A detailed account of Pit 7 compliance monitoring conducted during 2020, including a

summary of data analysis, well locations, maps of the distribution of COCs in groundwater, and analytical data tables is presented in the CERCLA 2020 Site 300 Annual Compliance Monitoring Report (CMR), that was submitted to the regulatory agencies by the LLNL Environmental Restoration Department (Buscheck et al., 2021).

Elk Ravine. Groundwater samples were obtained on various dates in 2020 from the widespread Elk Ravine surveillance monitoring network shown in **Figure 5-6** (NC2-07, NC2-11D, NC2-12D, NC7-61, NC7-69, 812CRK [SPRING6], K2-04S, K2-01C). Monitoring at well K2-04D ceased in 2014 due to a pump becoming stuck in the well, and the well was decommissioned in July 2020. Samples from NC2-07 were analyzed for inorganic constituents (mostly metals), general radioactivity (gross alpha and beta), tritium and uranium activity, and explosive compounds (HMX and RDX). Samples from 812CRK were analyzed for inorganic constituents (mostly metals), VOCs (EPA Method 624), general radioactivity (gross alpha and beta), and tritium and uranium activity. Wells NC2-12D, NC2-11D, 812CRK, and NC2-07 were sampled for nitrate. Well NC7-61 was sampled for explosive compounds (HMX and RDX). All wells were sampled for general radioactivity (gross alpha and beta) and tritium and uranium activity.

No new release of COCs from LLNL operations in Elk Ravine to groundwater is indicated by the chemical and radioactivity data obtained during 2020. The major source of contaminated groundwater beneath Elk Ravine is from historical operations in the Building 850 firing table area (Webster-Scholten 1994; Taffet et al. 1996).

The tritium activity for well NC7-61 was 400 ± 78 Bq/L in 2020, down from 480 ± 94 Bq/L in 2019. This tritium activity remains elevated with respect to the background concentrations. Tritium, as HTO, has been released in the past in the vicinity of Building 850. The majority of the Elk Ravine surveillance-network tritium measurements made during 2020 support earlier CERCLA studies showing that the tritium in the plume is diminishing over time because of natural decay and dispersion (Ziagos and Reber-Cox 1998). CERCLA modeling studies indicate that the tritium will decay to background levels before it can reach a site boundary.

Groundwater surveillance measurements of gross alpha, gross beta, and uranium activity in Elk Ravine are low and are indistinguishable from background levels. (Note that gross beta measurements do not detect the low-energy beta emission from tritium decay.) Additional detections of nonradioactive elements including arsenic, barium, chromium, selenium, and vanadium are all within the natural ranges of concentrations typical of groundwater elsewhere in the Altamont Hills.

Pit 1. The Pit 1 landfill was closed in 1993 in accordance with a DTSC approved RCRA Closure and Post-Closure Plan using the LLNL CERCLA FFA process. Monitoring requirements are specified in WDR 93-100 (CVRWQCB; 1993, 1998, and 2010) and in Rogers/Pacific Corporation (1990). In 2020, the CVRWQCB issued a letter rescinding the Pit 1 monitoring under WDR 93-100 and transferring the monitoring to CERCLA (CVRWQCB, 2020). The main objective of this detection monitoring is the early identification of any release of constituents from Pit 1 to groundwater. LLNL obtained groundwater samples quarterly during 2020 from the

5. Water Monitoring Programs

Pit 1 monitoring well network. Samples were analyzed for inorganic constituents (mostly metals), general radioactivity (gross alpha and beta), activity of certain radioisotopes (tritium, radium, uranium, and thorium), explosive compounds (HMX and RDX), and VOCs. Compliance monitoring showed no new releases of any constituents from Pit 1 in 2020; a detailed summary of Pit 1 detection monitoring conducted during 2020, including well locations, data analysis, and tables of analytical data, can be found in the 2020 annual CMR (Buscheck et al., 2021).

5.4.2.2 Corral Hollow Creek Drainage Area

Pit 6. Compliance monitoring requirements for the closed Pit 6 landfill in the Corral Hollow Creek drainage area are specified in Dibley et al. (2009) and MacQueen et al. (2013). Two Pit 6 groundwater monitoring programs, which operate under CERCLA, ensure compliance with all regulations. They are (1) the Detection Monitoring Plan (DMP), designed to detect any new release of COCs to groundwater from wastes buried in the Pit 6 landfill, and (2) the Corrective Action Monitoring Plan (CAMP), which monitors the movement and fate of historically released COCs. To comply with monitoring requirements, LLNL collected groundwater samples monthly, quarterly, semiannually, and annually during 2020 from specified Pit 6 monitoring wells. These samples were analyzed for VOCs, tritium, beryllium, mercury, total uranium, gross alpha/beta radioactivity, perchlorate, and nitrate.

During 2020, no new contaminant releases from Pit 6 were detected. A detailed account of Pit 6 compliance monitoring, including well locations, tables of groundwater analytical data, and maps showing the distribution of COCs, is summarized in the 2020 Site 300 Annual CMR (Buscheck et al., 2021).

Building 829 Closed High Explosives Burn Facility. Compliance monitoring requirements for the closed burn pits in the Corral Hollow Creek drainage area are specified in DTSC (2017). As planned for compliance purposes, LLNL obtained groundwater samples during 2019 from the three wells in the Building 829 monitoring network. Groundwater samples from these wells, screened in the deep regional aquifer, were analyzed for inorganics (mostly metals), turbidity, explosive compounds (HMX, RDX, and TNT), VOCs (EPA Method 624), extractable organics (EPA Method 625), and general radioactivity (gross alpha and gross beta).

During 2020, the only COC detected above its respective statistical limit (SL) was chromium detected in well W-829-22. LLNL inadvertently missed this SL exceedance and the opportunity to resample well W-829-22 in 2020. Chromium has only been detected four times at W-829-22 since monitoring began in 1999 and the chromium SL exceedance is likely the result of local background variability and not an actual chromium release from the B829 burn pit. An email notification of the W-829-22 chromium SL exceedance was sent to the DTSC on January 25, 2021 and the process of reviewing the analytical data for future SL exceedances has been corrected. LLNL will continue to monitor chromium concentrations at well W-829-22 annually.

The 2020 manganese results at wells W-829-15 and W-829-22 were non-detect, which supports LLNL's conclusion that the 2019 manganese SL exceedances at these wells were likely the result of local background variability, the range of which was not captured during the monitoring

period. Manganese has not been detected at W-829-15 prior to 2019, and LLNL believes the slight exceedance of manganese above the SL was likely a result of desorption and dissolution of naturally occurring manganese-bearing minerals in the aquifer. For well W-829-22, in the approximately 20-year history of sampling, manganese was previously detected above the SL only once: the 2018 routine sample and one of the two independent retest samples. As LLNL concluded in 2018, the 2019 manganese detections at wells W-829-15 and W-829-22 were likely the result of local background variability and not an actual manganese release from the B829 burn pit. LLNL will continue to monitor manganese annually.

The 2020 barium result at well W-829-1938 was lower than the SL, which supports LLNL's conclusion that the barium concentrations are within the range of local background variability. In 2019, there was a confirmed barium SL exceedance at well W-829-1938, LLNL has concluded that the past exceedances do not indicate an actual barium release from the B829 burn pit. LLNL will continue to monitor barium annually.

There were no organic or explosive COCs detected above reporting limits in any samples. All results for the radioactive COCs (gross alpha and gross beta) were below their SL values. For a detailed account of compliance monitoring of the closed burn pit during 2020, including well locations and tables and graphs of groundwater COC analytical data, see Will (2021).

Water Supply Well. Water supply well 20, located in the southeastern part of Site 300 (**Figure 5-6**), is a deep, high production well screened in the Neroly lower sandstone aquifer (Tnbs₁) and can produce up to 1,500 L/min (396 gal/min) of potable water. For surveillance purposes, prior to 2019, LLNL obtained groundwater samples quarterly from well 20 and analyzed samples for inorganic COCs (mostly metals), VOCs, general radioactivity (gross alpha and gross beta), and tritium activity. In 2019, LLNL determined that surveillance monitoring for well 20 was no longer necessary because the well is sampled and analyzed for COCs under a monitoring program defined in Domestic Water Supply Permit Amendment No. 01-10-16PA-003. In March 2020, Site 300's primary water supply changed from well 20 to Hetch Hetchy surface water purchased from the San Francisco Public Utilities Commission (SFPUC). LLNL still uses well 20 water when Hetch Hetchy water is unavailable. Results for 2020 surveillance measurements of groundwater from well 20 do not differ significantly from previous years. As in past years, well 20 showed no evidence of contamination. In 2020, well 20 was sampled for nitrate, HMX, and RDX, and all results were non-detect.

5.4.2.3 Off-site Surveillance Wells and Springs

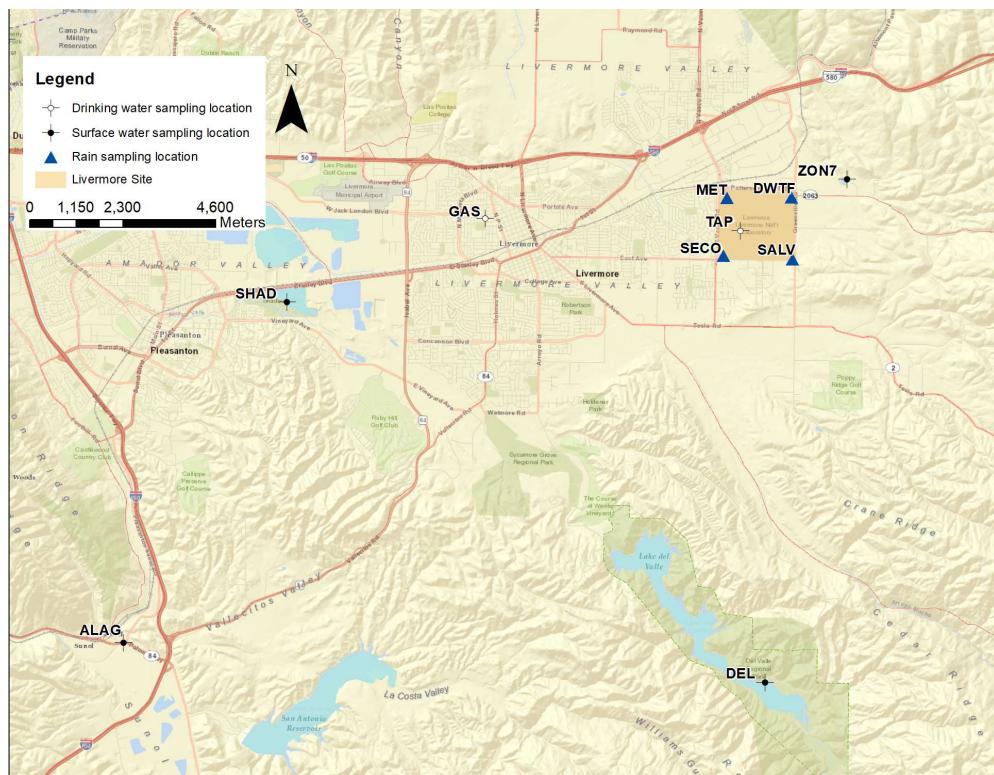
For surveillance purposes, LLNL obtains groundwater samples from three off-site springs (MUL1, MUL2, and VIE1) and nine off-site wells (VIE2, CARNRW1, CARNRW2, CDF1, CON1, CON2, GALLO1, STONEHAM1, and W-35A-04) (**Figure 5-6**). In 2020, wells CON2 and W-35A-04 had inoperable pumps and were not sampled; all other off-site springs and surveillance wells were sampled in 2020. All off-site monitoring locations are near Site 300, except for VIE2 which is located at a private residence 6 km west of the site. VIE2 represents a typical potable water supply well in the Altamont Hills.

5. Water Monitoring Programs

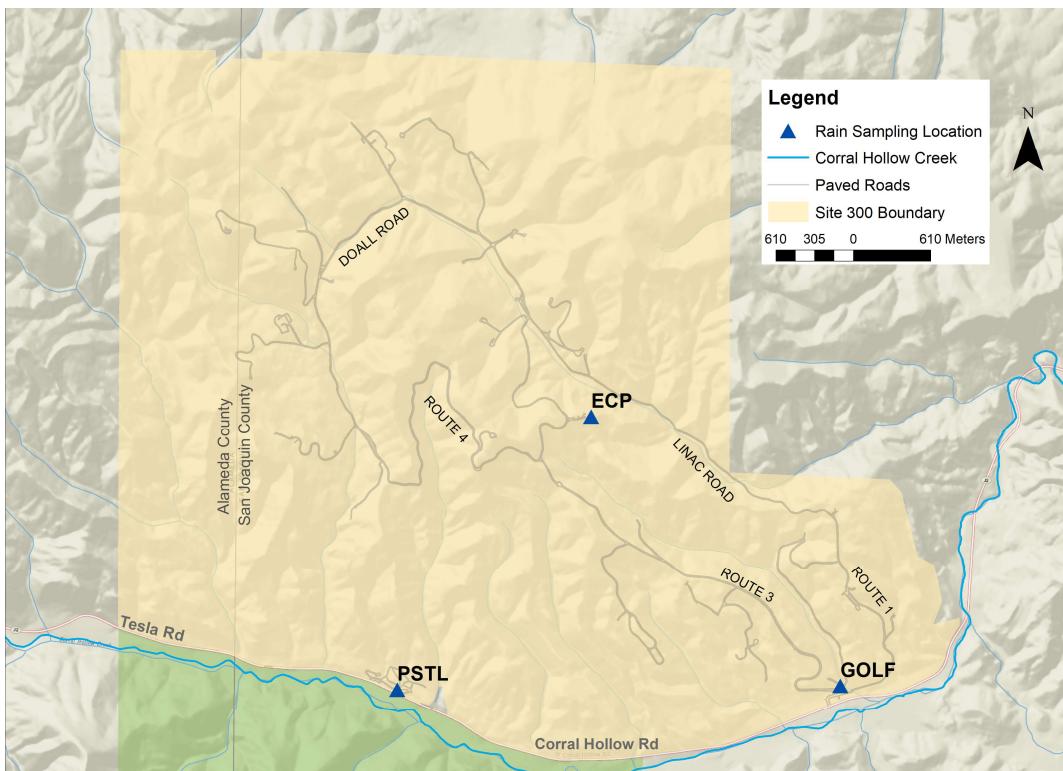
Samples from CARNRW2 and GALLO1 are typically analyzed at least quarterly for inorganic constituents (metals, nitrate, and perchlorate), general radioactivity (gross alpha and gross beta), and tritium activity. CARNRW2 was also sampled for explosive compounds (HMX and RDX) and uranium activity. In 2020, samples were not collected at CARNRW2 and GALLO1 during the second quarter of 2020 due to COVID-19 restrictions. CARNRW1 samples were analyzed monthly (except March–June due to COVID-19 restrictions) for VOCs (EPA Method 624), perchlorate, and tritium activity.

Groundwater samples were obtained at least annually during 2020 from the remaining off-site surveillance monitoring locations: MUL1, MUL2, and VIE1 (north of Site 300); VIE2 (west of Site 300); and STONEHAM1, CON1, and CDF1 (south of Site 300). Samples were analyzed for inorganic constituents (metals, nitrate, and perchlorate), general radioactivity (gross alpha and gross beta), tritium and uranium activity, and explosive compounds (HMX and RDX).

Generally, no constituents attributable to LLNL operations at Site 300 were detected in the off-site groundwater samples. Radioactivity measurements in samples collected from off-site groundwater wells are generally indistinguishable from naturally occurring activities.


5.5 Other Monitoring Programs

5.5.1 Rainwater


Air moisture containing HTO is rapidly entrained and washed out locally during rain events. Rain gauge sampling is not required by DOE Order 458.1, or any other federal, state, or local regulation or permit; however, LLNL collects rainwater in rain gauges at fixed locations at both the Livermore Site and Site 300 to supplement information for storm events sampled for runoff. The collected rainwater is analyzed for tritium activity by EPA Method 906.0, a liquid scintillation counting method, and the analytical results are compared to the EPA drinking water MCL of 740 Bq/L (20,000 pCi/L) for tritium. In calendar year 2020, the rain gauges were placed at the sample locations SALV, MET, DWTF, and SECO at the Livermore Site as shown in **Figure 5-7**. Site 300 rain gauges were located at ECP, PSTL, and GOLF as shown **Figure 5-8**. The samples for calendar year 2020 were inadvertently not collected from either site after the January 16 storm; however, corrective actions were instituted to ensure samples are collected and analyzed for future qualifying storm events.

From 2015-2019, the highest measured tritium activity in rain gauges was in 2016, resulting in less than 2% of the EPA established drinking water standard. Calendar years 2015, 2017, 2018, and 2019 were less than 1% of the standard. Given that tritium emissions for calendar year 2020 were consistent with previous years, a conservative approach would be to assume that the 2020 tritium activity in rain gauges would likely not have exceeded 2% of the EPA drinking water standard.

5. Water Monitoring Programs

Figure 5-7. Livermore Site and Livermore Valley sampling locations for rain, surface water, and drinking water, 2020.

Figure 5-8. Rainwater sampling locations at Site 300, 2020.

5. Water Monitoring Programs

5.5.2 Livermore Valley Surface Waters

LLNL conducts additional surface water surveillance monitoring in support of DOE Order 458.1. Surface and drinking water near the Livermore Site and in the Livermore Valley were sampled at the locations shown in **Figure 5-7** in 2020. Off-site sampling locations DEL, ALAG, SHAD, and ZON7 are surface water bodies; of these, DEL and ZON7 are also drinking water sources. The Springtown pond (DUCK) is an artificial duck pond that was removed by the City of Livermore in 2018 and therefore the location was removed from the surface water sampling plan. GAS and TAP are drinking water outlets; radioactivity data from these two sources are used to calculate drinking water statistics (see **Table 5-4**).

Samples are analyzed according to standardized procedures summarized in Brunckhorst (2019). In 2020, LLNL sampled GAS and TAP semiannually, and ALAG and ZON7 annually. DEL and SHAD were not sampled in 2020 due to COVID-19 restrictions. All locations were sampled for tritium, gross alpha, and gross beta. All analytical results are provided in **Appendix A, Section A.7**.

The median activity for tritium in all water location samples was estimated to be below the analytical laboratory's minimum detectable activities, or minimum quantifiable activities. The maximum tritium activity detected in any sample collected in 2020 was 1.34 Bq/L (36.2 pCi/L), which is less than 1% of the drinking water MCL. Median activities for gross alpha and gross beta radiation in all water samples were less than 5% of their respective MCLs. Historically, concentrations of gross alpha and gross beta radiation in drinking water sources have fluctuated around the Laboratory's minimum detectable activities. At these very low levels, the counting error associated with the measurements is nearly equal to, or in many cases greater than, the calculated values so that no trends are apparent in the data. The maximum activities detected for gross alpha and gross beta occurred in samples collected at ZON7 (gross alpha at 0.0836 Bq/L [2.26 pCi/L]) and ALAG (gross beta at 0.1940 Bq/L [5.24 pCi/L]). These maximum values were less than 16% and 11% of their respective gross alpha and gross beta drinking water MCLs (see **Table 5-4**).

Table 5-4. Radioactivity in surface and drinking waters in the Livermore Valley, 2020.

Location	Metric	Tritium (Bq/L) ^(a)	Gross alpha (Bq/L) ^(a)	Gross beta (Bq/L) ^(a)
All locations	Median	0.52	0.0266	0.0892
	Minimum	0.08	-0.0444	0.0248
	Maximum	1.34	0.0836	0.1940
	Interquartile range	0.28	0.0599	0.0548
Drinking water outlet locations	Median	0.60	-0.0020	0.0561
	Minimum	0.49	-0.0444	0.0248
	Maximum	1.34	0.0507	0.0973
	Drinking water MCL	740	0.555	1.85

(a) A negative number means the sample radioactivity was less than the background radioactivity

5.5.3 Lake Haussmann Monitoring

Lake Haussmann, formerly the Drainage Retention Basin, is an artificial water body that has a 45.6 million L (37 acre-feet) capacity. It is in the central portion of the Livermore Site and receives storm-water runoff and treated groundwater discharges. LLNL continues to modify monitoring of Lake Haussmann based on changing regulatory drivers. In 2015, LLNL discontinued sampling at Lake Haussmann as part of LLNL's adjustments to Livermore Site sampling to meet the requirements of the most recent California IGP for storm water discharges. Storm Water Compliance and Surveillance Monitoring information is in **Section 5.3**.

5.5.4 Site 300 Drinking Water System Discharges

In 2020, LLNL maintained coverage under General Order R5-2016-0076-025, NPDES Permit No. CAG995002 for occasional large volume discharges from the Site 300 drinking water system that may reach surface water drainage courses. The monitoring and reporting program that LLNL developed for these discharges was approved by the CVRWQCB. Discharges with the potential to reach surface waters that are subject to these sampling and monitoring requirements are:

- Drinking water storage tank discharges
- System-flush and line-dewatering discharges
- Dead-end flush discharges

Complete monitoring results from 2020 are detailed in the quarterly self-monitoring reports to the CVRWQCB. All 2020 releases from the Site 300 drinking water system quickly percolated into the drainage ditches or dry streambeds and did not reach Corral Hollow Creek, the potential receiving water.

This page is intentionally left blank.

6. Terrestrial Monitoring

Paola Aquino • Pete Bergeron

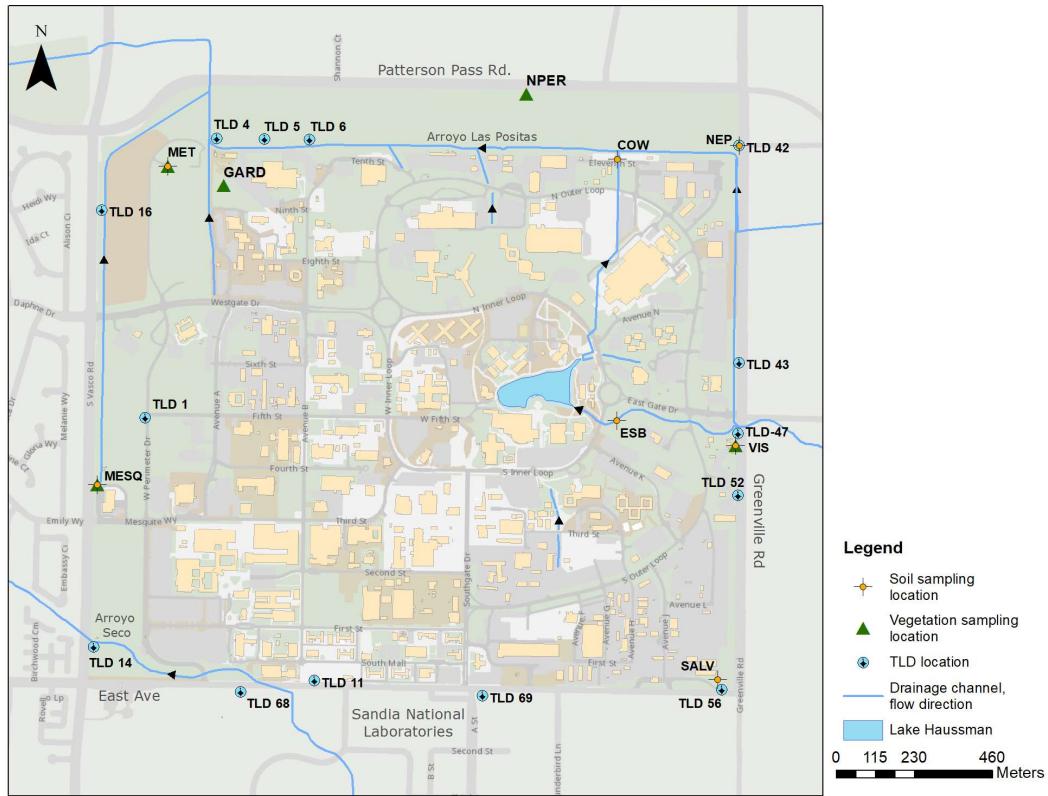
Heather Byrnes • Caleb Murphy • Lisa Paterson

Lawrence Livermore National Laboratory (LLNL) monitors several aspects of the terrestrial environment at the Livermore Site, Site 300, and in the vicinity of both sites. LLNL measures the radioactivity present in soil, vegetation, and wine, and the gamma radiation exposure at ground-level receptors from terrestrial and atmospheric sources. LLNL also monitors the abundance and distribution of rare plants and protects special habitats on-site.

The LLNL terrestrial radioactivity-monitoring program is designed to measure any changes in environmental levels of radioactivity. All monitoring activities follow U.S. Department of Energy (DOE) guidance criteria. On-site monitoring activities detect radioactivity released from LLNL operations that may contribute to radiological dose to the public or to biota; monitoring at distant locations not impacted by LLNL operations detects naturally occurring background radiation and is used to evaluate the impact of operations.

Terrestrial pathways from LLNL operations leading to potential radiological dose to the public include resuspension of soils, infiltration of constituents from runoff water through arroyos to groundwater, ingestion of locally grown foodstuffs, and external exposure to contaminated surfaces. Potential ingestion doses are calculated from measured concentrations in vegetation and wine. Doses from exposure to ground-level external radiation are obtained from thermoluminescent dosimeters (TLDs). Potential dose to biota is calculated using a screening method that requires knowledge of radionuclide concentrations in soils and surface water.

Sampling for all media is conducted according to written, standardized procedures summarized in Brunckhorst (2019). Sampling locations for soils, vegetation and direct radiation for the Livermore Site, the Livermore Valley, and Site 300 are illustrated in **Figures 6-1, 6-2, and 6-3**, respectively.

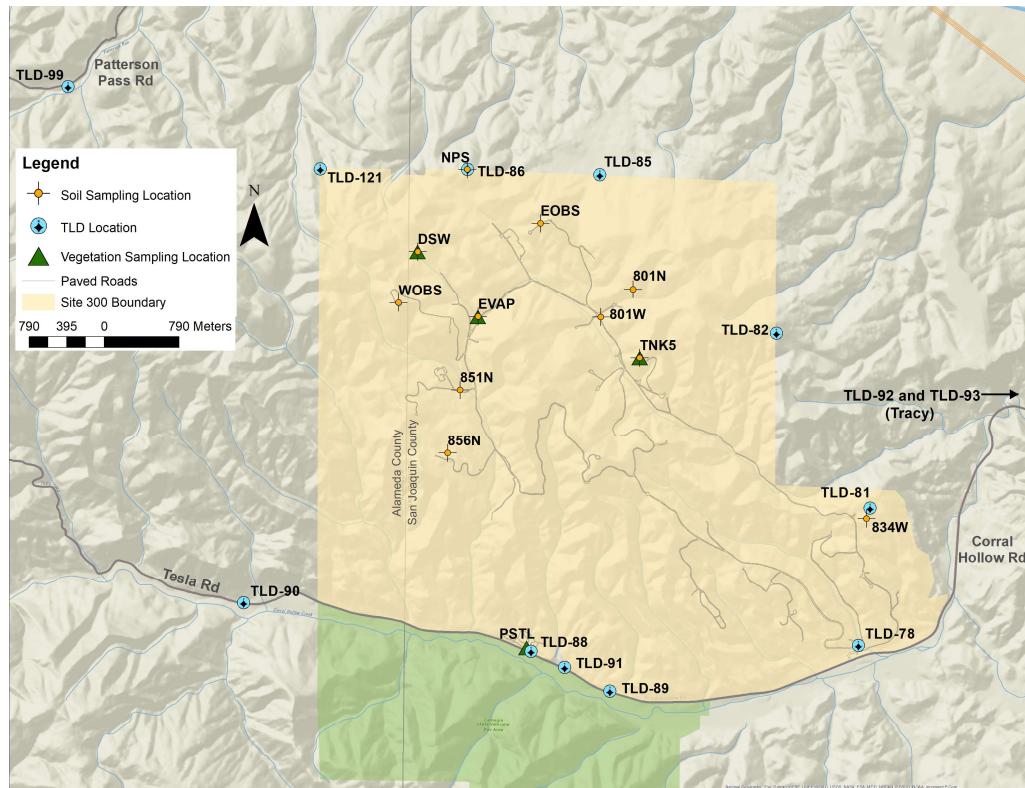

LLNL also monitors the abundance and distribution of special status plant and wildlife species; and conducts research relevant to the protection of rare plants and animals. Biota monitoring and research on LLNL property is conducted to ensure compliance with requirements of the U.S. Endangered Species Act (ESA), the California Endangered Species Act (CESA), the Eagle Protection Act, the Migratory Bird Treaty Act, and other applicable regulations as they pertain to endangered, threatened, and other special status species, their habitats, and designated critical habitats that exist at both LLNL sites.

6.1 Soil Monitoring

Soil sampling locations were selected to represent both background radioactivity (distant locations unlikely to be affected by LLNL operations) and areas that have the potential to be affected by LLNL operations. Sampling locations also include areas with known contamination, such as the Livermore Water Reclamation Plant (LWRP) and explosives testing areas at Site 300.

6. Terrestrial Monitoring

Figure 6-1. Soil, vegetation, and TLD sampling locations, Livermore Site.


Surface soil samples are collected from the top 5 cm of soil because aerial deposition is the primary pathway for potential radionuclide contamination, and resuspension of materials from the surface into the air is the primary exposure pathway to nearby human populations. At each sampling location, two, 1-m-square areas are chosen from which to collect the samples. Each sample is a composite consisting of 10 subsamples that are collected at the corners and center of each square using an 8.25 cm-diameter, stainless steel core sampler.

The samples are collected for metals analyses, and gross alpha, gross beta, and tritium activity. At four of the sampling locations, a 15-cm deep sample is taken for tritium analysis. This deeper sample enables laboratory extraction of sufficient pore water from the soil for tritium analysis.

6. Terrestrial Monitoring

Figure 6-2. Soil, vegetation, and TLD locations, Livermore Valley.

Figure 6-3. Soil, vegetation, and TLD locations, Site 300 and off-site.

6. Terrestrial Monitoring

Surface soil samples in the Livermore Valley were analyzed for plutonium and gamma-emitting radionuclides. Samples at selected locations were also analyzed for tritium, gross alpha, and gross beta activities. Samples from Site 300 were analyzed for gamma-emitting radionuclides and beryllium.

Prior to radiochemical analysis by alpha and gamma spectrometry, the surface soil is dried, sieved, ground, and homogenized. The plutonium content of a 100 g sample aliquot is determined by alpha spectrometry. Other sample aliquots (300 g) are analyzed by gamma spectrometry using a high-purity germanium (HPGe) detector for a suite of radionuclides, including fission products, activation products from neutron interactions on steel, actinides, and natural products.

Tritium is analyzed by liquid scintillation counting of the water extracted from the sample. For beryllium, 10 g subsamples are analyzed by atomic emission spectrometry.

6.1.1 Radiological Monitoring Results

6.1.1.1 Livermore Valley

The 2020 radionuclide analyses data for the soil samples collected from the Livermore Valley sampling locations are provided in **Appendix A, Section A.8**.

The concentrations and distributions of all observed radionuclides are within the ranges reported in previous years and generally reflect worldwide fallout and naturally occurring concentrations. Slightly higher values at and near the Livermore Site have been attributed to historical operations (Silver et al. 1974), including the operation of solar evaporators for plutonium-containing liquid waste in the southeast quadrant of the site. LLNL ceased operating the solar evaporators in 1976 and has not engaged in any open-air treatment of plutonium-containing waste since then.

Sampling at location ESB, which is in the drainage area for the southeast quadrant of the Livermore Site, shows the effects of the historical operation of solar evaporators. The measured value for plutonium-239+240 at this location was 0.16 ± 0.054 mBq/dry g (4.32×10^{-2} pCi/dry g). Elevated levels of plutonium-239+240 resulting from an estimated 1.2×10^9 Bq (32 mCi) plutonium release to the sanitary sewer in 1967 and earlier releases were again detected at LWRP sampling locations in 2020. The highest detected plutonium-239+240 activity was 7.70 ± 0.17 mBq/dry g (0.21 pCi/dry g) at sampling location L-WRP1. Americium 241 was also detected at this location, at 3.50 ± 0.61 mBq/dry g (9.5×10^{-2} pCi/dry g), and is most likely caused by the natural radiological decay of the trace levels of plutonium that were present in historical releases to the sewer.

All reported tritium activities were within the range of previous data. Detected tritium activities ranged from 1.5 ± 1.3 Bq/L (40.5 pCi/L) to 4.4 ± 1.5 Bq/L (119 pCi/L). In 2019, peak detected tritium activity was detected at sampling location L-ESB, at 5.0 Bq/L (135 pCi/L).

6.1.1.2 Site 300

The soils data for Site 300 for 2020 are provided in **Appendix A, Section A.8**.

The activities and distributions of all radionuclides observed in Site 300 soil lie within the ranges reported in previous years. At most of the sampling locations, the uranium-235/uranium-238 (U235/U238) ratio reflects the natural ratio of 0.00725. It should be noted that there is significant uncertainty in calculating the ratio due to the difficulty of measuring low activities of uranium-238 by gamma spectrometry.

The data collected showed four sampling locations (3-834W-SO, 3-856N-SO, 3-NPS-SO, and 3-TNK5) versus two locations (3-EOBS and 3-TNK5) last year that appeared to show the presence of depleted uranium. The U235/U238 ratios ranged from $0.010 \pm 0.011 \text{ } \mu\text{g/dry g}$ to $0.015 \pm 0.015 \text{ } \mu\text{g/dry g}$. Depleted uranium at Site 300 results from the previous use of the material in atmospheric explosive experiments.

6.1.2 Nonradiological Monitoring Results

Monitoring for beryllium is only conducted at Site 300 (see **Figure 6-3**) and has been done so since 1991. The nonradiological soils data for Site 300 are provided in **Appendix A, Section A.8**.

Detected beryllium concentrations were within the ranges previously reported. The highest detected beryllium concentration in 2020 of 0.98 mg/kg at sample location 3-801N-SO, was found in an area that has historically been used for explosives testing. This value is much lower than the 110 mg/kg detected in 2003. The range of results (0.52 mg/kg to 0.98 mg/kg) reflects the varied concentrations of beryllium in the soil from previous explosives testing.

6.1.3 Environmental Impact on Soil

6.1.3.1 Livermore Site

Routine surface soil sample analyses indicate that the impact of LLNL operations on this medium in 2020 has not changed from previous years and remains insignificant. Most analytes of interest or concern were detected at background concentrations or in trace amounts or could not be measured above detection limits.

The highest detected value for plutonium-239+240 was $7.70 \pm 0.17 \text{ mBq/dry g}$ (0.21 pCi/dry g), at sampling location L-WRP1. The detected concentration (activity) is 1.6% of the National Council on Radiation Protection (NCRP) recommended screening limit of 470 mBq/g (12.7 pCi/g) for property used for commercial purposes (NCRP 1999).

LLNL has investigated the presence of radionuclides in local soils frequently over the years, including possible impacts of the distribution to the public of sludge contaminated by the 1967 plutonium release (see Table 6-5 in the *Environmental Report 2006* [Mathews et al. 2007] for a list of previous studies). The studies have consistently shown that the concentrations of radionuclides in local soils are below levels of health concern. In fact, the concentrations are of such low levels of health concern that the Agency for Toxic Substances and Disease Registry (ATSDR) (2003) strongly recommended against further study of local soils for the purpose of identifying locations where plutonium-contaminated sludge from the 1967 release may remain.

6. Terrestrial Monitoring

6.1.3.2 Site 300

The concentrations of radionuclides and beryllium detected in soil samples collected at Site 300 in 2020 are within the range of previous data and are generally representative of background or naturally occurring levels. The U235/U238 mass ratios are indicative of depleted uranium located near the firing tables. They result from the fraction of the firing table operations that dispersed depleted uranium from historical testing. The highest uranium-235 concentration (3-851N sampling location), was $0.0250 \pm 0.0094 \mu\text{g/dry g}$; and was well below the NCRP-recommended screening level for commercial sites of $8.2 \mu\text{g/dry g}$. The highest uranium-238 concentration (3-801N sampling location), was $6.4 \pm 1.1 \mu\text{g/dry g}$; and was also well below the NCRP-recommended screening level for commercial sites of $313 \mu\text{g/dry g}$.

A Draft Remedial Investigation/Feasibility Study (RI/FS) was submitted for the Building 812 Operable Unit (OU) in 2008 (Taffet et al. 2008). This RI/FS specified the nature and extent of contamination, risk assessment, and remedial alternatives for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the OU. In 2011, the Environmental Restoration Department (ERD) began additional characterization of soil and surface water in the Building 812 OU. Further characterization activities continued into 2020. Upon completion of characterization, a Draft/Final RI/FS will be prepared. See **Chapter 7** for further details regarding this project.

6.2 Vegetation and Foodstuff Monitoring

Vegetation and foodstuff monitoring is conducted to monitor the potential radiation dose to the public through ingestion. The foodstuff product monitored is wine, given that wine is a main agricultural product in the valley surrounding LLNL.

Vegetation sampling locations at the Livermore Site (see **Figure 6-1**) and in the Livermore Valley (see **Figure 6-2**) are divided for comparison into the following three groups:

- Near locations (AQUE, GARD, MESQ, NPER, MET, and VIS) are on-site or less than 1 km from the Livermore Site perimeter.
- Intermediate locations (I580, TESW, and ZON7) are in the Livermore Valley and 1 to 5 km from the Livermore Site perimeter.
- Far locations (FCC and CAL) are more than 5 km from the Livermore Site perimeter; FCC is about 5 km away and CAL is more than 25 km away. Both locations are generally upwind of the Livermore Site.

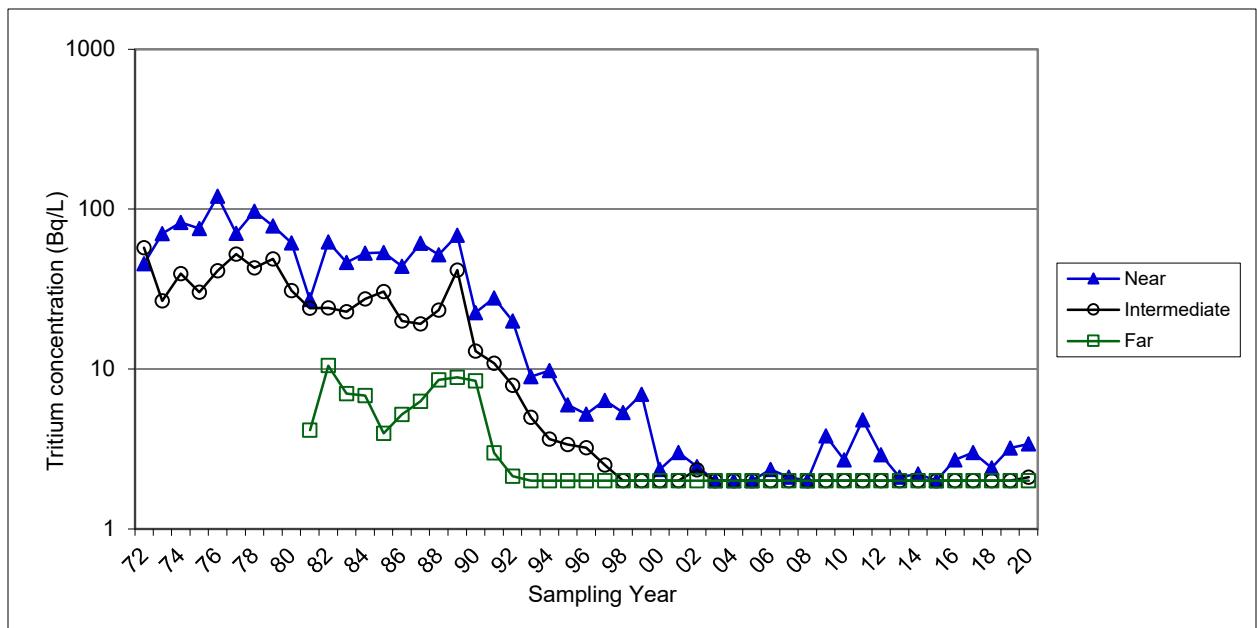
Tritium in vegetation due to LLNL operations is most likely to be detected at the near and intermediate locations and is highly unlikely to be detected at the far locations.

Site 300 has four monitoring locations for vegetation (PSTL, TNK5, DSW, and EVAP) (see **Figure 6-3**). Vegetation at locations DSW and EVAP exhibit variable tritium concentrations due to occasional uptake of contaminated groundwater by the roots. At the other two locations, TNK5

and PSTL, the only likely potential source of tritium uptake is the atmosphere, although groundwater in the vicinity of PSTL is contaminated with low levels of tritium.

Vegetation is sampled and analyzed quarterly. Water is extracted from vegetation by freeze-drying and analyzed for tritiated water (HTO) using liquid scintillation techniques.

Wines for sampling in 2020 were purchased from a supermarket in Livermore. The wines represent the Livermore Valley, other regions of California, and the Rhone Valley and Bordeaux regions in France. Wines were prepared for sampling using a method that separates the water fraction from the other components of the wine and were analyzed using an ultra-low-level scintillation counter.


6.2.1 Vegetation Monitoring Results

Median and mean concentrations of tritium in vegetation based on samples collected at the Livermore Site, in the Livermore Valley, and Site 300 in 2020 are shown in **Table 6-1**. See **Appendix A, Section A.9**, for quarterly tritium concentrations in plant water. The highest mean tritium concentration at the Livermore Site during 2020 was 29 Bq/L at the near location GARD near the northwest corner of the site. The highest mean concentration measured in the Livermore Valley was 4.6 Bq/L at I580. For Site 300, the highest mean concentration for 2020 was 9.3 Bq/L at DSW.

Median concentrations of tritium in vegetation at sampling locations at the Livermore Site and in the Livermore Valley have decreased noticeably since 1989 (see **Figure 6-4**). Median concentrations at the far locations have been below the detection limit of approximately 2.0 Bq/L since 1993. Median concentrations at the intermediate locations have been below the detection limit since 1998, except in 2002 and 2020 when the median concentrations were 2.3 Bq/L and 2.1 Bq/L, respectively. Median concentrations at the near locations have been at or slightly above the detection limit since 2012.

At Site 300, the median concentrations of tritium in vegetation at locations EVAP, PSTL and TNK5 were at or below the detection limit. The median concentration of tritium in vegetation at location DSW was 3.0 Bq/L.

6. Terrestrial Monitoring

Figure 6-4. Median tritium concentrations in Livermore Site and Livermore Valley plant water samples, 1972 to 2020.

Note: When median values are below the lower limit of detection (2.0 Bq/L [54 pCi/L]), values are plotted as 2.0 Bq/L.

Table 6-1. Median and mean concentrations of tritium in plant water for the Livermore Site, Livermore Valley, and Site 300 sampled in 2020.

Note: The table includes mean annual ingestion doses calculated for 2020.

Sampling locations	Concentration of tritium in plant water (Bq/L)		Mean annual ingestion dose (a) (nSv/y)
	Median	Mean	
NEAR (onsite or <1 km from Livermore Site perimeter)	AQUE	1.1	2.6
	GARD	11.0	29.0
	MESQ	4.2	3.6
	MET	4.1	4.0
	NPER	3.6	4.0
INTERMEDIATE (1–5 km from Livermore Site perimeter)	VIS	3.0	3.4
	I580	4.5	4.6
	TESW	1.4	3.7
FAR (>5 km from Livermore Site perimeter)	ZON7	2.4	2.7
	CAL	1.1	1.4
	FCC	1.7	2.6
Site 300	DSW ^(c)	3.0	9.3
	EVAP ^(c)	2.0	4.8
	PSTL	0.7	0.7
	TNK5	1.8	1.3

(a) Ingestion dose is based on conservative assumptions that an adult's diet is exclusively vegetables with this tritium concentration, and that meat and milk are derived from livestock fed on grasses with the same concentration of tritium. See **Table 6-3**.

(b) When concentrations are less than the detection limit (about 2.0 Bq/L), doses can only be estimated as being less than the dose at that concentration.

(c) Plants at these locations are rooted in areas of known subsurface contamination.

(d) Dose is not calculated because there is no pathway to dose to the public.

6.2.2 Wine Monitoring Results

Tritium concentrations in wines purchased in 2020 are shown in **Table 6-2**. The highest measured concentration in a Livermore Valley wine was 3.7 Bq/L (100 pCi/L) from a wine made from grapes harvested in 2017. The highest measured concentration in a California (other than the Livermore Valley) wine was 1.8 Bq/L (48.5 pCi/L) from a wine made from grapes harvested in 2016 from Sonoma County. The highest measured concentration in a French wine was 2.5 Bq/L (66.8 pCi/L) from Rhone Valley wine grapes harvested in 2016.

Analyses of the wines purchased annually since 1977 have typically demonstrated the following relationships: Tritium concentrations in the French wines are typically higher than tritium

6. Terrestrial Monitoring

concentrations in the Livermore Valley wines. Tritium concentrations in the California (other than the Livermore Valley) wines are typically lower than tritium concentrations in the Livermore Valley wines. In 2020, tritium concentrations in French wines fell within the range of those in Livermore Valley wines. Tritium concentration in California (other than the Livermore Valley) wines in 2020 fell below those in Livermore Valley wines.

The Livermore Valley wines represent vintages from 2013, 2016, 2017, 2018, and 2019; the California wines represent vintage from 2016 and 2018; and the French wines represent vintage from 2016 and 2018. Tritium concentrations must be decay-corrected to the year of harvest to correlate with tritium concentrations in air and soil to which the grape was exposed. In 2020, decay-corrected concentrations ranged from 1.9 to 4.5 Bq/L for Livermore Valley wine samples; 0.9 and 2.3 Bq/L for the two California wine samples; and 0.4 and 3.2 Bq/L for the French wine samples.

Table 6-2. Tritium in retail wine, 2020^(a, b).

Sample	Concentration by area of production (Bq/L)		
	Livermore Valley	California	Europe
1	2.60 ± 0.58	0.78 ± 0.53	2.50 ± 0.57
2	1.80 ± 0.55	1.80 ± 0.56	0.34 ± 0.54
3	1.90 ± 0.55		
4	1.70 ± 0.57		
5	1.50 ± 0.56		
6	3.70 ± 0.62		
Dose (nSv/y) ^(c)	5.2	2.6	3.5

(a) Radioactivity is reported here as the measured concentration and an uncertainty ($\pm 2\sigma$ counting error).

(b) Wines from a variety of vintages were purchased and analyzed for the 2020 sampling. Concentrations are those measured in February 2021.

(c) Calculated based on consumption of 52 L wine per year at maximum concentration. Doses account for contribution of organically bound tritium (OBT) as well as of HTO.

6.2.3 Environmental Impact on Vegetation and Wine

6.2.3.1 Vegetation

Hypothetical annual ingestion doses for mean concentrations of tritium in vegetation are shown in **Table 6-1**. These hypothetical doses, from ingestion of HTO in vegetables, milk, and meat, were calculated from annual mean measured concentrations of HTO in vegetation using the transfer factors from **Table 6-3** based on U.S. Nuclear Regulatory Commission Regulatory Guide 1.109 (U.S. NRC 1977). The hypothetical annual ingestion dose, based on the highest observed mean HTO concentration in vegetation for 2020, was 170 nSv (17 μ rem).

Table 6-3. Bulk transfer factors used to calculate inhalation and ingestion doses from measured concentrations in air, vegetation, and drinking water.

Exposure pathway	Bulk transfer factors ^(a) times observed mean concentrations
Inhalation and skin absorption	$230 \text{ nSv} \cdot \text{y}^{-1} \cdot \text{Bq}^{-1} \cdot \text{m}^3 \times \text{concentration in air (Bq/m}^3\text{)}$
Drinking water	$15 \text{ nSv} \cdot \text{y}^{-1} \cdot \text{Bq}^{-1} \cdot \text{L} \times \text{concentration in drinking water (Bq/L)}$
Food ingestion	$6 \text{ nSv} \cdot \text{y}^{-1} \cdot \text{Bq}^{-1} \cdot \text{L} \times \text{concentration in vegetation (Bq/L)}$ ^(b) , factor obtained by summing contributions of $1.3 \text{ nSv} \cdot \text{y}^{-1} \cdot \text{Bq}^{-1} \cdot \text{L}$ for vegetables, $1.4 \text{ nSv} \cdot \text{y}^{-1} \cdot \text{Bq}^{-1} \cdot \text{L}$ for meat and $3.3 \text{ nSv} \cdot \text{y}^{-1} \cdot \text{Bq}^{-1} \cdot \text{L}$ for milk

(a) See Sanchez et al. (2003), Appendix C, for the derivation of bulk transfer factors. The bulk transfer factors found in Sanchez et al. (2003) Appendix C have been updated with current DOE-accepted dose coefficients of $2.11 \times 10^{-11} \text{ Sv/Bq}$ for ingestion and of $1.93 \times 10^{-11} \text{ Sv/Bq}$ for inhalation found in U.S. DOE (2011).

(b) For vegetation dose calculations, the assumption is that the vegetation is 100% water; therefore, Bq/L equals Bq/kg fresh weight.

Doses calculated based on Regulatory Guide 1.109 neglect the contribution from OBT. However, according to a panel of tritium experts, “the dose from OBT that is ingested in food may increase the dose attributed to tritium by not more than a factor of two, and in most cases by a factor much less than this” (ATSDR 2002, p. 27). Thus, the maximum estimated ingestion dose from LLNL operations for 2020, including OBT, is 340 nSv/y (34 $\mu\text{rem}/\text{y}$). This maximum dose is about 1/9,500 of the average annual background dose in the United States from all-natural sources and about 1/30 the dose from a panoramic dental x-ray. Ingestion doses of Site 300 vegetation were not calculated because neither people nor livestock ingest vegetation at Site 300.

6.2.3.2 Wine

For Livermore Valley wines purchased in 2020, the highest concentration of tritium (3.7 Bq/L [100 pCi/L]) was just 0.5% of the Environmental Protection Agency (EPA) standard for maximal permissible level of tritium in drinking water (740 Bq/L [20,000 pCi/L]). Drinking one liter per day of the Livermore Valley wine with the highest concentration purchased in 2020 would have resulted in a dose of 37 nSv/y (3.7 $\mu\text{rem}/\text{y}$). A more realistic dose estimate, based on moderate drinking (one liter per week)⁽¹⁾ at the mean of the Livermore Valley wine concentrations (2.2 Bq/L [58 pCi/L]) would have been 3.1 nSv/y (0.31 $\mu\text{rem}/\text{y}$). Both doses account for the added contribution of OBT⁽²⁾.

The potential dose from drinking Livermore Valley wines in 2020, including the contribution of OBT, even at the high consumption rate of one liter per day, and the highest observed concentration, would be about 1/300 of a single dose from a panoramic dental x-ray.

1 Moderate consumption is higher than the average consumption of wine in California (15.7 L/yr) (Avalos 2005).

2 Dose from wine was calculated based on the measured concentration of HTO multiplied by 1.3 to account for the potential contribution of OBT that was removed so that the tritium in wine could be counted using liquid scintillation counting. The ingestion dose coefficient for HTO is $2.1 \times 10^{-11} \text{ Sv/Bq}$ per U.S. DOE (2011).

6. Terrestrial Monitoring

6.3 Biota Dose

Potential dose to biota resulting from LLNL operations is calculated according to DOE Standard 1153-2019, *A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota* (U.S. DOE 2019). RESRAD-BIOTA computer code is used to complete these calculations.

Limits on absorbed dose to biota are 10 mGy/day (1 rad/day) for aquatic animals and terrestrial plants, and 1 mGy/day (0.1 rad/day) for terrestrial and riparian animals. In the RESRAD-BIOTA code, each radionuclide in each medium (e.g., soil, sediment, and surface water) is assigned a Biota Concentration Guide (BCG). Measured radionuclide concentrations in the soil and water media are divided by the BCG, and the resulting fractions for each medium are summed for each ecosystem (aquatic and terrestrial). For aquatic and riparian animals, the sum of the fractions for water exposure is added to the sum of the fractions for sediment exposure. Similarly, fractions for water and soil exposures are summed for terrestrial animals. If the sum of the fractions for the aquatic and terrestrial systems are each less than 1 (i.e., the dose to the biota does not exceed the screening limit), then the site has passed the screening analysis for protection of biota.

6.3.1 Estimate of Dose to Biota

At LLNL in 2020, radionuclides considered for dose contribution to biota from soil were americium-241, cesium-137, hydrogen-3 (tritium), potassium-40, plutonium-238, plutonium-239+240, thorium-232, uranium-235, uranium-238, and strontium-90 (based on gross beta). Radionuclides considered for dose contribution to biota from water were tritium, plutonium-239 (based on gross alpha) and strontium-90 (based on gross beta).

For the LLNL assessment, the maximum concentration of each radionuclide measured in soil and the storm water run-off samples, considering both the Livermore Site and Site 300, were used in the dose screening calculations for the terrestrial and aquatic fractions. This approach resulted in a conservative assessment, given that the maximum concentrations in the media originate from different locations within a large area. It accounts for the exposure at both the Livermore Site and Site 300, and no plant or animal would likely be exposed to both simultaneously.

For 2020, the total sum of the fractions for the aquatic ecosystem animals was 0.022 with the limiting concentrations from nuclides in water. The total sum of the fractions for the terrestrial ecosystem animals and plants was 0.30 with the limiting concentrations from radionuclides in soil. These fractions for both ecosystems are below 1 showing that, even using the most conservative assumptions, LLNL's impacts on biota are minimal.

6.4 Ambient Radiation Monitoring

Motivated by DOE Order 458.1, LLNL's ambient radiation monitoring program monitors trends in average ambient dose from gamma radiation in order to detect radiation exposure that may be attributed to LLNL operations. This monitoring is conducted using TLDs. The areas in which TLDs are placed are the Livermore Site perimeter (**Figure 6-1**), the Livermore Valley (**Figure 6-**

2), Site 300, and the Site 300 vicinity including Tracy (**Figure 6-3**). In each area, there are multiple TLD locations at which individual TLDs are placed.

6.4.1 Ambient Radiation Monitoring Methods

Exposure to external gamma radiation is measured using Panasonic UD-814-A1 TLDs. These TLDs contain three crystal elements of thulium-activated calcium sulfate (CaSO_4 : Tm) and one element of lithium borate phosphor ($^6\text{Li}_2\text{B}_4\text{O}_7$). For the purposes of gamma radiation dose monitoring, though, only the three CaSO_4 elements are considered. TLDs are placed approximately one meter above ground and deployed and retrieved quarterly, consistent with DOE guidance and recommendations of the American National Standards Institute (ANSI).

When gamma radiation interacts with the TLD, energy is trapped within the structure of the TLD crystal. Upon heating, the trapped energy is released in the form of light. Measurements of the light are converted to radiation exposure, in milliroentgen (mR), based on a calibration standard of 662 keV cesium-137 gamma energy. Radiation exposure measurements are then converted to dose, in milliSieverts (mSv; 1 mSv = 100 mrem), and normalized to represent a standard 90-day quarter. The result is the estimated dose to the public due to external gamma radiation for the duration of one quarter. In 2020, due to COVID-19 related restrictions, only two batches of TLDs were deployed. The first set of TLDs were deployed for three quarters worth of time and the second set of TLDs were deployed for one quarter worth of time. The total time of TLD deployment represents the entire calendar year for 2020.

6.4.2 Ambient Radiation Monitoring Results

Table 6-4 presents the annual dose (in mSv) for 2020 and the previous four years for the Livermore Site perimeter, the Livermore Valley, Site 300, and the Site 300 vicinity including Tracy. Tabular data for each sampling location are provided in **Appendix A, Section A.9**. The annual dose for each area is obtained by summing the quarterly doses from each TLD location, then averaging the annual sums for that area. For a typical year, if data is missing for any quarters at a particular location, the annual dose at that location is taken as four times the average of the results available. For 2020, if data is missing from the three-quarter deployment, the annual average is taken as four times the quarter of available data. For 2020, if data is missing from the one-quarter deployment, the annual average is taken as 4/3 of the three-quarter deployment period.

6. Terrestrial Monitoring

Table 6-4. 5-year annual ambient radiation dose summary with standard deviation (SD) in units of mSv and numbers of samples. ^(a)

Area	Measurement	Year				
		2016	2017	2018	2019	2020 ^(b)
Livermore Site	Dose \pm 1 SD (mSv)	0.566 \pm 0.016	0.565 \pm 0.014	0.581 \pm 0.014	0.578 \pm 0.015	0.665 \pm 0.018
	Number of Samples	56	55	54	55	28
Livermore Valley	Dose \pm 1 SD (mSv)	0.541 \pm 0.040	0.549 \pm 0.039	0.570 \pm 0.035	0.547 \pm 0.037	0.724 \pm 0.12
	Number of Samples	32	31	31	31	14
Site 300	Dose \pm 1 SD (mSv)	0.663 \pm 0.035	0.673 \pm 0.036	0.691 \pm 0.029	0.689 \pm 0.029	0.818 \pm 0.078
	Number of Samples	31	28	30	29	14
Site 300 off-site	Dose \pm 1 SD (mSv)	0.638 \pm 0.10	0.664 \pm 0.091	0.680 \pm 0.13	0.658 \pm 0.11	0.944 \pm 0.18
	Number of Samples	6	7	7	7	3
Tracy	Dose \pm 1 SD (mSv)	0.618 \pm 0.017	0.626 \pm 0.039	0.639 \pm 0.039	0.643 \pm 0.034	0.750 \pm 0.091
	Number of Samples	8	8	8	8	4

(a) The number of samples may change from year to year for the same location if TLD data is rejected or the TLD is damaged or missing at the time of collection.

(b) In 2020, the method for calculating the quarterly doses was updated to better reflect recommendations in ANSI/HPS N13.37-2014 (R2019), resulting in higher annual averages.

Some natural variation in exposure and dose is expected. For example, the Neroly Formation in and around Site 300 contains naturally occurring thorium that increases the external radiation dose at Site 300 relative to the Livermore Valley.

6.4.3 Environmental Impact from Laboratory Operations

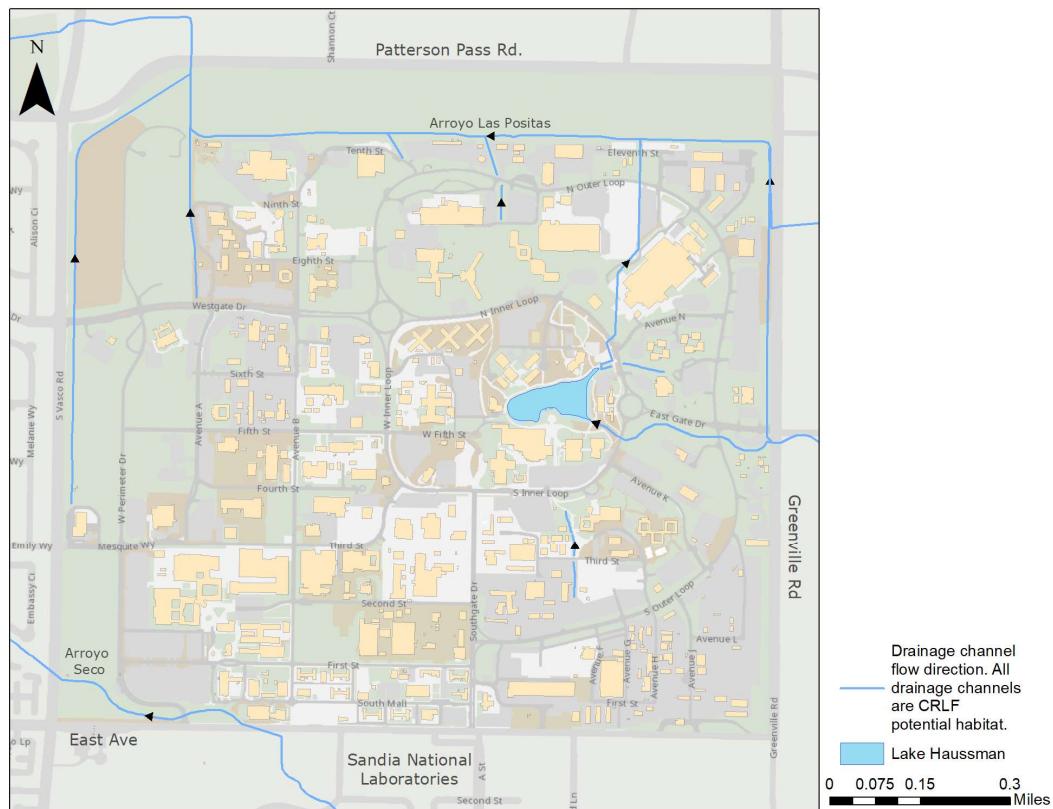
In 2020, the method for calculating the quarterly doses was updated to better reflect recommendations in ANSI/HPS N13.37-2014 (R2019), resulting in higher annual averages. If these were calculated using previous methods, the results for 2020 would be consistent with those of previous years.

6.5 Special Status Wildlife and Plants

Special status wildlife and plant monitoring at LLNL focuses on species considered to be rare, threatened, or endangered (including species listed under the federal ESA or CESA) and species

considered of special concern by the California Department of Fish and Wildlife (CDFW) and the U.S. Fish and Wildlife Service (USFWS).

The California red-legged frog (*Rana draytonii*), an ESA threatened species and CDFW species of special concern (SSC), is known to occur at the Livermore Site (see **Figure 6-5**). The California tiger salamander (*Ambystoma californiense*) is listed as an ESA and CESA threatened species and has been observed in areas that are adjacent to the Livermore Site. Portions of the Livermore Site are considered potential upland habitat for the California tiger salamander because of the proximity of known observations and breeding pools. There is no breeding habitat for the California tiger salamander at the Livermore Site. One additional species listed under the CESA, but not the federal ESA, is known to occur at the Livermore site; the Swainson's hawk (*Buteo Swainsoni*). The western pond turtle (*Actinemys marmorata*), a California SSC, is also known to occur at the Livermore Site. Both Swainson's hawks and western pond turtles were observed at the Livermore site in 2020.


Five species listed under the federal ESA are known to occur at Site 300: the California tiger salamander, California red-legged frog, Alameda whipsnake (*Masticophis lateralis euryxanthus*), valley elderberry longhorn beetle (*Desmocerus californicus dimorphus*), and the large-flowered fiddleneck (*Amsinckia grandiflora*). Although there are no recorded observations of the federally endangered San Joaquin kit fox (*Vulpes macrotis mutica*) at Site 300, this species is known to have historically occurred in the adjacent Carnegie and Tracy Hills areas (USFWS 1998). Because of the proximity of known observations of San Joaquin kit fox to Site 300, it is necessary to consider potential impacts to San Joaquin kit fox during activities at Site 300.

Three additional species are listed under the CESA, but not the federal ESA, and are known to occur at Site 300. Two species that are listed as threatened under the CESA, the tricolored blackbird (*Agelaius tricolor*) and the Swainson's hawk (*Buteo swainsoni*), regularly occur at Site 300. A third species, the California-endangered willow flycatcher (*Empidonax traillii*), was observed at Site 300 once and is expected to occur infrequently as a migrant in riparian habitat at Site 300.

Protected habitat for species listed under the federal and California ESAs at Site 300 is shown in **Figure 6-6**.

Vertebrate species and rare invertebrate species known to occur at Site 300, including state and federally listed species and other SSC are listed in **Appendix B**. A similar list has not been prepared for the Livermore Site.

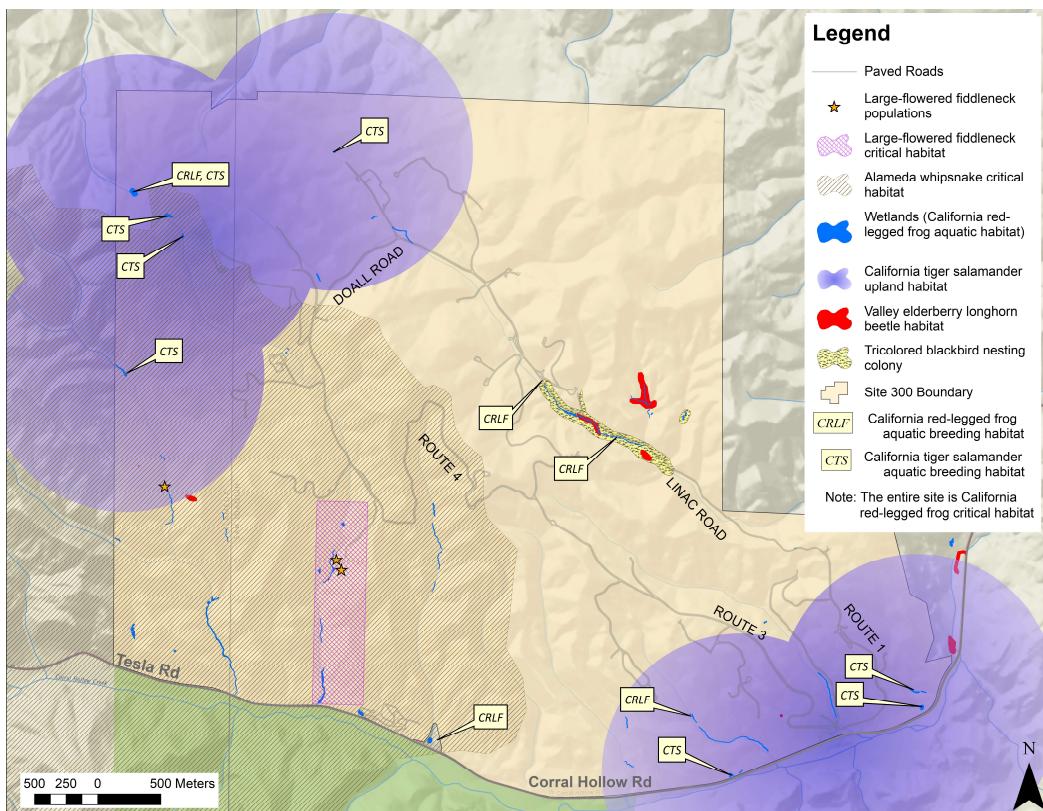

6. Terrestrial Monitoring

Figure 6-5. Potential California red-legged frog aquatic habitat, Livermore Site.

Including the federally endangered large-flowered fiddleneck, four rare plant species and three uncommon plant species are known to occur at Site 300. The four rare species—the large-flowered fiddleneck, the big tarplant (*Blepharizonia plumosa*), the diamond-petaled California poppy (*Eschscholzia rhombipetala*), and the shining navarretia (*Navarretia nigelliformis* ssp. *radians*)—all have a California Rare Plant Rank (CRPR) of 1B (CNPS 2021). A fifth species, the round-leaved filaree (*Californica macrophylla*), was previously considered rare, but its status was downgraded and is no longer considered rare (CNPS 2021).

The three uncommon plant species—California androsace (*Androsace elongata* subsp. *acuta*), stinkbells (*Fritillaria agrestis*), and hogwallow starfish (*Hesperevax caulescens*)—have a CRPR of 4 (CNPS 2021). Past surveys have failed to identify any rare plants on the Livermore Site (Preston 1997, 2002).

Figure 6-6. Protected habitat for species listed under the federal and California Endangered Species Acts at Site 300.

6.5.1 Surveillance Monitoring

6.5.1.1 Avian Monitoring

Nesting bird surveys and monitoring ensure LLNL activities comply with the Migratory Bird Treaty Act and do not result in impacts to nesting birds.

Livermore Site Nesting Bird Surveys. LLNL conducted routine site-wide breeding raptor surveys during the 2020 nesting bird season at the Livermore Site. White-tailed kites (*Elanus leucurus*) frequently nest in the trees along the north, east, and south perimeters of the Livermore Site. Three white-tailed kite nests successfully fledged a total of eight young at the Livermore Site in 2020. There was one successful red-tailed hawk (*Buteo jamaicensis*) nest at the Livermore Site that fledged two young. The two American kestrel (*Falco sparverius*) nests at the Livermore Site were deemed active, as both adult pairs were active around the nest throughout the breeding season. However, no fledglings were visually observed. One turkey vulture (*Cathartes aura*) nest located at Building 543 of the Livermore Site successfully fledged four young in 2020. A pair of Coopers hawks nested near Building 271 and successfully fledged three young.

Site 300 Burrowing Owl Bird Surveys. Sitewide surveys for nesting burrowing owls (*Athene cunicularia*) were conducted at Site 300 in 2020. The burrowing owl is protected by the federal Migratory Bird Treaty Act and is a California SSC. Sitewide burrowing owl surveys are

6. Terrestrial Monitoring

conducted annually to ensure nesting burrowing owls are not impacted by site operations and maintenance. Ten nesting burrowing owl pairs were observed at Site 300 in 2020. There was a decrease in the number of nesting pairs in 2020 compared to 2019. In 2020, 8 of the 10 nesting pairs (80%) were observed to successfully rear at least 1 fledgling, and in 2019, 13 out of 18 (72%) nesting burrowing owl pairs were successful. The 8 successful nesting pairs observed in 2020 reared approximately 28 fledglings. This is an average of three fledglings per successful nest. In 2019, the 13 successful burrowing owl pairs reared at least 39 fledglings. This is an average of three to four nestlings per successful natal burrow.

Site 300 Nesting Bird Surveys. In addition to burrowing owl monitoring described above, nesting raptor locations were recorded at Site 300 on a weekly basis during the nesting bird season and during construction monitoring conducted in 2020. Nesting raptor surveys were conducted in areas of programmatic activity and do not include remote areas of the site. Incidental observations of nesting raptors in remote areas of Site 300 were also recorded during fire trail surveys, but these survey results do not represent the distribution of raptors throughout Site 300. Nesting raptor surveys were also conducted within the Corral Hollow Creek riparian corridor adjacent to the eastern and southern perimeter of Site 300 in the spring of 2020 prior to the start of the ESGA well decommissioning project. During these surveys, 10 pairs of nesting red-tailed hawks, 2 pairs of nesting great-horned owls (*Bubo virginianus*), and 2 pairs of nesting barn owls (*Tyto alba*) were observed. There was a total of 10 red tailed hawk pairs which successfully reared 19 red tailed hawk fledglings. There was a total of four great-horned owl fledglings, and four barn owl fledglings during the 2020 season.

Site 300 Tricolored Blackbird Surveys. Tricolored blackbirds regularly nest in wetland habitat located the Elk Ravine riparian corridor at Site 300. Each year LLNL biologists monitor tricolored blackbird nesting success at this location. Early in April 2020, tricolored blackbirds were observed at the nesting colony in Elk Ravine. The nesting success of the tricolored blackbird colony was not monitored in 2020 due to limited on-site access during the nesting season.

6.5.1.2 Amphibian Monitoring

Livermore Site California red-legged frog monitoring. In 2020, LLNL conducted diurnal and nocturnal surveys for California red-legged frogs in Arroyo Las Positas, Arroyo Seco, Lake Haussmann, and drainages throughout the site in support of data collection for the Sitewide Environmental Impact Statement (SWEIS). One adult California red-legged frog was observed within Arroyo Las Positas during these surveys. Two juvenile California red-legged frogs were observed in Lake Haussmann in the fall of 2014. Two adult California red-legged frogs were observed during maintenance activities in Arroyo Las Positas in the fall of 2016. In 2017 and 2018 ongoing California red-legged frog monitoring and invasive species control was conducted, no California red-legged frogs were observed at the Livermore site. There were multiple sightings of adult California red legged frogs in 2019. Two sightings were in Arroyo Las Positas, one during a non-routine survey inspection and the other during a routine amphibian survey during breeding season. One additional observation occurred at Lake Haussmann during invasive wildlife control in the summer of 2019. In 2020 observations of the American bullfrog,

(*Lithobates catesbeianus*), a non-native invasive species, had decreased dramatically at the Livermore Site. LLNL performed minimal operations in 2020 due to the COVID-19 pandemic, which decreased the amount of treated groundwater discharge and water flow into Arroyo Las Positas. Diurnal surveys for California red-legged frog egg masses were also conducted at the Livermore Site in 2020. No California red-legged frog egg masses were observed at the Livermore Site in 2020.

Site 300 Amphibian monitoring. LLNL conducted diurnal and nocturnal surveys within suitable aquatic habitat for California red-legged frog (Pool A, Pool H, Pool M1a and b, Pool M2, Pool HC1, Pool S, Pool OS, Pool M3, Lower Pool D and Upper Pool D, Pool SG, Pool CR, Pool GB, Seep, Pool CP, Pool S, Pool J, Pool O, Lower Draney Canyon drainage, and the Lower Drop Tower Complex drainage) throughout the site and within the CDFW Corral Hollow Ecological Reserve in support of SWEIS data collection. During the 2020 surveys, subadult and adult California red-legged frogs were observed within Pool M1a and b, Pool J, Pool CR, and Pool O. California red-legged frog tadpoles, young of year metamorphs, subadults, and adults were observed within the Corral Hollow Ecological Reserve. One California red-legged frog egg mass was observed within an isolated pool in the Corral Hollow Ecological Reserve.

California red-legged frog visual encounter surveys and monitoring continued in Pool M1a and b (mid-Elk Ravine). During the 2020 surveys, California red-legged frog adults and subadults were observed, but no tadpoles or egg masses were observed within pools M1a or b. This is the first year that California red-legged frog reproduction was not observed in this spring fed pool within the Elk Ravine creek since a restoration project was conducted in 2005. Two adult California red-legged frogs and California red-legged frog tadpoles were observed within Elk Ravine upstream of Pools M1a and b at Pool CR in 2020.

Diurnal surveys are routinely conducted at several seasonal pools at Site 300 to monitor the breeding success of California tiger salamanders and California red-legged frogs in these locations. In 2020, diurnal surveys were conducted at nine seasonal pools (Pool A, Pool H, Pool M2, Pool HC1, Pool S, Pool OS, Pool M3, Lower Pool D and Upper Pool D). These pools regularly support California tiger salamander breeding in years with average or above average rainfall, and adult California red-legged frogs are occasionally observed at these pools during the wet season. California tiger salamander eggs and larvae were observed in Pool OS in 2020. The remaining Site 300 seasonal pools (Pool A, Pool H, Pool M2, Pool HC1, Pool S, Pool M3, Lower Pool D, and Upper Pool D) did not fill in 2020 due to the drought events of 2020, therefore California tiger salamanders were not able to reproduce in these locations. None of the pools remained inundated long enough for California tiger salamander metamorphosis.

6.5.1.3 Rare Plant Monitoring

Large-Flowered Fiddleneck. This species has recently been known to occur in only three native populations. This includes two populations at Site 300 (the Drop Tower and Draney Canyon populations) and a population located on mitigation property owned by the Contra Costa Water District. No large-flowered fiddleneck have been observed at Draney Canyon since a landslide at

6. Terrestrial Monitoring

that site in 1997. The Drop Tower native population also contained no large-flowered fiddleneck plants in 2020.

LLNL established an experimental population of the large-flowered fiddleneck at Site 300 beginning in the early 1990s. LLNL maintains the experimental population by periodically planting large-flowered fiddleneck seedlings and seeds in established plots within the population. The size of the experimental population fluctuates as a result of these enhancement efforts. Two-hundred and eighty large-flowered fiddleneck seedlings were planted in this experimental population in January 2017, and seeds were last planted at this population in November of 2012. The Drop Tower experimental population contained approximately 98 large-flowered fiddleneck plants in the spring of 2020.

Big Tarplant. The distribution of big tarplant was mapped at Site 300 using a handheld global positioning system (GPS) in September through November 2020. Between approximately 5,000 and 15,000 big tarplants were observed. While this species is extremely rare throughout its range, it can be abundant at Site 300, especially in or near areas where prescribed burns are routinely conducted and where wildfires have occurred. As is typical with annual plant species, the abundance of big tarplants varies greatly between years depending on environmental conditions. For example, while the Site 300 big tarplant population was estimated to contain no more than 2,700 individual plants in 2014, there were up to 214,000 big tarplants found at Site 300 in 2010.

Diamond-Petaled California Poppy. Although the species is not listed under the federal or California ESAs, it is extremely rare and is currently known to occur only at Site 300 and in a few locations in Contra Costa and San Luis Obispo Counties. Currently four populations of this species are known to occur at Site 300; these populations are referred to as Sites 1 through 4. Site 3 was discovered in 2004 and typically contains the largest population of this rare species. As with the big tarplant and other annual plants, the number of diamond-petaled California poppy plants present in these populations is expected to vary from year to year. In 2015, approximately 46,100 diamond-petaled California poppies were observed within all Site 300 populations. The 2015 population was the largest observed since sitewide monitoring began in 2004. The relatively large diamond-petaled California poppy population in 2015 was likely attributable to annual grass cover, which was much less dense than average as a result of drought conditions. In contrast, only 4 diamond-petaled California poppies were observed at Site 300 in 2017. The median number of diamond-petaled California poppy plants observed at Site 300 between 2004 and 2019 is 683. In 2020, a total of only 17 diamond-petaled California poppies were observed in all Site 300 populations.

6.5.2 Invasive Species Control Activities

Invasive species control is an important part of LLNL's effort to protect special status species at both sites. Prevention of additional colonization by invasive species is also important to protect native species throughout our region. The American bullfrog is a significant threat to California red-legged frogs at the Livermore Site, and the feral pig (*Sus scrofa*) threatens numerous protected habitat types at Site 300. The exotic fish, largemouth bass (*Micropterus salmoides*), has been successfully removed from Lake Haussmann at the Livermore Site.

At the Livermore Site, bullfrog control measures were implemented between May and September 2020. Bullfrog control measures included dispatching adults and removing egg masses in Lake Haussmann and Arroyo Las Positas. To remove bullfrog tadpoles and invasive fish, the LLNL reach of Arroyo Las Positas was allowed to dry out in September 2020 by temporarily halting groundwater discharges to the arroyo.

At Site 300, feral pig control measures were implemented between April and October 2020. Feral swine control measures included dispatching both adults and associated litters. Site 300 continues to protect its critical habitats and rare species as a result of consistent swine control practices on-site.

6.5.3 Habitat Enhancement Projects and Compliance Activities

6.5.3.1 Power Pole Modifications for Migratory Bird Protection

To minimize adverse impacts to migratory birds, Site 300 implements an avian protection policy to support avian-friendly transmission lines, insulators, power poles, and other features that are designed to minimize collision and electrocution fatalities of birds of prey.

Between 2014 and 2020, over fifty power poles have been modified for bird protection at Site 300 as part of a site-wide revitalization project. These bird-friendly modifications included creating safe perch sites and limiting access to areas with possible electrical hazards. Specifically, the following actions were taken:

1. Dropping the cross arm to create an elevated center pole perch.
2. Running underarm (under cross arm) conductor jumpers away from perch sites.
3. Adding elevated center phase conductors with kingpins above perch sites.
4. Upgrading cross arm geometry to “straight line” conductors on line and buck (multi-directional) poles thereby avoiding extra conductor infrastructure.
5. Cleaning-up wiring (i.e., wire removal or guards) or adding bushing covers to switch poles.
6. Installing long, ten-foot cross arms to increase the separation between phases.

6.5.3.2 Arroyo Las Positas Maintenance and Habitat Management

LLNL conducts annual maintenance and habitat management within the Arroyo Las Positas at the Livermore Site to reduce the potential for flooding of LLNL facilities and to improve the habitat value for the federally threatened California red-legged frog and other native species.

Maintenance was conducted in two 300-foot reaches of Arroyo Las Positas in September 2020. For the sixth consecutive year, willows and cottonwoods were planted to eventually shade the arroyo and reduce cattail growth that will reduce the need for maintenance. In addition, willows and cottonwoods will provide cover that can be utilized by the California red-legged frog and other native wildlife. All work conducted within the channel of Arroyo Las Positas is monitored by a Service Approved Biologist. In 2020, no California red-legged frogs were seen or heard during a diurnal pre-activity and monitoring survey in this location. After the 2015, 2016, 2018,

6. Terrestrial Monitoring

2019, and 2020 maintenance was completed, willows and cottonwoods were planted along the south bank of the arroyo. The 2020 survivorship of planted willows and cottonwoods met project requirements. For the first time since project initiation, willows planted during the first two years of this project (2014 and 2015) have grown enough to be considered the dominant vegetation type in some areas. Willow and cottonwood coverage, as a dominant vegetation type, increased to 31.6% in 2020. By implementing invasive tree species tree removal, *Casuarina* sp., coverage has been reduced to 3.5% of the total length of the project site in 2020 compared to 15.0% in 2015.

6.5.3.3 Elk Ravine Habitat Enhancement Pools

In late August 2005, LLNL implemented a habitat enhancement project for California red-legged frogs at Site 300 in accordance with a 2002 USFWS biological opinion (BO), Army Corps of Engineers (ACOE), and Regional Water Quality Control Board (RWQCB) permits. California red-legged frogs were translocated to the new habitat enhancement pools in Elk Ravine (Pool M1a and b) in February and March 2006. In the summer of 2014 both pools were dredged to remove extra sediment, thus increasing the depths to the original 8-10 ft., improving the value of this habitat for California red-legged frog breed. During dredging operations, overgrown vegetation (including cattails, nettles, and willows) was also removed to increase breeding habitat suitability. A wildfire occurred in early June of 2015 that impacted the Elk Ravine riparian corridor. No impacts to California red-legged frog breeding were observed as a result of this wildfire, and the habitat has recovered in the years following the wildfire. Monitoring demonstrated that California red-legged frogs successfully reproduced in these pools in 2006 through 2019. Routine breeding amphibian surveys were conducted in 2020 in Pools M1a and b. No California red-legged frog eggs or tadpoles were encountered within the mitigation pools at mid Elk Ravine. California red-legged frog adults, tadpoles, and one egg mass were observed within Pool CR in Elk Ravine upstream of Pools M1a and b in 2020.

6.5.3.4 Pool M2 Habitat Enhancement

A series of three ephemeral pools (Pool A, Pool H, and Pool M2), located in the northwest corner of Site 300, provide breeding habitat of the California tiger salamander. Pools A and Pool H are seasonal pools that have supported California tiger salamander breeding for many years. A habitat enhancement project was conducted at Pool M2 in 2005 to improve the suitability of this pool for California tiger salamander breeding. A second habitat enhancement project was conducted at the Pool M2 in 2013 when the clay liner of this pool was augmented to limit infiltration or loss of water through the bottom of the pool. In 2006, 2010, 2011, 2015, 2016, and 2017, Pool M2 filled, and California tiger salamanders successfully reproduced at this location. In 2007, 2008, 2009, 2012, 2013, 2014, 2018, and 2020 the pool received inadequate inundation and evaporated before the salamander larvae could reach maturity and leave the pool. In 2019, California tiger salamander eggs were observed in Pool M2, H, A and HC1, and Pools M2 and A had sightings of California tiger salamander larvae. Although California tiger salamander larvae were observed in all three pools, only Pools A and HC1 were inundated long enough for these larvae to mature into adult salamanders. In 2020 no pools held enough water for California tiger salamanders to undergo metamorphosis.

6.5.3.5 Pool HC1 Habitat Enhancement

In 2006, LLNL completed culvert replacement projects within Draney Canyon at Site 300 (the Oasis and Round Valley) where unpaved fire trails crossed intermittent drainages. In 2006, a pool was created within the channel of Draney Canyon as part of the culvert replacement project to provide breeding habitat for the California red-legged frog. The Oasis pool was disturbed by feral pigs soon after its construction, and as a result no longer holds water to a depth to support California red-legged frog reproduction. Amphibian surveys were conducted at the Oasis in 2020. Although California red-legged frog reproduction was not observed at the Oasis, adult and subadult California red-legged frogs were found during 2020 surveys. The 2006 Round Valley project included the creation of a pool known as Pool HC1, in part as mitigation for the impacts at the Oasis site and to serve as enhanced habitat for protected amphibian species.

An additional habitat enhancement project was conducted at Pool HC1 in 2012. The clay liner of this pool was augmented in the fall of 2012 to limit infiltration or loss of water through the bottom of the pool. In 2016, Pool HC1 filled completely, and California tiger salamander eggs and larvae were observed in the pool. In 2017, Pool HC1 initially filled but the pool did not hold water long enough for salamander larva to successfully mature. Seasonal pools at Site 300, including Pool HC1, received inadequate inundation in 2018 and evaporated before the salamander larvae could reach maturity and leave the pool. In 2019, Pool HC1 held water long enough for California tiger salamanders to undergo metamorphosis during the season. Pool HC1 did not hold water long enough for California tiger salamanders to undergo metamorphosis during the 2020 season.

6.5.3.6 Pool M3 Habitat Enhancement

In the fall of 2014, LLNL completed the formal set aside of 48.5 acres and enhancement of the Pool M3 breeding site for California tiger salamanders. In 2016, California tiger salamanders successfully reproduced in this pool, which represented the second successful breeding attempt in Pool M3 since completion of its restoration activities conducted in 2014. In 2017, California tiger salamander eggs were observed at Pool M3, but the pool did not hold water long enough for salamander larvae to mature. In the summer of 2017, the clay liner at Pool M3 was enhanced in an effort to increase the hydroperiod of this pool. In 2019 and 2020, Pool M3 did not fill to a depth or duration to allow for California tiger salamander reproduction.

6.5.4 Environmental Impacts on Special Status Wildlife and Plants

In 2020, LLNL was able to avoid significant impacts on special status wildlife and plants and their habitats, by conducting monitoring and implementing avoidance and minimization measures. Habitat enhancement, avian protection, and invasive species control efforts resulted in benefits to protected species. LLNL continues to monitor and maintain several restoration sites, habitat enhancements, and conservation set asides that are beneficial to native plants and animals at the Livermore Site or Site 300 and ensures the protection of listed and special status species.

This page is intentionally left blank.

7. Groundwater Investigation and Remediation

Mark Buscheck • Charles Noyes

Lawrence Livermore National Laboratory (LLNL) samples and analyzes groundwater from areas of known or suspected contamination. Portions of the two sites where soil or groundwater contains or may contain chemicals of concern are actively investigated to define the hydrogeology, nature, and extent of the contamination and its source. Where necessary, remediation strategies are developed and evaluated through preparation of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action or through the CERCLA feasibility study process. An approved remedy for each area is developed in consultation with the regulatory agencies and the community.

This chapter reviews the distribution of contaminants in groundwater and the progress LLNL has made in removing contaminants from groundwater and from the unsaturated zone (soil vapor) at the Livermore Site and Site 300. The sites are similar in that the contamination is, for the most part, confined on-site. The sites differ in that Site 300, with an area of 28.3 km² (10.9 mi²), is much larger than the Livermore Site and has been divided into nine Operable Units (OUs) based on the nature and extent of contamination, and topographic and hydrologic considerations. The Livermore Site, at 3.3 km² (1.3 mi²), is effectively one OU.

7.1 Livermore Site Environmental Restoration Project

Initial releases of hazardous materials occurred at the Livermore Site in the mid-to-late 1940s during operations at the Livermore Naval Air Station (Thorpe et al. 1990). There is also evidence that localized spills, leaking tanks and impoundments, and landfills contributed volatile organic compounds (VOCs), fuel hydrocarbons, metals, and tritium to the unsaturated zone and groundwater in the post-Navy era. The Livermore Site was placed on the U.S. Environmental Protection Agency (EPA) National Priorities List in 1987.

An analysis of all environmental media showed that groundwater and both saturated and unsaturated soils are the only media that require remediation (Thorpe et al. 1990). Compounds that currently exist in groundwater at various locations beneath the site at concentrations above drinking water standards (maximum contaminant level [MCLs]) are trichloroethylene (TCE), tetrachloroethene (PCE), 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,1-dichloroethane, 1,2-dichloroethane, and carbon tetrachloride. PCE is also present at low concentrations slightly above the MCL in off-site plumes that extend from the southwestern corner of the Livermore Site. LLNL operates groundwater extraction wells in both on-site and off-site areas. In addition, LLNL maintains an extensive network of groundwater monitor wells in the off-site area west of Vasco Road.

7.1.1 Physiographic Setting

The general topography of the Livermore Site is described in **Chapter 1**. The Livermore Valley groundwater system consists of several semiconfined aquifers. Rainfall from the surrounding hills

7. Groundwater Investigation and Remediation

and seasonal surface water in the arroyos recharge the groundwater system, which flows toward the east-west axis of the valley.

The thickest sediments and aquifers are present in the central and western portions of the Livermore Valley, where they form an important resource for the Zone 7 Water Agency. These sediments comprise two aquifers: the Livermore Formation and overlying alluvium. The Livermore Formation averages about 1,000 m in thickness and occupies an area of approximately 250 km². The alluvium, which is about 100 m thick, is the principal water-producing aquifer within the valley.

7.1.2 Hydrogeology of the Livermore Site

Sediments at the Livermore Site are grouped into four grain-size categories: clay, silt, sand, and gravel. Groundwater flow beneath the site occurs primarily in alluvial sand and gravel deposits, which are bounded by lower permeability clay and silt deposits. The alluvial sediments have been subdivided into nine hydrostratigraphic units (HSUs) beneath the Livermore Site. HSUs are defined as sedimentary sequences whose permeable layers show evidence of being hydraulically interconnected and geochemically similar. Six of the nine HSUs contain contaminants at concentrations above their MCLs: HSU-1B, -2, -3A, -3B, -4, and -5 (Blake et al. 1995; Hoffman et al. 2003). HSU-1A, -6, and -7 do not contain contaminants of concern above action levels.

7.1.3 Remediation Activities and Monitoring Results

In 2020, LLNL maintained and operated 27 groundwater treatment facilities. The groundwater extraction wells and dual (groundwater and soil vapor) extraction wells produced 814 million L of groundwater and the treatment facilities (TFs) removed about 25 kg of VOCs. Since remediation began in 1989, approximately 25.4 billion L of groundwater have been treated, resulting in removal of more than 1,799 kg of VOCs. Additional information concerning flow and mass removal by treatment facility area is presented in Noyes et al. (2021).

LLNL also maintained and operated eight soil vapor treatment facilities (VTFs) in 2020. The soil vapor extraction wells and dual extraction wells produced more than 3.4 million m³ of soil vapor and the treatment facilities removed approximately 9 kg of VOCs. Since initial operation, nearly 34.0 million m³ of soil vapor has been extracted and treated, removing more than 1,631 kg of VOCs from the subsurface. Additional information concerning flow and mass removal by treatment facility area is presented in Noyes et al. (2021).

Five treatment facilities remained offline in 2020:

- Vapor Treatment Facility D (VTFD) Helipad
- TF5475-1
- TF5475-3
- VTF5475
- TF518 North

VTFD¹ Helipad remained offline in support of the *in situ* bioremediation Enhanced Source Area Remediation (ESAR) treatability test at the TFD Helipad Source area. The four remaining facilities were discussed in LLNL (2009). With the U.S. EPA concurrence, restart of these four facilities has been deferred pending the results of ESAR treatability tests. LLNL continues to monitor groundwater for VOCs and tritium. See Noyes et al. (2021) for more information on the Livermore Site groundwater and soil vapor treatment facilities.

Restoration activities in 2020 at the Livermore Site continued to be primarily focused on enhancing and optimizing ongoing operations at treatment facilities, while continuing to evaluate technologies that could be used to accelerate cleanup of the Livermore Site source areas and to address the mixed-waste management issue discussed in the *Draft Focused Feasibility Study of Methods to Minimize Mixed Hazardous and Low Level Radioactive Waste from Soil Vapor and Ground Water Treatment Facilities at the Lawrence Livermore National Laboratory Site* (Bourne et al. 2010).

In 2020, the ESAR treatability tests continued at TFD Helipad (*in situ* bioremediation), TFE Eastern Landing Mat (thermally-enhanced remediation), and TFC Hotspot (emplacement of zero valent iron [ZVI] for *in situ* VOC destruction).

Additional Livermore Site environmental restoration activities performed in 2020 included:

- Conducting a Cone Penetrometer Testing (CPT) and direct-push drilling soil vapor and soil sampling survey for VOCs in the TFD area.
- Drilling and installing three new monitor wells in the TFD area.
- Continued enhancement and optimization of ongoing operations at treatment facilities across the site.
- Continued reevaluation of the inhalation risk for VOCs potentially migrating from the subsurface into indoor ambient air, including sampling of a prioritized list of buildings.

Groundwater concentration and hydraulic data indicate subtle but consistent declines in the VOC concentrations and areal extent of the contaminant plumes in 2020. Hydraulic containment along the western and southern boundaries of the site was fully maintained in 2020, and progress was made toward interior plume and source area clean up. See Noyes et al. (2021) for the current status of cleanup progress.

7.1.4 Environmental Impacts

LLNL strives to reduce risks arising from chemicals released to the environment, to conduct all its restoration activities to protect environmental resources, and to preserve the health and safety of all site workers. LLNL's environmental restoration project is committed to preventing present and future human exposure to contaminated soil, soil vapor, and groundwater, preventing further contaminant migration of concentrations above drinking water standards, reducing concentrations

¹ VTFD Helipad stands for vapor treatment facility D Helipad, a soil vapor extraction facility. TFD Helipad stands for treatment facility D which is a groundwater treatment facility. They are different and distinct facilities.

7. Groundwater Investigation and Remediation

of contaminants in groundwater and soil vapor, and minimizing contaminant migration from the unsaturated zone to the underlying groundwater.

Remedial solutions that have been determined to be most appropriate for individual areas of contamination are implemented. The selected remedial solutions, which include groundwater and soil vapor extraction and treatment, have been agreed upon by the Department of Energy (DOE) and the regulatory agencies with public input and are designed to achieve the goals of reducing risks to human health and the environment and satisfying remediation objectives, and of meeting regulatory standards for chemicals in water and soil, and other state and federal requirements.

7.2 Site 300 Environmental Restoration Project

A number of contaminants were released to the environment during past LLNL Site 300 operations including waste fluid disposal to dry wells, surface spills, piping leaks, burial of debris in unlined pits and landfills, detonations at firing tables, and discharge of rinse water to unlined lagoons. Environmental investigations at Site 300 began in 1981. As a result of these investigations, VOCs, high explosive compounds, tritium, depleted uranium, organosilicate oil, nitrate, perchlorate, polychlorinated biphenyls, dioxins, furans, and metals were identified as contaminants of concern in soil, rock, groundwater, or surface water. This contamination is confined within the site boundaries with the exception of VOCs that are present in off-site monitor wells near the southern site boundary. LLNL maintains an extensive network of on-site and off-site wells to monitor this contamination. As stated in the introduction to this chapter, all characterized contaminant release sites that have a CERCLA pathway have been assigned to one of nine OUs based on the nature, extent, and sources of contamination, and topographic and hydrologic considerations. Site 300 was placed on the EPA National Priorities List in 1990. Cleanup activities began at Site 300 in 1982 and are ongoing.

Background information for LLNL environmental characterization and restoration activities at Site 300 can be found in Webster-Scholten (1994), *Final Remedial Investigation/Feasibility Study for the Pit 7 Complex at Lawrence Livermore National Laboratory Site 300* (Taffet et al. 2005), and the *Site-Wide Remediation Evaluation Summary Report for Lawrence Livermore National Laboratory Site 300* (Ferry et al. 2006).

7.2.1 Physiographic Setting and Geology of Site 300

Site 300 is located in the southeastern Altamont Hills of the Diablo Range. The topography of Site 300 consists of a series of steep hills and canyons generally oriented northwest to southeast. The site is underlain by gently dipping sedimentary bedrock dissected by steep ravines. The bedrock consists of interbedded conglomerates, sandstones, siltstones, and claystones of the late Miocene Neroly Formation (Tn), and a Pliocene nonmarine unit (Tps). The bedrock units are locally overlain by mid- to late-Pleistocene terrace deposits and late-Pleistocene to Holocene floodplain, ravine fill, landslide, and colluvial deposits.

The bedrock within Site 300 has been slightly deformed into several gentle, low-amplitude folds. The locations and characteristics of these folds, in combination with the regional fault and fracture patterns, locally influence groundwater flow within the site.

7.2.2 Contaminant Hydrogeology of Site 300

Site 300 is a large and hydrogeologically diverse site. Due to the steep topography and structural complexity, stratigraphic units and groundwater contained within many of these units are discontinuous across the site. Consequently, site-specific hydrogeologic conditions govern the occurrence and flow of groundwater and the fate and transport of contaminants beneath each OU.

An HSU is a laterally-extensive water-bearing zone that occurs in discrete stratigraphic units and exhibits similar hydraulic and geochemical properties. At Site 300, HSUs have been defined consisting of one or more stratigraphic intervals that compose a single hydraulic system within one or more OUs. At Site 300, groundwater movement and contaminant migration in groundwater are discussed in the context of HSUs.

Groundwater contamination at Site 300 occurs primarily in three types of HSUs:

1. Mixed Quaternary alluvium, terrace deposits, and landslide deposits and underlying coherent and weathered bedrock HSUs including alluvium and weathered bedrock (Qal/WBR HSU), alluvium and sandstone (Qal-Tnbs₁ HSU), terrace deposits and sandstone (Qt-Tnbs₁ HSUs), terrace deposits and claystone (Qt-Tnsc₁ HSU), and landslide deposits and sandstone (Qls/Tnbs₁ HSU). [Note: Tn refers to Tertiary Neroly Formation bedrock].
2. Perched groundwater in fluvial sands and gravels (Tpsg HSU), semi-lithified silts and clay of the Tpsg-Tps HSU, and silts and clay and underlying silty claystone (Tps-Tnsc₂ HSU). [Note: Tp refers to Tertiary Pliocene sediments].
3. Bedrock including the Tnbs₂, Tnsc_{1ab}, Tnsc_{1b}, Tnbs₁, Tnbs₁/Tnbs₀, and Tnbs₁/Tnsc₀ HSUs.

Groundwater in bedrock is typically present under confined conditions in the southern part of the site but is often unconfined elsewhere. Recharge occurs where saturated alluvial valley fill is in contact with underlying permeable bedrock, and where bedrock strata crop out. Water levels within Site 300 shallow water-bearing zones have generally been declining due to ground water pumping and limited recharge owing to the recent California drought. During 2020, water levels in shallow water-bearing zones throughout Site 300 generally declined slightly as a result of the less than average 2019-2020 rainfall totals.

7.2.3 Remediation Activities and Monitoring Results

Cleanup activities were initiated at Site 300 in 1982 and are underway, have been completed, or are in the process of being implemented at the nine OUs. These activities include:

- Operating 21 groundwater and soil vapor extraction and treatment facilities.
- Capping and closing four landfills, six high explosives rinse water lagoons and one high explosives burn pit.

7. Groundwater Investigation and Remediation

- Removal and/or closure of numerous dry wells throughout the site.
- Removal of contaminated soil from source areas throughout the site.
- Installation of a drainage diversion system at the Pit 7 Complex to prevent groundwater from rising into the landfills and releasing contaminants in the waste.
- Remediation (consolidation and solidification) of 29,000 cubic yards of polychlorinated biphenyl (PCB)-, dioxin-, and furan-contaminated soil in a Corrective Action Management Unit (CAMU) at Building 850.
- Treatability studies for the *in situ* bioremediation of VOCs and perchlorate in groundwater.
- Installation and sampling of over 700 groundwater monitor wells to track plume migration and remediation progress.

These remediation efforts have resulted in (1) the elimination of risk to on-site workers from contaminant exposure at multiple locations throughout Site 300, (2) a reduction in maximum concentrations of the primary contaminant (VOCs) in Site 300 groundwater by 50% to 99%, (3) the remediation of VOCs in groundwater in the Eastern General Services Area to meet cleanup standards, and (4) a reduction of maximum tritium activities in ground water emanating from the Building 850 area to below cleanup standards.

In 2020, the Site 300 Environmental Restoration Project operated 12 groundwater facilities, 4 groundwater collection systems, and 5 soil vapor treatment or extraction-only facilities extracting and treating approximately 22.2 million L of groundwater and 1.4 million m³ of contaminated soil vapor. The Site 300 treatment facilities removed about 4.2 kg of VOCs, 0.057 kg of perchlorate, 962 kg of nitrate, 0.092 kg of the high explosive compound RDX, and 0.003 kg of uranium in 2020. Since groundwater remediation began in 1990, approximately 1,786 million L of groundwater and 38 million m³ soil vapor have been treated, resulting in removal of approximately 635 kg of VOCs, 1.9 kg of perchlorate, 22,000 kg of nitrate, 2.9 kg of RDX, 9.5 kg of silicone oils, and 0.1 kg of uranium. Tritium in groundwater continues to decay on-site, reducing tritium activities in Site 300 groundwater. Detailed groundwater volume and contaminant mass removal totals, by OU, are presented in Buscheck et al. (2021).

To date, cleanup remedies have been fully implemented and are operational in eight of the nine OUs at Site 300 (the General Services Area, Building 834, Pit 6 Landfill, High Explosives Process Area, Building 850/Pit 7 Complex, Building 854, Building 832 Canyon OUs, and OU 8, which is comprised of four site-wide subareas). The CERCLA pathway for the last OU, Building 812, was negotiated with the regulatory agencies in 2011. At Building 812, characterization activities were initiated in 2011 and have continued in subsequent years. These activities include:

- Sampling surface soil, groundwater, and surface water for chemical and radiological analyses.
- Sampling plants and invertebrates for uranium analysis.

- Drilling and hand augering additional boreholes, collecting samples for chemical and radiological analysis, and conducting High Purity Germanium (HPGe) detector gamma radiation surveying for uranium-238 in subsurface soil to better determine its vertical extent.
- Gamma radiation surveying with a sodium iodide (NaI) detector to better define the extent of uranium-238 in Building 812 surface soil.
- Surface water discharge and velocity monitoring.
- Analyzing the chemical and radiological data collected to determine the nature and extent of contamination.

The results of characterization activities in the Building 812 OU are being analyzed and will be presented in a Remedial Investigation/Feasibility Study (RI/FS) report once updated background concentration and activity ranges for metals and radionuclides in Site 300 soil are determined and documented in a final report. The sampling and analysis of soil from nearby Mount (Mt.) Diablo State Park is underway to develop these updated background concentrations and activities of metals and radionuclides. Mt. Diablo State Park was selected for the soil sampling because it has similar geology, soil types, and ecology to Site 300.

Additional Site 300 Environmental Restoration Project activities performed in 2020 included:

- Installing three new groundwater monitor wells in the Building 832 Canyon area.
- Installing one new groundwater monitor well in the High Explosives (HE) Process Area.
- Installing one new groundwater monitor well in the Building 865 area.
- Closing one former groundwater monitor well in the Eastern General Services Area.
- Closing two former groundwater monitor wells in the Building 850 Area.
- Closing one former groundwater monitor well in the Building 832 Canyon Area.
- Inspecting and maintaining the Pit 7 Drainage Diversion System and Building 850 Corrective Action Management Unit.
- Continuing the Building 850 *In Situ* Perchlorate Bioremediation Treatability Test.
- Continuing evaluation of a next phase of VOC treatment in the T2 area of Building 834.
- Continuing upgrades of the Building 832 source area ground water and soil vapor treatment facilities.
- Began upgrades to the Building 817 source area groundwater extraction facility.
- Continued reevaluation of the inhalation risk for VOCs potentially migrating from the subsurface into indoor ambient air.

All calendar year 2020 Site 300 milestones were met or renegotiated with the regulatory agencies (see **Chapter 2**).

Groundwater concentration, activity, and hydraulic data collected and analyzed for Site 300 during 2020 provided evidence of continued progress in reducing contaminant concentrations in Site 300 groundwater and soil vapor, controlling and cleaning up contaminant sources, and mitigating risk to on-site workers. A more detailed description of remediation progress at the Site

7. Groundwater Investigation and Remediation

300 OUs in 2020 is available in the *Annual 2020 Compliance Monitoring Report for LLNL Site 300* (Buscheck et al. 2021).

In 2020, the *Draft Site 300 Southeast Corner Five-Year Review* (Edwards et al. 2020) was submitted to the regulatory agencies. This report evaluates the implementation and performance of remedies in three OUs (General Services Area, High Explosives Area, and Building 832 Canyon) and its ongoing protection of human health and the environment.

7.2.4 Environmental Impacts

LLNL strives to reduce elevated risks arising from chemicals released to the environment at Site 300, to conduct its activities to protect ecological resources, and to protect the health and safety of site workers. LLNL's cleanup remedies at Site 300 are designed and implemented to achieve the goals of reducing risks to human health and the environment and satisfying remediation action objectives, meeting cleanup standards for chemicals and radionuclides in water and soil, and preventing contaminant migration in groundwater to the extent technically and economically feasible.

These actions include:

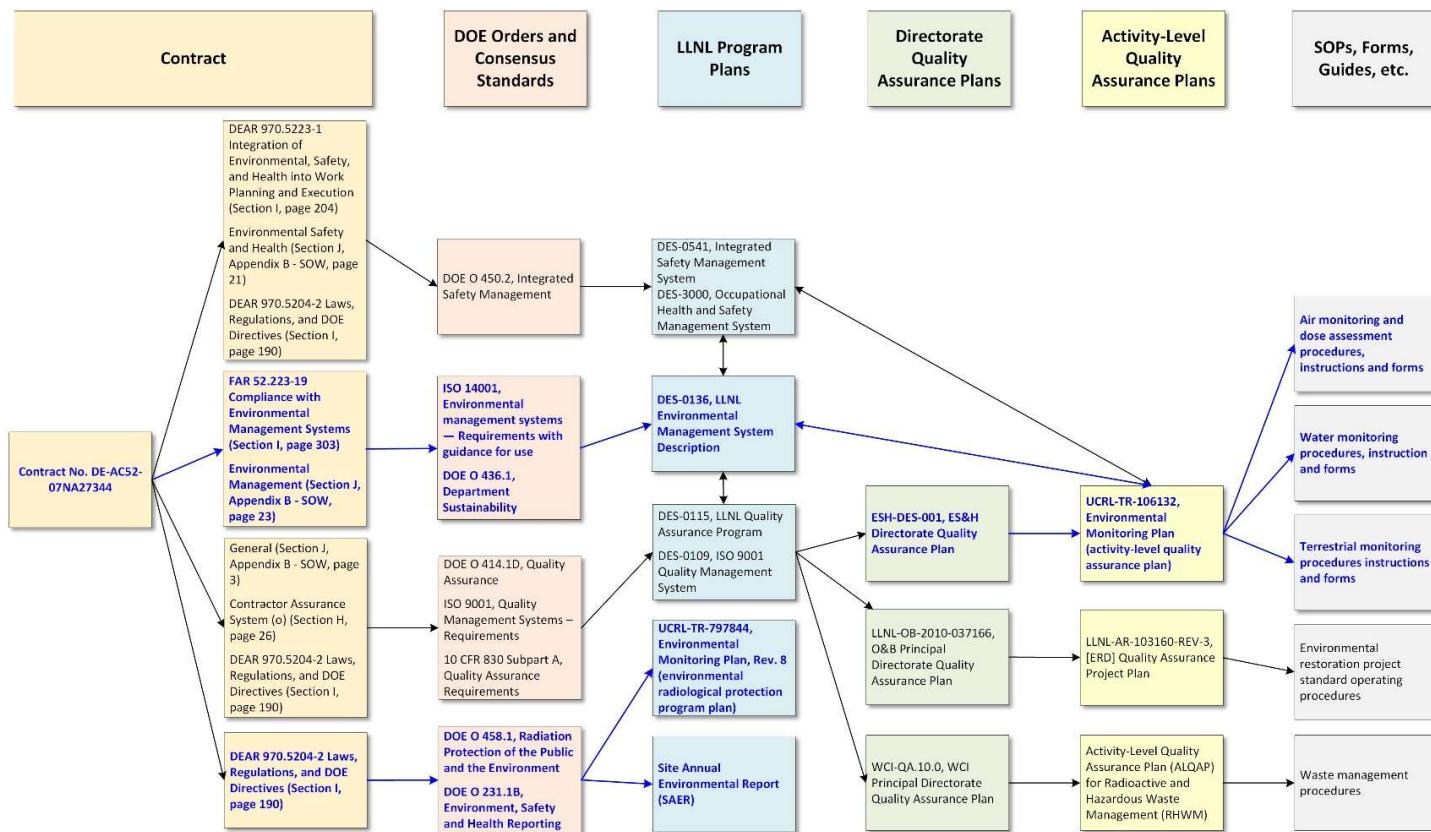
- Groundwater and soil vapor extraction and treatment.
- Source control through the capping of lagoons and landfills, removal and remediation of contaminated soil, and hydraulic drainage diversion.
- Monitoring natural attenuation.
- Monitoring and institutional controls.

These remedies are selected by DOE and the regulatory agencies with public input.

8. Quality Assurance

Bart Draper • Tyler Jackson

Quality assurance (QA) is a system of activities and processes put in place to ensure that products or services meet or exceed customer specifications. Quality control (QC) consists of activities used to verify that deliverables are of acceptable quality and meet criteria established in the quality planning process. This chapter provides a description of the QA program under which the data presented in this report are collected and analyzed. This section also describes the environmental analytical laboratories and waste management facilities utilized by Lawrence Livermore National Laboratory (LLNL) during 2020. Finally, this section describes how the detailed data tables in **Appendix A** were developed and the quality assurance measures in place to ensure the accuracy of this report.



8.1 Quality Assurance Program Description

The LLNL QA section of the Management Assurance System is responsible for developing, implementing, and assessing the institutional aspects of the quality management system. The LLNL Environmental Functional Area (EFA) is responsible for developing, implementing, and assessing the institutional Environmental Management System (EMS). Within the EFA, the Water Resources and Environmental Planning (WREP) group is responsible for development and assessment of the Environmental Monitoring Plan (EMP, Brunckhorst 2019) and this report. The Technical Services Department (TSD) implements the EMP.

The key requirement and implementing documents comprising the EFA quality management system are illustrated by the diagram in **Figure 8.1** and highlighted in bold blue font. The primary interaction between the EFA QA Project Plan (QAPP) and the institutional EMS relates to the EMP and this report. The EMS credits the EMP with implementing the monitoring, measurement, analysis, and evaluation requirements of International Organization for Standardization (ISO) 14001. The EMS also credits this report with implementing the external communication requirements of ISO 14001.

8. Quality Assurance

Figure 8.1. Quality assurance documents for SAER related work processes

The QAPP is designed around the Plan – Do – Check – Act model (**Figure 8.2**) consistent with the United States Environmental Protection Agency (EPA) quality policy ([The Quality Policy CIO 2106.0](#)) and its implementing procedure ([CIO Procedure CIO 2106-P-01.0 Procedure for Quality Policy](#)); and with both ISO 14001 and ISO 9001 international standards for environmental and quality management systems.

Figure 8.2. Plan – Do – Check – Act model

This cycle can be described as follows:

- Plan/Identify
 - Establish the objectives of EFA compliance and monitoring systems.
 - Assure the required resources are available to deliver results in accordance with Department of Energy (DOE) and stakeholder requirements and LLNL policies.
 - Identify and address risks and opportunities.
- Implement
 - Implement what was planned in accordance with established work control documents.
- Measure and Evaluate
 - Monitor and measure performance and the resulting work products and services against policies, objectives, requirements, and planned activities.
 - Report the results as, for example management self-assessments or management observations, inspections, or external assessments.
- Review and Improve
 - Take actions to improve performance, as necessary, e.g., revise and update plans and work control documents based on lessons learned.

Nonconformance reporting and tracking is a formal process used to ensure that problems are identified, resolved, and prevented from recurring. The LLNL EFA tracks problems using the LLNL Issues Tracking System (ITS). ITS items are initiated when items or activities are identified that do not comply with procedures or other documents that specify requirements for EFA operations or that cast doubt on the quality of regulatory reports, integrity of samples, or data, and that are not covered by other reporting or tracking mechanisms.

Nonconformances involving EFA are captured and used to provide trending information for environmental compliance evaluations. There were no laboratory data nonconformances affecting the quality of data used for reporting purposes documented in 2020. Many minor sampling or data problems are resolved without generating an ITS item. The LLNL QA requirements stipulate that laboratories generating data must have a formal nonconformance program to track and document issues in their analyses. Such programs are separate from the LLNL ITS.

LLNL averts sampling problems by requiring formal and informal training on sampling procedures. Errors that occur during sampling generally do not result in lost samples but may require extra work on the part of laboratory, or sampling and data management personnel to correct the errors.

The LLNL environmental data QA program is broadly consistent with the *Uniform Federal Policy (UFP) for Implementing Environmental Quality Systems* (March 2005) in that it is designed to ensure that:

8. Quality Assurance

- Environmental data are of known and documented quality and suitable for their intended uses.
- Environmental data collection and technology programs meet stated requirements.

Most of the monitoring networks described in this report were planned and developed prior to issuance of EPA QA/G-4, *Guidance on Systematic Planning Using the Data Quality Objectives Process* (February 2006). New studies, especially those related to site infrastructure improvements have plans informed by the data quality objectives process and the Visual Sample Plan (VSP) software tools.

8.2 Analytical Laboratories

LLNL addresses commercial analytical laboratory problems as they arise. Many of the problems concern minor documentation errors and are corrected soon after they are identified. Other problems, such as missed holding times, late analytical results, incorrect analysis, and typographical errors on data reports, account for the remaining issues and are not tracked as nonconformances. These problems are corrected by the commercial laboratory reissuing reports or correcting paperwork and do not affect associated sample results.

In 2020, LLNL had Blanket Service Agreements (BSAs) with six commercial analytical laboratories. In addition, during 2020 LLNL secured commercial analytical laboratory services via purchase order and worked with three in-house LLNL laboratory organizations.

Table 8-1 identifies the scope of services provided by both the commercial and in-house laboratories during 2020.

Table 8-1. Commercial and on-site laboratories utilized in 2020.

Contract No.	Laboratory	Scope of Services
H100596	BC Laboratories, Inc. Bakersfield, CA 93308	Analysis of non-radiologically contaminated environmental samples
H100621	Eurofins TestAmerica Arvada, CO 80002	Analysis of non-radiologically contaminated environmental samples
H100719	Alpha Analytical Laboratories Livermore, CA 94551	Analysis of non-radiologically contaminated environmental samples
H100676	Caltest Analytical Laboratory Napa, CA 94558	Analysis of non-radiologically contaminated environmental samples
H100570	GEL Laboratories, LLC Charleston, SC 29407	Analysis of potentially radiologically contaminated environmental samples and radiological analysis of environmental samples
H100571	ALS Environmental Fort Collins, CO 80524	Analysis of potentially radiologically contaminated environmental samples and radiological analysis of environmental samples
H100901	Eurofins Air Toxics, LLC Folsom, CA 95630	Analysis of non-radiologically contaminated environmental samples
In-house LLNL Organization	Analytical Laboratory (ALAB) Livermore, CA 94550	Analysis of non-radiologically contaminated environmental samples
In-house LLNL Organization	Environmental Monitoring Radiological Laboratory (EMRL) Livermore, CA 94550	Radiological analysis of environmental samples
In-house LLNL Organization	Radiological Measurements Laboratory (RML) Livermore, CA 94550	Radiological analysis of environmental samples

8.2.1 Analytical Laboratory Accreditations and Proficiency Demonstrations

All commercial analytical laboratory services used by LLNL are provided by facilities certified by the State of California. LLNL works closely with these analytical laboratories to minimize problems and ensure that QA/QC objectives are maintained. **Table 8-2** provides the main industry standard, DOE, and State of California certifications and accreditations held by laboratories utilized by LLNL in 2020.

8. Quality Assurance

Table 8-2. Laboratory certifications and accreditations in 2020.

Laboratory	Certifications/Accreditations
BC Laboratories, Inc.	<p>Interim Certificate of Environmental Accreditation, California State Environmental Laboratory Accreditation Program (ELAP)</p> <p>Certified to meet the requirements of Nevada Administrative Code, NAC 445A by the State of Nevada Department of Conservation and Natural Resources Division of Environmental Protection</p> <p>Perry Johnson Laboratory Accreditation, Inc., accredited for meeting the requirements of ISO/International Electrotechnical Commission (IEC) 17025:2017 “General Requirements for the competence of Testing and Calibration Laboratories” and the DOE Quality Systems Manual for Environmental Laboratories Version 5.3, May 2019</p>
Eurofins TestAmerica - Denver	<p>American Association for Laboratory Accreditation (A2LA) accredited for compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM)</p> <p>Certificate of Environmental Accreditation, California ELAP</p> <p>Certified to meet the requirements of Nevada Administrative Code, NAC 445A by the State of Nevada Department of Conservation and Natural Resources Division of Environmental Protection</p>
Alpha Analytical Laboratories	Certificate of Environmental Accreditation, California ELAP
Caltest Analytical Laboratory	Certificate of Environmental Accreditation, California ELAP
GEL Laboratories, LLC	<p>Certificate of Environmental Accreditation, California ELAP</p> <p>A2LA accredited for compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the DoD ELAP, and the requirements of the DOECAP as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM)</p> <p>Certified to meet the requirements of Nevada Administrative Code, NAC 445A by the State of Nevada Department of Conservation and Natural Resources Division of Environmental Protection</p> <p>South Carolina Department of Health and Environmental Control Radioactive Material License</p>
ALS Environmental	<p>Certificate of Environmental Accreditation, California ELAP</p> <p>Perry Johnson Laboratory Accreditation, Inc., accredited for meeting the requirements of ISO/IEC 17025:2005 “General Requirements for the competence of Testing and Calibration Laboratories” and the DOE Quality Systems Manual for Environmental Laboratories Version 5.1.1, February 2018</p> <p>Certified to meet the requirements of Nevada Administrative Code, NAC 445A by the State of Nevada Department of Conservation and Natural Resources Division of Environmental Protection</p> <p>Colorado Department of Public Health & Environment, Radioactive Materials License</p>

Table 8-2. Laboratory certifications and accreditations in 2020.

Laboratory	Certifications/Accreditations
Eurofins Air Toxics, LLC	ANSI National Accreditation Board Accreditation to ISO/IEC 17025:2017 and U.S. Department of Defense (DOD) Quality Systems Manual for Environmental Laboratories (DOD QSM V5.3)
ALAB	Certificate of Environmental Accreditation, California ELAP
EMRL	Certificate of Environmental Accreditation, California ELAP
RML	Not currently accredited. Accreditation is not required as data is used only for informational screening of weekly sewer samples not for compliance reporting. Monthly compliance samples are analyzed by EMRL.

LLNL uses the results of nationally recognized inter-comparison performance evaluation programs to identify and monitor trends in laboratory performance and to draw attention to the need to improve laboratory performance. If a laboratory performs unacceptably for a particular test in two consecutive performance evaluation studies, LLNL may stop work and select another laboratory to perform the affected analyses until the original laboratory has demonstrated that the problem has been corrected. If a commercial laboratory continues to perform unacceptably or fails to prepare and implement acceptable corrective action responses, the LLNL Supply Chain Management Department formally notifies the laboratory of its unsatisfactory performance. If the problem persists, the commercial laboratory's BSA could be terminated for that test. If an in-house LLNL laboratory continues to perform unacceptably, use of that laboratory could be suspended until the problem is corrected.

Laboratories are required to participate in laboratory inter-comparison programs. To obtain DOE Mixed Analyte Performance Evaluation Program (MAPEP) reports that include the results from all participating laboratories, see <https://www.id.energy.gov/resl/mapep/mapepreports.html>. MAPEP is a DOE program, and the results are publicly available from laboratories that choose to participate. **Table 8-3** provides an overview of the MAPEP results for the three commercial laboratories that provide radiochemical analytical services to LLNL and for one in-house LLNL organization laboratory. LLNL considers MAPEP results unacceptable when two or more analytes in a field of testing do not meet MAPEP acceptance criteria. Unacceptable results are investigated by LLNL.

8. Quality Assurance

Table 8-3. Laboratory participation in the Mixed Analyte Performance Evaluation Program.

Mixed Analyte Performance Evaluation Program	Eurofins TestAmerica - Denver	GEL Laboratories, LLC	ALS Environmental	EMRL
March 2020				
20-MaS42 - Mixed Analyte Soil Standard	Inorganics acceptable	Inorganics and radiological acceptable	Inorganics (Ag and ^{235}U) unacceptable and radiological acceptable	Radiological acceptable
20-MaW42 - Mixed Analyte Water Standard	Inorganics acceptable	Inorganics and radiological acceptable	Inorganics and radiological acceptable	Radiological acceptable
20-GrW42 - Gross alpha/beta water standard	No report	Radiological acceptable	No report	Radiological acceptable
20-XaW42 - Radiological I-129 Water Standard	No report	Radiological acceptable	Radiological acceptable	No report
20-RdF42 - Radiological Air Filter Standard	No report	Inorganics and Radiological acceptable	Radiological acceptable	Radiological acceptable
20-GrF42 - Gross alpha/beta air filter	No report	Radiological acceptable	No report	No report
20-RdV42 - Radiological Vegetation Standard	No report	Radiological acceptable	Radiological acceptable	No report
20-RaW42 - Radium Analytes in Water	No report	Uncertainty flags acceptable	No report	No report
20-XrM42 - Special Radiological Matrix	No report	Participated and Reported	No report	No report
August 2020				
20-MaS43 - Mixed Analyte Soil Standard	Inorganics acceptable	Inorganics and radiological acceptable	Inorganics and radiological acceptable	Radiological acceptable
20-MaW43 - Mixed Analyte Water Standard	Inorganics acceptable	Inorganics and radiological acceptable	Inorganics and radiological acceptable	Radiological acceptable
20-GrW43 - Gross alpha/beta water standard	No report	Radiological acceptable	No report	Radiological acceptable
20-RdF43 - Radiological Air Filter Standard	No report	Inorganics and radiological acceptable	Radiological acceptable	Radiological acceptable
20-GrF43 - Gross alpha/beta air filter	No report	Radiological acceptable	No report	No report
20-RdV43 - Radiological Vegetation Standard	No report	Radiological acceptable	Radiological acceptable	No report
20-XrM43 - Special Radiological Matrix	No report	Participated and reported	No report	No report

8.2.2 Analytical Laboratory Observations, Assessments, and/or Audits

LLNL monitors the DOECAP. All commercial laboratories used by LLNL are LLNL qualified vendors and are National Environmental Laboratory Accreditation Program (NELAP) certified or California Department of Health Services Environmental Laboratory accredited. Audit reports, checklists, and Corrective Action Plans are maintained under the DOECAP program for commercial labs.

The following six areas pertain to the services provided by a particular external analytical laboratory:

- QA management systems and general laboratory practices.
- Organic analyses.
- Inorganic and wet chemistry analyses.
- Radiochemical analyses.
- Laboratory information management systems and electronic deliverables.
- Hazardous and radioactive materials management.

In FY2020, the laboratories certified by the State of California operating at LLNL as government owned and contractor operated were not internally assessed but are subject to assessment by the State of California under the ELAP. **Table 8-4** summarized the results of assessment conducted during 2020.

Analytical laboratories routinely perform QC tests to document and assess the quality and validity of their sample results. Each set of data received from the analytical laboratory is systematically evaluated and compared to establish measurement-quality objectives before the results can be authenticated and accepted into the monitoring database. Categories of measurement quality objectives include accuracy, precision, and comparability. When possible, quantitative criteria are used to define and assess data quality.

8. Quality Assurance

Table 8-4. 2020 Laboratory observations, assessments and/or audits.

Laboratory	Accrediting Body	Assessment Type	Results
BC Laboratories, Inc.	Perry Johnson Laboratory Accreditation, Inc.	Surveillance	0 Major nonconformance 4 Minor nonconformances 1 Observations
Eurofins TestAmerica - Denver	Not assessed in 2020	Not applicable	Not applicable
Alpha Analytical Laboratories	Not assessed in 2020	Not applicable	Not applicable
Caltest Analytical Laboratory	Not assessed in 2020	Not applicable	Not applicable
GEL Laboratories, LLC	Not assessed in 2020	Not applicable	Not applicable
ALS Environmental	Perry Johnson Laboratory Accreditation, Inc.	Reaccreditation and upgrade	0 Major nonconformance 5 Minor nonconformances 0 Observations
Eurofins Air Toxics, LLC	Not assessed in 2020	Not applicable	Not applicable
ALAB	Not assessed in 2020	Not applicable	Not applicable
EMRL	Not assessed in 2020	Not applicable	Not applicable
RML	Not assessed in 2020	Not applicable	Not applicable

LLNL reviews deficiencies and non-conformances and investigates corrective actions when they occur in fields of testing utilized by LLNL.

8.2.3 LLNL Environmental and Waste Characterization Program Performance

LLNL monitors the relative percent difference between the results of duplicate sample pairs and the number of completed sample analyses as a percentage of planned analyses. These measures of precision and completeness are described in Sections 8.2.3.1 and 8.2.3.2 below.

8.2.3.1 Duplicates

Duplicate (collocated) samples are distinct samples of the same matrix collected as closely as possible to the same point in space and time. Collocated samples that are processed and analyzed by the same laboratory provide information about the precision of the entire measurement system, including sampling, matrix homogeneity, handling, shipping, storage, preparation, and analysis (U.S. EPA, 1987). Collocated samples may also identify errors such as mislabeled samples or data entry errors. **Appendix E** presents summary statistics for collocated sample pairs, grouped by sample matrix and analyte. Samples from both the Livermore Site, Livermore Valley, and Site 300 are included. **Appendix E**

is based on data pairs in which both values are considered “detections.” Pairs where relative percent difference (RPD) is calculated are determined by the following criteria:

- Sampled at the same location.
- Sampled at the same time.
- Analyzed with the same method.
- Both routine and duplicate sample values are detected above the reporting limit.
- There are no flags marking these as suspect or rejected results.

LLNL uses a 30 percent RPD control limit as an indicator of an out-of-control duplicate pair. In other words, RPD values above 30 percent indicate that there may be some degree of uncertainty regarding the analytical results.

RPD values can represent differences because of real difference: a collocated sample just happened to have a high concentration in one container (this should be limited through standard sampling procedures), or through errors associated with the analytical method.

RPD values can represent differences because of error: sampling activities in the field introduced an error, or analytical laboratories introduced an error by methods of processing one of the samples. In a perfect environment with uniform media, one would expect an RPD of zero for collocated sampling.

LLNL calculates RPD:

$$RPD = \frac{|R - D|}{\left[\frac{(R + D)}{2} \right]} \times 100$$

where R is the routine sample result, and D is the duplicate collocated sample result.

In 2020, LLNL planned quality control sampling which resulted in 782 routine-duplicate analytical pairs to review. A total of 707 pairs were in control and signaled good quality results, while 75 pairs (9.6-percent) were out of control requiring further review.

Appendix E summarizes the total percentage of in-control pairs for programs, media, and analytes.

8.2.3.2 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount that was expected to be obtained under correct normal conditions. **Appendix F** summarizes the percent complete for many of the data sets described in previous sections of this report and presented in **Appendix A**. The average completeness of data gathered for routine monitoring networks was 94 percent during 2020. For non-routine monitoring, the average completeness for 2020 was 37 percent. Lower percent completeness values are expected for non-routine monitoring because sampling and analy-

8. Quality Assurance

sis for infrastructure projects may be planned but delayed or canceled. Event based sampling, for example, for rain and stormwater may be planned, but a qualifying storm may not occur.

8.3 Waste Management Facilities

Table 8-5 provides a list of waste management facilities utilized by LLNL during 2020.

Table 8-5. Waste management facilities.

Clean Harbors Aragonite, LLC 11600 North Aptus Road Aragonite, UT 84029	Diversified Scientific Services, Inc. 657 Gallaher Road Kingston, TN 37763
Energy Solutions, LLC-UT Clive Disposal Facility 423 West 300 South, Suite 200 Salt Lake City, UT 84116	Clean Harbors Grassy Mountain, LLC Interstate 80, Exit 41 3mi. East, 7mi. North of Knolls Grassy Mountain, UT 84029
Perma-Fix Northwest, Inc. 2025 Battelle Blvd. Richland, WA 99354	Evoqua Water Technologies, LLC 2430 Rose Place Roseville, MN 55113
Clean Harbors Colfax, LLC 3763 Highway 471 Colfax, LA 71417	US Ecology Nevada, Inc. Highway 95, 11 Mi. South of Beatty Beatty, NV 89003
Kinsbursky Brothers, Inc 1314 N. Lemon St. Anaheim, CA 92801	US Ecology of Idaho, Inc. 10.5 Miles Nw Highway 78 Grand View, ID 83624
Clean Harbors La Porte, L.P. 500 Independence Parkway South La Porte, TX 77581	Clean Harbors Buttonwillow, LLC 2500 West Lokern Road Buttonwillow, CA 93206
Clean Harbors, El Dorado LLC 309 American Circle El Dorado, AR 71730	NNSS for US DOE Waste Management Nevada Test Site Zone 2 Mercury, NV 89023
Demenno Kerdoon 2000 North Alameda St. Compton, CA 90222	

Three of the waste management facilities utilized by LLNL were assessed by the DOE CAP during 2020. **Table 8-6** provides a summary of the types of assessments conducted and the results. Results considered priority I findings are factual statements resulting from the audit that document a deficiency from a requirement that represents a substantial risk and liability to DOE. Priority II findings are factual statements that document a deviation from a requirement that could lead to a priority I finding, if not addressed and

corrected. Observations document deviations from best management practices or opportunities for improvement. There were no priority I findings for waste management facilities utilized by LLNL during 2020.

Table 8-6. Waste management facility observations, assessments, and/or audits in 2020.

Waste Management Facility	Accrediting Body	Assessment Type	Results
Energy Solutions, LLC-UT	DOECAP	Quality Assurance Management Systems Sampling and Analytical Data Quality Waste Operations Environmental Compliance and Permitting Radiological Control Industrial and Chemical Safety Transportation Management	0 Priority I Findings 1 Priority II Findings 1 Observations
Perma-Fix Northwest, Inc.	DOECAP	Quality Assurance Management Systems Sampling and Analytical Data Quality Waste Operations Environmental Compliance and Permitting Radiological Control Industrial and Chemical Safety Transportation Management	0 Priority I Findings 3 Priority II Findings 3 Observations
Clean Harbors Aragonite, LLC	DOECAP	Quality Assurance Management Systems Sampling and Analytical Data Quality Waste Operations Environmental Compliance and Permitting Industrial and Chemical Safety Transportation Management	0 Priority I Findings 0 Priority II Findings 5 Observations
Clean Harbors Deer Park, LLC	DOECAP	Quality Assurance Management Systems Waste Operations Environmental Compliance and Permitting Industrial and Chemical Safety	0 Priority I Findings 8 Priority II Findings 4 Observations

8.4 Data Presentation

The data tables in **Appendix A** were created using computer scripts that retrieve data from a database, convert the data into Système International (SI) units when necessary, calculate summary statistics, format the data, organize the data into rows and columns, and present a draft table. The tables are then reviewed by the responsible analyst before inclusion in **Appendix A**. Analytical laboratory data and values calculated from the data are normally displayed with two, or at most three, significant digits. Significant trailing zeros may be omitted.

8.4.1 Radiological Data

Most of the data tables in **Appendix A** that have radiological data display the result plus or minus (\pm) an associated 2σ (two sigma) uncertainty. This measure of uncertainty represents intrinsic variation in the measurement process, most of which is due to the random nature of radioactive decay (see **Section 8.6**). The uncertainties are not used in summary statistic calculations.

Some radiological results are derived from the number of sample counts minus the number of background counts inside the measurement apparatus. In such cases, samples with a concentration at or near background sometimes have more background counts than sample counts, and thus a negative value. Such results are reported in the data tables and used in the calculation of summary statistics.

8.4.2 Non-radiological Data

Non-radiological data reported by the analytical laboratory as being below the analytical contract reporting limit is displayed in tables with a less-than symbol ($<$) and referred to as a “non-detection.” Reporting limit values are used in the calculation of summary statistics, as explained below.

8.5 Statistical Comparisons and Summary Statistics

Standard statistical comparison techniques such as regression analysis, *t*-tests, and analysis of variance are used where appropriate to determine the statistical significance of trends or differences between means. When a statistical comparison is made, the results are described as either “statistically significant” or “not statistically significant.” Other uses of the word “significant” in this report do not imply that statistical tests have been performed but relate to the concept of practical significance and are based on professional judgment.

Summary statistics are calculated according to (Brunckhorst 2019). The usual summary statistics are the median, which is a measure of central tendency, and interquartile range (IQR), which is a measure of dispersion (variability). However, data tables may present other measures at the discretion of the analyst. In this report, at least four values are required to calculate the median and at least six values are required to calculate the IQR.

The median indicates the middle of the data set (i.e., half of the measured results are above the median, and half are below). The IQR is the range that encompasses the middle 50 percent of the data set. The IQR is calculated by subtracting the 25th percentile of the data set from the 75th percentile of the data set. When necessary, the percentiles are interpolated from the data. Different software vendors may use slightly different formulas for calculating percentiles. Radiological data sets that include values less than zero may have an IQR greater than the median.

Summary statistics are calculated from values that, if necessary, have already been rounded, such as when units have been converted from picocuries (pCi) to Becquerels (Bq), and are then rounded to an appropriate number of significant digits. The calculation of summary statistics may be affected by the presence of non-detections.

Adjustments to the calculation of the median and IQR for data sets that include such non-detections are described below:

- Data sets can fall into three categories: sets where all values in the dataset are detected values, sets where there is a mix of detections above the contract reporting limit and non-detections below a contract reporting limit, and sets that are comprised of only non-detect results.
- For data sets where all values are known, calculations for summary statistics follow standard calculation methods for the median and IQR.
- For data sets where there is a mix of non-detects and detect data, the reporting limit is substituted for non-detect data points in summary statistic calculations. The median is then calculated following the standard method with the distinction that if the result is a substituted reporting limit, we will report the median with a less than (<) sign to indicate the median represents an upper bound. The IQR is only calculated when greater than 25 percent of the data set contains detections data.
- For data sets that contain only non-detect data, the calculation of the median and IQR is not appropriate.
- If the number of values is odd, the middle value (when sorted from smallest to largest) is the median. If the middle value and all larger values are detections, the middle value is reported as the median. Otherwise, the median is assigned a less than (<) sign.
- If the number of values is even, the median is halfway between the middle two values (i.e., the middle two when the values are sorted from smallest to largest). If both the middle two values and all larger values are detections, the median is reported. Otherwise, the median is assigned a less than (<) sign.
- If any value used to calculate the 25th percentile is a non-detection, or any value larger than the 25th percentile is a non-detection, the IQR cannot be calculated and is not reported.

8.6 Reporting Uncertainty in Data Tables

Measurement uncertainties associated with results from analytical laboratories are represented in two ways. The first of these, significant digits, derives from the resolution of the measuring device. For example, if an ordinary household ruler with a metric scale is used to measure the length of an object in centimeters, and the ruler has tick marks every one-tenth of a centimeter, the length can reliably and consistently be measured to the nearest tenth of a centimeter (i.e., to the nearest tick mark). An attempt to be more precise is not likely to yield reliable or reproducible results because it would require a visual estimate of a distance between tick marks. The appropriate way to report a measurement using this ruler would be, for example, 2.1 cm, which would indicate that the “true” length of the object is nearer to 2.1 cm than to 2.0 cm or 2.2 cm (i.e., between 2.05 and 2.15 cm). A measurement of 2.1 cm has two significant digits. Although not stated, the uncertainty is considered to be ± 0.05 cm. A more precise measuring device might be able to measure an object to the nearest one-hundredth of a centimeter; in that case a value such as 2.12 cm might be reported. This value would have three significant digits and the implied uncertainty would be ± 0.005 cm. A result reported as 3.0 cm has two significant digits. That is, the trailing zero is significant and implies that the true length is between 2.95 and 3.05 cm, closer to 3.0 than to 2.9 or 3.1 cm.

When performing calculations with measured values that have significant digits, all digits are used. The number of significant digits in the calculated result is the same as that of the measured value with the fewest number of significant digits.

Most unit conversion factors do not have significant digits. For example, the conversion from milligrams to micrograms requires multiplying by the fixed (constant) value of 1,000. The value 1,000 is exact; it has no uncertainty and therefore the concept of significant digits does not apply.

The second method of representing uncertainty is based on random variation. For radiological measurements, there is variation due to the random nature of radioactive decay. As a sample is measured, the number of radioactive decay events is counted and the reported result is calculated from the number of decay events that were observed. If the sample is recounted, the number of decay events will almost always be different because radioactive decay events occur randomly. Uncertainties of this type are reported as 2σ (two sigma) uncertainties. A $\pm 2\sigma$ uncertainty represents the range of results expected to occur approximately 95 percent of the time if a sample were to be recounted many times. A radiological result reported as, for example, 2.6 ± 1.2 Bq/g, would indicate that with approximately 95 percent confidence, the true value is in the range of 1.4 to 3.8 Bq/g (i.e., $2.6 - 1.2 = 1.4$ and $2.6 + 1.2 = 3.8$).

When necessary, radiological results are converted from pCi to Bq by multiplying by 0.037. This introduces additional digits that are not significant and should not be shown in data tables (for example, 5.3 pCi/g $\times 0.037$ Bq/pCi = 0.1961 Bq/g). The initial value, 5.3, has two significant digits, so the value 0.1961 would be rounded to two significant digits,

that is, 0.20. However, the rounding rule changes when there is a radiological uncertainty associated with a radiological result. In this case, data are presented according to the method recommended in Multi-Agency Radiological Laboratory Analytical Protocols (MARLAP) Section 19.3.7 (U.S. NRC/U.S. EPA 2004). First the uncertainty is rounded to the appropriate number of significant digits, after which the result is rounded to the same number of decimal places. For example, suppose a result and uncertainty after unit conversion are 0.1961 ± 0.05436 , and the appropriate number of significant digits is two. First, 0.05436 is rounded to 0.054 (two significant digits) and 0.054 has three decimal places, so 0.1961 is then rounded to three decimal places, i.e., 0.196. These would be presented in the data tables as 0.196 ± 0.054 .

When rounding a value with a final digit of “5,” the software used to prepare the data tables implements the ISO/IEC/IEEE 60559:2011 rule, which is “go to the even digit.” For example, 2.45 would be rounded down to 2.4, and 2.55 would be rounded up to 2.6.

Comparing two or more sampling measurements to determine the difference is a common activity when analyzing environmental monitoring data. Uncertainty must be considered in these comparisons. Using an uncertainty interval lets us estimate with a degree of confidence that the “true” concentration is somewhere in the interval. When comparing sampling measurements with different reported measurements and the uncertainty intervals overlap, we cannot conclude that these measurements are different.

8.7 Quality Assurance Process for the Environmental Report

Unlike the preceding sections, which focused on standards of accuracy and precision in data acquisition and reporting, this section describes the actions that are taken to ensure the accuracy of this data-rich environmental report, the preparation of which involves many operations and many people. The key elements that are used to ensure accuracy are described here.

Analytical laboratories send reports electronically, which are loaded directly into a database. This practice should result in perfect agreement between the database and data in printed reports from the laboratories. In practice, however, laboratory reporting is not perfect, so the TSD Data Management Team (DMT) carefully check incoming data throughout the year to make sure that electronic and printed reports from the laboratories agree. This aspect of QC is essential to the environmental report’s accuracy. In addition, EFA technical staff review the analytical laboratories’ internal QC results to make sure that analytical QC standards have been met, and to identify potential errors. When necessary, analytical laboratories are asked to review results or reanalyze samples. Results that do not meet QC standards may be flagged as suspect or rejected.

As described in **Section 8.4**, computer scripts are used to pull data from the database directly into the format of the table, including unit conversion and summary statistic calculations. All the data tables contained in **Appendix A** were prepared in this manner. For these

8. Quality Assurance

tables, it is the responsibility of the appropriate analyst to check each year that the table is up to date (e.g., new locations/analytes added, old ones removed), that the data agree with the data he or she has received from DMT, and that any summary calculations have been done correctly.

For this environmental report, LLNL staff checked tables and figures in the body of the report. Forms to aid in the QC of tables and figures were distributed along with the appropriate figure, table, and text, and a report editor kept track of the process. Items that were checked included clarity and accuracy of figure captions and table titles; data accuracy and completeness; figure labels and table headings; units; significant digits; and consistency with text. Completed QC forms and the corrected figures or tables were returned to the report editor, who, in collaboration with the responsible author, ensured that corrections were made.

There are multiple levels of document review performed to ensure the accuracy and clarity of this report. Authors, scientific editors, and the DOE Livermore Field Office (LFO) all participate in multiple review cycles throughout document production.

8.8 Errata

Appendix D contains the protocol for errata in LLNL Environmental Reports and the errata for LLNL Site Annual Environmental Report 2019.

References

ATSDR (2002). *Health Consultation, Tritium Releases and Potential Offsite Exposure, Lawrence Livermore National Laboratory (U.S. DOE), Livermore, Alameda County, California, EPA Facility ID: CA2890012584; and Lawrence Livermore National Laboratory (U.S. DOE); Tracy, San Joaquin County, California, EPA Facility ID: CA2890090002; and Savannah River Site (U.S. DOE), Aiken, Aiken, Barnwell and Allendale Counties, South Carolina, EPA Facility ID: SC1890008989*. Atlanta: Agency for Toxic Substances Disease Registry.

ATSDR (2003). *ATSDR Final Public Health Assessment Plutonium 239 in Sewage Sludge Used as a Soil or Soil Amendment in the Livermore Community, Lawrence Livermore National Laboratory, Main Site (USDOE) Livermore, Alameda County, California, EPA Facility ID: CA2890012584*. Atlanta: Agency for Toxic Substances Disease Registry.

Blake, R. and J. Vallet (2012). *LLNL Experimental Test Site 300 Compliance Monitoring Program for the CERCLA-Closed Pit 6 Landfill, Fourth Quarter Report 2012*, Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-132057-11-4.

Blake, R.G., C.M. Noyes, and M.P. Maley (1995). *Hydrostratigraphic Analysis—The Key to Cost-Effective Ground Water Cleanup at Lawrence Livermore National Laboratory*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-JC-120614.

Bourne, S., R Nagar, W. McIlvride (2010). *DRAFT Focused Feasibility Study of Methods to Minimize Mixed Hazardous and Low Level Radioactive Waste from Soil Vapor and Ground Water Treatment Facilities at the Lawrence Livermore National Laboratory Site*, Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-454072-DRAFT.

Bourne, S., V. Dibley, and P. McKereghan (Eds.) (2011). *Final Addendum to Remedial, Design Report No. 1 for Treatment, Facility A: Arroyo Seco Pipeline Extension, Lawrence Livermore National Laboratory, Livermore Site*, Livermore, CA: Lawrence Livermore National Laboratory, LLNL-AR-480717.

Bowen, B.M. (2007). *1958–2006 Precipitation Climatology for Lawrence Livermore National Laboratory Livermore Site and Site 300*, Livermore, CA: Lawrence Livermore National Laboratory, UCRL-TR-228582.

Brunckhorst, K. (Ed.) (2019). *Environmental Monitoring Plan*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-TR-797844, Rev. 8.

Buscheck, M., S. Chamberlain, Z. Demir, E. Edwards, S. Harris, J. McKaskey, A. Porubcan, L. Paterson, J. Radyk, M. Taffet, and A. Verce (2021). *2020 Annual Compliance Monitoring Report, Lawrence Livermore National Laboratory Site 300*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-206319-20.

Campbell, C.G. and S. Mathews (2006). *An Approach to Industrial Stormwater Benchmarks: Establishing and Using Site-Specific Threshold Criteria at Lawrence Livermore National Laboratory*. CASQA Stormwater 2006 Conference, Sacramento, CA, September 25, 2006–September 27, 2006, UCRL-CONF-224278.

Chan, A. (2020). *LLNL Experimental Test Site (Site 300) Compliance Monitoring Program for Closed Pit 1 Landfill, First Quarter 2020*, Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-10191-20-1.

Chan, A. (2021). *LLNL Experimental Test Site, Site 300 Compliance Monitoring Report for Waste Discharge Requirement (WDR) Order No. R5-2008-0148, Second Semester/Annual Report 2020*, Livermore, CA: Lawrence Livermore National Laboratory, LLNL-AR-411431-21-3.

CNPS, Rare Plant Program (2021). *Inventory of Rare and Endangered Plants of California* (online edition, v9-01 0.0). California Native Plant Society, Sacramento, CA. Website <http://www.rareplants.cnps.org> [accessed 27 May 2021].

CVRWQCB (1993). *Waste Discharge Requirements for Post-Closure Monitoring Requirements for Two Class I Landfills*. Order No. 93-100.

CVRWQCB (1998). *Monitoring and Reporting Program No. 93-100, Revision 2*.

CVRWQCB (2010). *Annual Monitoring Report*.

CVRWQCB (Lee 2014b). *Annual Monitoring Report*.

CVRWQCB (2020). *Notice of Rescission of Waste Discharge Requirements Order No. 93-100 and Associated Monitoring and Reporting Program, Lawrence Livermore National Laboratory Experimental Test Site (Site 300), San Joaquin County*.

References

Dibley, V., L. Ferry, S. Gregory, L. Hall, V. Madrid, L. Martello, E. Shiroma, M. Taffet, and K. Wells (2009). *Compliance Monitoring Plan and Contingency Plan for Environmental Restoration at Lawrence Livermore National Laboratory Site 300*, Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-411239.

Drennan, J. and J. Tortosa. (2016) *Site 300 Bat Monitoring, Final Report*. Garcia and Associates, San Francisco, CA.

Dresen, M. D., J.P. Zagos, A.J. Boegel, and E.M. Nichols (Eds.) (1993). *Remedial Action Implementation Plan for the LLNL Livermore Site*, Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-110532.

DTSC (2017). *Transmittal of Documents Relating to the Final Hazardous Waste Facility Post Closure Permit for Lawrence Livermore National Laboratory- Site 300*. Berkeley, CA: Department of Toxic Substances Control, EPA ID No. CA-2890090002 (letter, April 28, 2017).

Edwards, E., J. McKaskey, L. Paterson, M. Taffet, and Z. Demir (2020). *Draft Southeast Corner Five-Year Review, Lawrence Livermore National Laboratory Site 300*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-816683.

ESA (2016) *90-day Report for Listed Large Branchiopod Survey at LLNL Site 300 (2016 Season)*; USFWS File No.: 2016-TA-0314. ESA, Sacramento, CA.

Ferry L. and C. Holtzapple. (2006). *Characterization Summary Report for the Building 865 Study Area at Lawrence Livermore National Laboratory Site 300*. Livermore, CA: U.S. Department of Energy and Lawrence Livermore National Laboratory.

Ferry, L., M. Dresen, Z. Demir, V. Dibley, V. Madrid, M. Taffet, S. Gregory, J. Valett, and M. Denton (2006). *Final Site-Wide Remediation Evaluation Summary Report for Lawrence Livermore National Laboratory Site 300*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-220391.

Garcia and Associates (GANDA) (2014). *Final Report Bald and Golden Eagle Territory Surveys for the Lawrence Livermore National Laboratory*. GANDA work performed under LLNS Subcontract B607010. LLNL-SR-664876.

Garcia and Associates (GANDA) (2015). *Golden Eagle Territories and Ecology at Site 300*. GANDA work performed under LLNS Subcontract B607351. LLNL-SR-689020.

Garcia and Associates (GANDA) (2016). *2014-2016 Avian Point Count and Migration Surveys at Site 300*. GANDA work performed under LLNS Subcontract B607351. LLNL-SR-689020.

Goodrich, R. and G. Lorega (2016). *LLNL Livermore Site and Site 300 Environmental Restoration Project Standard Operating Procedures (SOPs)*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AM-109115 REV 15.

Gouveia, F. and K.R. Chapman (1989). *Climatology of Lawrence Livermore National Laboratory*. Livermore, CA: Lawrence Livermore National Laboratory, UCID-21686.

Hoffman, F., R.G. Blake, Z. Demir, R.J. Gelinas, P.F. McKereghan, and C.D. Noyes (2003). "A Conceptual Model and Remediation Strategy for Volatile Organic Compounds in Unconsolidated Sediments: A Lawrence Livermore National Laboratory Case Study." *Environmental & Engineering Geoscience* 9 (February 2003), no. 1:83–94.

International Commission on Radiological Protection (1996). "Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 5. Compilation of Ingestion and Inhalation Dose Coefficients." *Annals of the ICRP*, Vol. 26, No. 1, pp. 1–91.

LLNL (2001). *Revisions to the Post-Closure Permit Application for the Building 829 HE Open Burn Treatment Facility—Volume 1* (Revised, December 2001). Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-139697-01.

LLNL. (2009). *Radioactive Waste Management Basis*. Livermore, CA: Lawrence Livermore National Laboratory, LLNL-TR-402476-REV-2.

LLNL. (2019). *Radioactive Waste Management Basis*. Livermore, CA: Lawrence Livermore National Laboratory, LLNL-TR-402476-REV-5.

MacQueen, D., V. Dibley, and L. Ferry (2013) *Addendum to the Compliance Monitoring Plan and Contingency Plan for Environmental Restoration at Lawrence Livermore National Laboratory*. Livermore, CA: Lawrence Livermore National Laboratory, LLNL-AR-411239-ADD

Mathews, S., and M. Taffet (1997). *Final Closure Plan for the High-Explosives Open Burn Facility at Lawrence Livermore National Laboratory Experimental Test Site 300*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-ID-111753 Rev. 1.

Mathews, S., N.A. Bertoldo, R.A. Brown, C.G. Campbell, S. Cerruti, C.L. Conrado, A.R. Grayson, H.E. Jones, J.A. Karachewski, G. Kumamoto, J. Larson, D.H. MacQueen, L. Paterson, S.R. Peterson, M.A. Revelli, D. Rueppel, M.J. Taffet, K. Wilson, and J. Woollett (2007). *Environmental Report 2006*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-50027-06.

NCRP (1999). *Recommended Screening Limits for Contaminated Surface Soil and Review of Factors Relevant to Site-Specific Studies*. Bethesda, MD: National Council on Radiation Protection and Measurements, NCRP Report No. 129.

NCRP (2009). *Ionizing Radiation Exposure of the Population of the United States*. Bethesda, MD: National Council on Radiation Protection and Measurements, Report No. 160.

Noyes, C., K. Quamme, E. Yeh, A. Porubcan, J. Radyk, Z. Demir, and A. Verce (eds) (2021). *LLNL Ground Water Project 2020 Annual Report*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-126020-20.

Ottaway, H., B. Howing, J. Adams, J. Arbelaez-Novak, A. Ashbaugh, L. Au, A.M. Bailey, P. Burke, J. Ferrin-Pann, M. Morgan, H. Nassor-Covington, C. Snyder, K. Tan, and T. Wegrecki (2019) *Lawrence Livermore National Laboratory FY2020 Site Sustainability Plan*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-999948.

Paterson, L. and J. Woollett (2014). *Lawrence Livermore National Laboratory Experimental Test Site, Site 300, Biological Review, January 1, 2009 through December 31, 2012*. Livermore, CA: Lawrence Livermore National Laboratory, LLNL-TR-648102.

Preston, R.E. (1997). *Delineation of Waters of the United States for Arroyo Las Positas, Lawrence Livermore National Laboratory, Alameda County, California*. Sacramento: Jones & Stokes.

Preston, R.E. (2002). *Special-status Plant Species Surveys and Vegetation Mapping at Lawrence Livermore National Laboratory*. Sacramento: Jones & Stokes.

Quinly, C., and J. Price (2020). *2019 Annual Yearbook for the LLNL SW/SPEIS*. Livermore, CA: Lawrence Livermore National Laboratory, LLNL-AR-811785.

Rogers/Pacific Corporation (1990). *Lawrence Livermore National Laboratory Site 300 Resource Conservation and Recovery Act Closure and Post-Closure Plans—Landfill Pits 1 and 7, Vols. I and II*. Van Nuys, CA, EPA No. CA2890090002.

Rosene, C. (2020). *Lawrence Livermore National Laboratory Livermore Site Semiannual Wastewater Point Source Monitoring Report, July 2020*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-10204-20-2.

Rosene, C. (2021a). *Lawrence Livermore National Laboratory Livermore Site Semiannual Wastewater Point Source Monitoring Report, January 2021*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-10204-21-1.

Rosene, C. (2021b). *Monthly Sewer Monitoring Report for LLNL Main Site, January 2021*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-1355026-21-01.

Rosene, C. (2021c). *Monthly Sewer Monitoring Report for LLNL Main Site, February 2021*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-1355026-21-02.

Sanchez, L., P.E. Althouse, N.A. Bertoldo, R.G. Blake, S.L. Brigdon, R.A. Brown, C.G. Campbell, T. Carlson, E. Christofferson, L.M. Clark, G.M. Gallegos, A.R. Grayson, R.J. Harrach, W.G. Hoppes, H.E. Jones, J. Larson, D. Laycak, D.H. MacQueen, S. Mathews, M. Nelson, L. Paterson, S.R. Peterson, M.A. Revelli, M.J. Taffet, P.J. Tate, R. Ward, R.A. Williams, and K. Wilson. (2003). *Environmental Report 2002*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-50027-02.

SFBRWQCB (1995). *Waste Discharge Requirements and National Pollutant Discharge Elimination System (NPDES) Storm Water Permit for: U.S. Department of Energy and Lawrence Livermore National Laboratory*. Oakland: San Francisco Bay Regional Water Quality Control Board, Order No. 95-174, NPDES No. CA030023.

Silver, W.J., C.L. Lindeken, J.W. Meadows, W.H. Hutchin, and D.R. McIntyre (1974). *Environmental Levels of Radioactivity in the Vicinity of the Lawrence Livermore Laboratory, 1973 Annual Report*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-51547.

Site 300 U.S. DOE (2007). *Amendment to the Interim Site-Wide Record of Decision for the Pit 7 Complex at Lawrence Livermore National Laboratory Site 300*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-222569.

References

SWEIS (2005). *Final Site-Wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement* (DOE/EIS-0236-S3) (LLNL SW/SPEIS).

SWRCB (1997). *Waste Discharge Requirements and National Pollutant Discharge Elimination System (NPDES) Discharges of Storm Water Associated with Industrial Activities Excluding Construction Activities*. Sacramento: State Water Resources Control Board, Order No. 97-03-DWQ, General Permit No. CAS000001.

SWRCB (2009). *Waste Discharge Requirements for Discharges of Storm Water Runoff Associated with Construction Activity*. (2009-0009-DWQ).

Taffet, et al. (2005). *Final Remedial Investigation/Feasibility Study for the Pit 7 Complex at Lawrence Livermore National Laboratory Site 300*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-202492.

Taffet, M.J., L. Green-Horner, L.C. Hall, T.M. Carlsen, and J.A. Orberdorfer (1996). *Addendum to Site-Wide Remedial Investigation Report, Building 850/Pit 7 Complex Operable Unit, Lawrence Livermore National Laboratory Site 300*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-108131, Add. 1.

Taffet, M., V. Dibley, T. Carlsen, V. Madrid, Z. Demir, B. Daily, and L. Ferry (2008). *Draft Building 812 Remedial Investigation/Feasibility Study Lawrence Livermore National Laboratory, Site 300*. Livermore, CA: Lawrence Livermore National Laboratory, LLNL-AR-404981-DRAFT.

Thorpe, R.K., W.F. Isherwood, M.D. Dresen, and C.P. Webster-Scholten (1990). *CERCLA Remedial Investigation Report for the LLNL Livermore Site, Vols. 1–5*. Livermore, CA: Lawrence Livermore National Laboratory, UCAR-10299.

U.S. DOE (2011). *Derived Concentration Technical Standard*, U.S. Department of Energy Washington, D.C.

U.S. DOE (2019). *A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota*. Washington, DC: U.S. Department of Energy, DOE-STD-1153-2019.

U.S. DOE (2015). *Environmental Radiological Effluent Monitoring and Surveillance*. Washington, DC: U.S. Department of Energy, DOE-HDBK-1216-2015.

U.S. DOE/NNSA (2005). *Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement*. U.S. Department of Energy/National Nuclear Security Administration, Washington, D.C., March 2005. (DOE/EIS-0348; DOE/EIS-0236-S3). Accessible at: <https://www-envirinfo.llnl.gov/enviroRecent.php>

U.S. DOE/NNSA (2011). *Supplement Analysis of the 2005 Final Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory*. U.S. Department of Energy/National Nuclear Security Administration, Livermore Site Office, Livermore, CA, August 2011. (DOE/EIS-0348-SA-03). Accessible at: <https://www-envirinfo.llnl.gov/enviroRecent.php>

U.S. EPA (1987). *Data Quality Objectives for Remedial Response Activities: Development Process*. Washington, DC: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, EPA 540/G-87/003, OSWER Directive 9355-0.

U.S. EPA (2000). “Notice: Final Reissuance of National Pollutant Discharge Elimination System (NPDES) Storm Water Multi-Sector General Permit for Industrial Activities.” *Federal Register*, Volume 65, No. 210, October 30.

U.S. EPA/DoD/DOE (2005) *Uniform Federal Policy for Implementing Environmental Quality Systems*. Washington, DC: U.S. Environmental Protection Agency, Intergovernmental Data Quality Task Force, EPA-505-F-03-001, DoD: DTIC ADA 395303, DOE/EH-0667.

U.S. EPA (2006) *Guidance on Systematic Planning Using the Data Quality Objectives Process*. Washington, DC: U.S. Environmental Protection Agency, Office of Environmental Information, EPA QA/G-4, EPA/240/B-06/001.

USFWS (1998). *Recovery Plan for Upland Species of the San Joaquin Valley, California*. Portland, OR: U.S. Department of the Interior, Fish and Wildlife Service, Region 1.

USFWS (2015). *U.S. Fish and Wildlife Service Survey Guidelines for the Listed Large Branchiopods*. Sacramento, CA: U.S. Department of the Interior, Fish and Wildlife Service, Pacific Southwest Region.

U.S. NRC (1977). *Calculation of Annual Doses to Man from Routine Releases of Reactor Effluent for the Purpose of Evaluation Compliance with 10 Code of Federal Regulations, Part 50, Appendix 1*. Washington, DC: U.S. Nuclear Regulatory Commission, Regulatory Guide 1.109.

U.S. NRC/U.S. EPA (2004). *Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP)*, U.S. Nuclear Regulatory Commission/U.S. Environmental Protection Agency, July 2004 (NUREG-1576, EPA 402-B-04-001A, NTIS PB2004-105421).

Webster-Scholten, C.P., ed. (1994). *Final Site-Wide Remedial Investigation Report, Lawrence Livermore National Laboratory, Site 300*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-108131.

Will, E. (2021). *Lawrence Livermore National Laboratory Experimental Test Site 300 Compliance Monitoring Program for the Closed Building 829 Facility, Annual Report 2020*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-143121-20.

Wilson, K., H. Byrnes, and A. Wegrecki (2021). *LLNL NESHAPs 2020 Annual Report*. Livermore, California: Lawrence Livermore National Laboratory, UCRL-TR-113867-21.

Ziagos, J., and E. Reber-Cox (1998). *Ground Water Tritium Plume Characterization Summary Report for the Building 850/Pits 3 and 5 Operable Unit, Site 300*. Livermore, CA: Lawrence Livermore National Laboratory.

This page is intentionally left blank.

Acronyms and Glossary

Symbols and Units of Measure

°C	degree centigrade
°F	degree Fahrenheit
σ	sigma
aCi	attocurie (10^{-18} Ci)
μBq	microbecquerel (10^{-6} Bq)
μg/g	microgram per gram (10^{-6} g/g)
μg/dry g	microgram per dry gram (10^{-6} g/dry g)
μg/L	microgram per liter (10^{-6} g/L)
μg/m ³	microgram per cubic meter (10^{-6} g/m ³)
μrem	microrem (10^{-6} rem)
μSv/y	microsievert per year
Bq	becquerel (See also definition in Key Terms section.)
Bq/g	becquerel per gram
Bq/dry g	becquerel per dry gram
Bq/kg	becquerel per kilogram
Bq/L	becquerel per liter
Bq/m ³	becquerel per cubic meter
Bq/mL	becquerel per milliliter
Ci	curie (See also definition in Key Terms section.)
cm	centimeter
ft	foot
g	gram
gal	gallon
gal/d	gallon per day
gal/min	gallon per minute
GBq	gigabecquerel (10^9 Bq)
in.	inch
keV	kiloelectronvolt (10^3 eV) (See also definition of "electronvolt" in Key Terms section.)
kg	kilogram (10^3 g)
kg/d	kilogram per day (10^3 g/d)
km	kilometer (10^3 m)
L	liter
L/d	liter per day
L/y	liter per year
m	meter
μBq	millibecquerel (10^{-3} Bq)
μBq/g	millibecquerel per gram (10^{-3} Bq/g)
μBq/dry g	millibecquerel per dry gram (10^{-3} Bq/dry g)
μBq/m ³	millibecquerel per cubic meter (10^{-3} Bq/m ³)
μCi	millicurie (10^{-3} Ci)
mg/L	milligram/liter (10^{-3} g/L)
mi	mile
mph	mile per hour
μR	milliroentgen (10^{-3} R) (See also definition of "roentgen" in Key Terms section.)
μrem	millirem (10^{-3} rem) (See also definition of "rem" in Key Terms section.)
μrem/y	millirem per year (10^{-3} rem/y)
m/s	meter per second

mSv	millisievert (10^{-3} Sv)
mSv/y	millisievert per year (10^{-3} Sv/y)
MT	metric ton
nBq	nanobecquerel (10^{-9} Bq)
nSv	nanosievert (10^{-9} Sv)
nSv/y	nanosievert per year (10^{-9} Sv/y)
pCi	picocurie (10^{-12} Ci)
pCi/g	picocurie per gram (10^{-12} Ci/g)
pCi/dry g	picocurie per dry gram (10^{-12} Ci/dry g)
pCi/L	picocurie per liter (10^{-12} Ci/liter)
person-Sv	person-sievert (See also definition in Key Terms section.)
person-Sv/y	person-sievert/year
pg/L	picogram per liter (10^{-12} g/L)
pg/m ³	picogram per cubic meter (10^{-12} g/m ³)
Sv	sievert (See also definition in Key Terms section.)
TBq	terabecquerel (10^{12} Bq)

Acronyms and Abbreviations

%RSD	Percent relative standard deviation
ACCDCA	Alameda County Community Development Agency
ACDEH	Alameda County Department of Environmental Health
ACHP	Advisory Council on Historic Preservation
ACOE	Army Corps of Engineers
AFV	alternative fuel vehicle
ALARA	as low as reasonably achievable
ANSI	American National Standards Institute
APHIS	Animal and Plant Health Inspection Service
ATSDR	Agency for Toxic Substances and Disease Registry
BAAQMD	Bay Area Air Quality Management District (See also definition in Key Terms section.)
BCG	Biota Concentration Guide
BGS	Below Ground Surface
BO	biological opinion
BSA	Blanket Service Agreement
BSL	Biosafety Level
BWXT	BWX Technologies
CAA	Clean Air Act
CalARP	California Accidental Release Prevention
CAMP	Corrective Action Monitoring Plan
CAMU	Corrective Action Management Unit
CARB	California Air Resources Board
CCR	California Code of Regulations
CDC	Centers for Disease Control
CDFW	California Department of Fish and Wildlife
CDPH	California Department of Public Health
CEI	Compliance Evaluation Inspection
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act of 1980 (See also definition in Key Terms section.)
CFF	Contained Firing Facility

Acronyms and Glossary

CFR	Code of Federal Regulations
CNPS	California Native Plant Society
CO	carbon monoxide
COC	constituent of concern
COD	chemical oxygen demand
CSA	container storage area
CUPA	Certified Unified Program Agencies
CVRWQCB	Central Valley Regional Water Quality Control Board (See also definition in Key Terms section.)
CWA	(Federal) Clean Water Act
CWG	Community Working Group
DCS	Derived Concentration Technical Standard
DMP	Detection Monitoring Plan
DMT	Data Management Team
DOE	(U.S.) Department of Energy (See also definition in Key Terms section.)
DOECAP	(U.S.) Department of Energy Consolidated Auditing Program
DOT	(U.S.) Department of Transportation
DPR	(California) Department of Pesticide Regulation
DRB	Drainage Retention Basin
DTSC	(California Environmental Protection Agency) Department of Toxic Substances Control
DWTF	Decontamination and Waste Treatment Facility
E85	Vehicle fuel, 85% ethanol and 15% gasoline
EA	environmental assessment
EDE	effective dose equivalent (See also definition in Key Terms section.)
EDO	Environmental Duty Officer
EFA	Environmental Functional Area
EIS	environmental impact statement
ELAP	Environmental Laboratory Accreditation Program
EMP	Environmental Management Plan
EMS	Environmental Management System
EPA	Environmental Protection Agency (See also definition in Key Terms section.)
EPCRA	Emergency Planning and Community Right-to-Know Act of 1986 (See also definition in Key Terms section.)
EPEAT	Electronic Product Environmental Assessment Tool
EPL	effluent pollutant limit
EPP	Environmentally Preferable Purchasing
ERD	(LLNL) Environmental Restoration Department
ERP	Environmental Restoration Project
ES&H	Environment, Safety and Health
ESA	Endangered Species Act
ESAR	Enhanced Source Area Remediation
EWSF	Explosives Waste Storage Facility
EWTF	Explosives Waste Treatment Facility
FFA	Federal Facility Agreement (See also definition in Key Terms section.)
FFCA	Federal Facilities Compliance Act
FGC	Federal Green Challenge
FIFRA	Federal Insecticide, Fungicide, and Rodenticide Act
FY	fiscal year (See also definition in Key Terms section.)
GPS	global positioning system
GP _s	Guiding principles
GSA	(U.S.) General Services Administration

GSF	Gross square feet
GWP	(Livermore Site) Ground Water Project
HABS/HAER	Historic American Building Survey/Historic American Engineering Report
HAP	hazardous air pollutant
HHRA	Human health risk assessment
HPGe	high-purity germanium
HSU	hydrostratigraphic unit
HT/TT	tritiated hydrogen gas
HTO/TTO	tritiated water or tritiated water vapor
HWCL	Hazardous Waste Control Law (See also definition in Key Terms section.)
ICRP	International Commission on Radiological Protection
IEEE	Institute of Electrical and Electronics Engineers
IGP	Industrial General Permit
ILA	industrial, landscaping, and agricultural
IQR	Interquartile range (See also definition in Key Terms section.)
ISMS	Integrated Safety Management System
ISO	International Organization for Standardization
ITS	Institutional Tracking System
JFLMA	Joint Functional Area Line Management Assessment
LEED	Leadership in Energy and Environmental Design
LEED-EB	Leadership in Energy and Environmental Design for Existing Buildings
LEPC	Local Emergency Planning Committee
LFO	Livermore Field Office
LFPD	Livermore Pleasanton Fire Department
LLNL	Lawrence Livermore National Laboratory
LLNS	Lawrence Livermore National Security, LLC
LLW	Low Level Waste
LWRP	Livermore Water Reclamation Plant
MAPEP	Mixed Analyte Performance Evaluation Program
MARLAP	Multi-Agency Radiological Laboratory Analytical Protocols
MCL	maximum contaminant level (See also definition in Key Terms section.)
MDC	minimum detectable concentration
MOIs	Management, Observation, and Inspections
MRP	Monitoring and Reporting Program
MSAs	Management Self Assessments
MWMA	Medical Waste Management Act
MWMP	Medical Waste Management Plan
NAI	sodium iodide
NAL	numeric action level
NCRP	National Council on Radiation Protection and Measurements
NELAP	National Environmental Laboratory Accreditation Program
NEPA	National Environmental Policy Act (See also definition in Key Terms section.)
NESHAPs	National Emissions Standards for Hazardous Air Pollutants
NHPA	National Historic Preservation Act
NIF	National Ignition Facility
NNSA	National Nuclear Security Administration
NOV	Notice of Violation
NOx	nitrous oxides
NPDES	National Pollutant Discharge Elimination System (See also definition in Key Terms section.)
NRHP	National Register of Historic Places

Acronyms and Glossary

O&B	Operations & Business Principal Directorate
OBT	organically bound tritium
ODS	ozone depleting substance
ORNL	Oak Ridge National Laboratory
OU	Operable Unit
P2S	pollution prevention/sustainability
PA	Programmatic Agreement
PEP	Performance Evaluation Plan
PCB	polychlorinated biphenyl
PCE	perchloroethylene (or perchloroethene); also called tetrachloroethylene or tetrachloroethene
PM-10	particulate matter with diameter equal to or less than 10 micrometer
POCs	Precursor organic compounds (See also definition in Key Terms section.)
PPMRP	Pollution Prevention and Monitoring and Reporting Program
PQL	practical quantitation limit (See also definition in Key Terms section.)
PRAD	(LLNL) Permits and Regulatory Affairs Division
PUE	Power Utilization Effectiveness
PV	Photovoltaic
PVC	polyvinyl chloride
QA	quality assurance (See also definition in Key Terms section.)
QC	quality control (See also definition in Key Terms section.)
RCRA	Resource Conservation and Recovery Act of 1976 (See also definition in Key Terms section.)
REC	Renewable Energy Credit
REVAL	Remediation Evaluation Process
RHWM	(LLNL) Radioactive and Hazardous Waste Management Division
RMP	risk management plan
RL	reporting limit
RMP	risk management plan
ROD	Record of Decision
ROGs	reactive organic gases (See also definition in Key Terms section.)
RPM	Remedial Project Managers
RWQCB	Regional Water Quality Control Board (See also definition in Key Terms section.)
SARA	Superfund Amendment and Reauthorization Act of 1986 (See also definition in Key Terms section.)
SDS	Safety Data Sheet
SDWA	Safe Drinking Water Act
SERC	State Emergency Response Commission
SFBRWQCB	San Francisco Bay Regional Water Quality Control Board (See also definition in Key Terms section.)
SFTF	Small Firearms Training Facility
SHPO	State Historic Preservation Officer
SI	Système International d'Unités (See also definition in Key Terms section.)
SJCEHD	San Joaquin County Environmental Health Department (See also definition in Key Terms section.)
SJCOES	San Joaquin County, Office of Emergency Services
SJVAPCD	San Joaquin Valley Air Pollution Control District (See also definition in Key Terms section.)
SMARTS	Storm Water Multiple Application and Report Tracking System
SMOP	Synthetic Minor Operating Permit
SMS	(LLNL) Sewer Monitoring Station
SOx	sulphur oxides
SPCC	Spill Prevention Control and Countermeasure

Acronyms and Glossary

STP	Site Treatment Plan
SVOCs	semi-volatile organic compounds
SW-MEI	site-wide maximally exposed individual member (of the public) (See <i>also</i> definition in Key Terms section.)
SWPPP	Storm Water Pollution Prevention Plan
SWRCB	State Water Resources Control Board
TAG	Technical Assistance Grant
TCE	trichloroethene (or trichloroethylene)
TDS	Total Dissolved Solids
TEF	toxicity equivalency factor
TEQ	toxicity equivalency
TF	treatment facility
TLD	thermoluminescent dosimeter (See <i>also</i> definition in Key Terms section.)
TNI	The NELAC Institute
TRI	Toxics Release Inventory
Tri-Valley CAREs	Tri-Valley Communities Against a Radioactive Environment
TRU	transuranic (waste) (See <i>also</i> definition in Key Terms section.)
TSCA	Toxic Substances Control Act
TSDF	Treatment, Storage, and Disposal Facility
TSF	Terascale Simulation Facility
TSS	total suspended solids (See <i>also</i> definition in Key Terms section.)
TTO	total toxic organic (compounds)
UCD	under dispenser containment
USTs	underground storage tanks
USFWS	U.S. Fish and Wildlife Service
USGBC	U.S. Green Building Council
VOC	volatile organic compound (See <i>also</i> definition in Key Terms section.)
VTF	vapor treatment facility
WAA	waste accumulation area (See <i>also</i> definition in Key Terms section.)
WDAR	Waste Discharge Authorization Requirement
WDR	Waste Discharge Requirement
WRD	Water Resources Division (See <i>also</i> definition in Key Terms section.)

Acronyms and Glossary

Metric and U.S. Customary Unit Equivalents

Category	From metric unit to U.S. customary equivalent unit		From U.S. customary unit to metric equivalent unit	
	Metric	U.S.	U.S.	Metric
Length	1 centimeter (cm)	0.39 inches (in.)	1 inch (in.)	2.54 centimeters (cm)
	1 millimeter (mm)	0.039 inches (in.)		25.4 millimeters (mm)
	1 meter (m)	3.28 feet (ft)	1 foot (ft)	0.3048 meters (m)
		1.09 yards (yd)	1 yard (yd)	0.9144 meters (m)
	1 kilometer (km)	0.62 miles (mi)	1 mile (mi)	1.6093 kilometers (km)
Volume	1 liter (L)	0.26 gallons (gal)	1 gallon (gal)	3.7853 liters (L)
		8.11×10^{-7} acre-feet	1 acre-foot	1.23×10^6 liters (L)
	1 cubic meter (m ³)	35.32 cubic feet (ft ³)	1 cubic foot (ft ³)	0.028 cubic meters (m ³)
		1.35 cubic yards (yd ³)	1 cubic yard (yd ³)	0.765 cubic meters (m ³)
Weight	1 gram (g)	0.035 ounces (oz)	1 ounce (oz)	28.3 gram (g)
	1 kilogram (kg)	2.21 pounds (lb)	1 pound (lb)	0.454 kilograms (kg)
	1 metric ton (MT)	1.10 short ton (2000 pounds)	1 short ton (2000 pounds)	0.90718 metric ton (MT)
Area	1 hectare (ha)	2.47 acres	1 acre	0.40 hectares (ha)
Radioactivity	1 becquerel (Bq)	2.7×10^{-11} curie (Ci)	1 curie (Ci)	3.7×10^{10} becquerel (Bq)
Radiation dose	1 gray (Gy)	100 rad	1 rad	0.01 gray (Gy)
Radiation dose equivalent	1 sievert (Sv)	100 rem	1 rem	0.01 sievert (Sv)
Temperature	${}^{\circ}\text{Fahrenheit} = ({}^{\circ}\text{Centigrade} \times 1.8) + 32$		${}^{\circ}\text{Centigrade} = ({}^{\circ}\text{Fahrenheit} - 32) / 1.8$	

Multiplying Prefixes

Symbol	Prefix	Factor	Symbol	Prefix	Factor
y	yocto	10^{-24}	da	deca	10^1
z	zepto	10^{-21}	h	hecto	10^2
a	atto	10^{-18}	k	kilo	10^3
f	femto	10^{-15}	M	mega	10^6
p	pico	10^{-12}	G	giga	10^9
n	nano	10^{-9}	T	tera	10^{12}
μ	micro	10^{-6}	P	peta	10^{15}
m	milli	10^{-3}	E	exa	10^{18}
c	centi	10^{-2}	Z	zetta	10^{21}
d	deci	10^{-1}	Y	yotta	10^{24}

Key Terms

Absorbed dose. Amount of energy imparted to matter by ionizing radiation per unit mass of irradiated material, in which the absorbed dose is expressed in units of rad or gray (1 rad = 0.01 gray).

Accuracy. Closeness of the result of a measurement to the true value of the quantity measured.

Action level. Defined by regulatory agencies, the level of pollutants which, if exceeded, requires regulatory action.

Alluvium. Sediment deposited by flowing water.

Alpha particle. Positively charged particle emitted from the nucleus of an atom, having mass and charge equal to those of a helium nucleus (two protons and two neutrons).

Ambient air. Surrounding atmosphere, usually the outside air, as it exists around people, plants, and structures; for monitoring purposes, it does not include air immediately adjacent to emission sources.

Analyte. Specific component measured in a chemical analysis.

Aquifer. Saturated layer of rock or soil below the ground surface that can supply usable quantities of groundwater to wells and springs, and be a source of water for domestic, agricultural, and industrial uses.

Bay Area Air Quality Management District (BAAQMD). Local agency responsible for regulating stationary air emission sources (including the LLNL Livermore Site) in the San Francisco Bay Area.

Becquerel (Bq). SI unit of activity of a radionuclide, equal to the activity of a radionuclide having one spontaneous nuclear transition per second.

Beta particle. Negatively charged particle emitted from the nucleus of an atom, having charge, mass, and other properties of an electron.

Categorical discharge. Discharge from a process regulated by EPA rules for specific industrial categories.

Central Valley Regional Water Quality Control Board (CVRWQCB). Local agency responsible for regulating ground and surface water quality in the Central Valley.

Comingled recycling. Single-stream (also known as “fully commingled” or “single-sort”) **recycling** refers to a system in which all paper fibers, plastics, metals, and other containers are mixed in a collection truck, instead of being sorted by the depositor into separate commodities.

Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Administered by EPA, this federal law, also known as Superfund, requires private parties to notify the EPA of conditions that threaten to release hazardous substances or after the release of hazardous substances, and undertake short-term removal and long-term remediation.

Cosmic radiation. Radiation with very high energies originating outside the earth’s atmosphere; it is one source contributing to natural background radiation.

Curie (Ci). Unit of measurement of radioactivity, defined as the amount of radioactive material in which the decay rate is 3.7×10^{10} disintegrations per second or 2.22×10^{12} disintegrations per minute; one Ci is approximately equal to the decay rate of 1 gram of pure radium.

Depleted uranium. Uranium having a lower proportion of the isotope uranium-235 than is found in naturally occurring uranium. The masses of the three uranium isotopes with atomic weights 238, 235, and 234 occur in depleted uranium in the weight-percentages 99.8, 0.2, and 5×10^{-4} , respectively. Depleted uranium is sometimes referred to as D-38 or DU.

Derived concentration technical standard (DCS). Concentrations of radionuclides in water and air that could be continuously consumed or inhaled for one year and not exceed the DOE primary radiation standard to the public (100 mrem/y EDE).

Dose. Energy imparted to matter by ionizing radiation; the unit of absorbed dose is the rad, equal to 0.01 joules per kilogram for irradiated material in any medium.

Dose equivalent. Product of absorbed dose in rad (or gray) in tissue and a quality factor representing the relative damage caused to living tissue by different kinds of radiation, and perhaps other modifying factors representing the distribution of radiation, etc. expressed in units of rem or sievert (1 rem = 0.01 sievert).

Dosimeter. Portable detection device for measuring the total accumulated exposure to ionizing radiation.

Acronyms and Glossary

Downgradient. In the direction of groundwater flow from a designated area; analogous to downstream.

Effective dose equivalent (EDE). Estimate of the total risk of potential effects from radiation exposure, it is the summation of the products of the dose equivalent and weighting factor for each tissue. The weighting factor is the decimal fraction of the risk arising from irradiation of a selected tissue to the total risk when the whole body is irradiated uniformly to the same dose equivalent. These factors permit dose equivalents from nonuniform exposure of the body to be expressed in terms of an effective dose equivalent that is numerically equal to the dose from a uniform exposure of the whole body that entails the same risk as the internal exposure (ICRP 1980). The effective dose equivalent includes the committed effective dose equivalent from internal deposition of radionuclides and the effective dose equivalent caused by penetrating radiation from sources external to the body, and is expressed in units of rem (or sievert).

Effluent. Liquid or gaseous waste discharged to the environment.

Electronvolt (eV). A unit of energy equal to the amount of kinetic energy gained by an electron when it passes through a potential difference of 1 volt in a vacuum.

Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA). Act that requires facilities that produce, use, or store hazardous substances to report releases of reportable quantities or hazardous substances to the environment.

Environmental impact statement (EIS). Detailed report, required by the National Environmental Policy Act, on the environmental impacts from a federally approved or funded project. An EIS must be prepared by a federal agency when a “major” federal action that will have “significant” environmental impacts is planned.

Federal facility. Facility that is owned or operated by the federal government, subject to the same requirements as other responsible parties when placed on the Superfund National Priorities List.

Federal facility agreement (FFA). Negotiated agreement that specifies required actions at a federal facility as agreed upon by various agencies (e.g., EPA, RWQCB, DOE).

Fiscal year (FY). LLNL's fiscal year is from October 1 through September 30.

Freon-11. Trichlorofluoromethane.

Freon-113. 1,1,2-trichloro-1,2,2-trifluoroethane; also known as CFC 113.

Gamma ray. High-energy, short-wavelength, electromagnetic radiation emitted from the nucleus of an atom, frequently accompanying the emission of alpha or beta particles.

Groundwater. All subsurface water.

Groundwater dual extraction well: Extraction of groundwater using a downhole pump with concurrent application of vacuum to the well. Groundwater and soil vapor are removed in separate pipe manifolds and treated.

Hazardous waste. Waste that exhibits ignitability, corrosivity, reactivity, and/or EP-toxicity (yielding toxic constituents in a leaching test), and waste that does not exhibit these characteristics but has been determined to be hazardous by EPA. Although the legal definition of hazardous waste is complex, according to EPA the term generally refers to any waste that, if managed improperly, could pose a threat to human health and the environment.

(California) Hazardous Waste Control Law (HWCL). Legislation specifying requirements for hazardous waste management in California.

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). High-explosive compound.

Inorganic compounds. Compounds that either do not contain carbon or do not contain hydrogen along with carbon, including metals, salts, and various carbon oxides (e.g., carbon monoxide and carbon dioxide).

International Commission on Radiological Protection (ICRP). International organization that studies radiation, including its measurement and effects.

Interquartile range (IQR). Distance between the top of the lower quartile and the bottom of the upper quartile, which provides a measure of the spread of data.

Isotopes. Forms of an element having the same number of protons in their nuclei, but differing numbers of neutrons.

Lake Haussmann. Man-made, lined pond used to capture storm water runoff and treated water at the Livermore site. Formerly called Drainage Retention Basin (DRB).

Less than detection limits. Phrase indicating that a chemical constituent was either not present in a sample, or is present in such a small concentration that it cannot be measured by a laboratory's analytical procedure, and therefore is not identified or not quantified at the lowest level of sensitivity.

Livermore Water Reclamation Plant (LWRP). City of Livermore's municipal wastewater treatment plant, which accepts discharges from the LLNL Livermore site.

Low-level waste. Waste defined by DOE Order 5820.2A, which contains transuranic nuclide concentrations less than 100 nCi/g.

Maximum contaminant level (MCL). Highest level of a contaminant in drinking water that is allowed by the U.S. Environmental Protection Agency or California Department of Health Services.

Metric units. Except for temperature for which specific equations apply, U.S. customary units can be determined from metric units by multiplying the metric units by the U.S. customary equivalent. Similarly, metric units can be determined from U.S. customary equivalent units by multiplying the U.S. customary units by the metric equivalent. (See also **Metric and U.S. Customary Unit Equivalents** table in this Glossary.)

Mixed waste. Waste that has the properties of both hazardous and radioactive waste.

National Environmental Policy Act (NEPA). Federal legislation enacted in 1969 that requires all federal agencies to document and consider environmental impacts for federally funded or approved projects and the legislation under which DOE is responsible for NEPA compliance at LLNL.

National Pollutant Discharge Elimination System (NPDES). Federal regulation under the Clean Water Act that requires permits for discharges into surface waterways.

Nuclear Regulatory Commission (NRC). Federal agency charged with oversight of nuclear power and nuclear machinery and applications not regulated by DOE or the Department of Defense.

Nuclide. Species of atom characterized by the constitution of its nucleus. The nuclear constitution is specified by the number of protons, number of neutrons, and energy content; or, alternatively, by the atomic number, mass number, and atomic mass. To be regarded as a distinct nuclide, the atom must be capable of existing for a measurable length of time.

Part A permit. Application submitted by generators in the RCRA permitting process.

Part B permit. Second, narrative section submitted by generators in the RCRA permitting process that covers in detail the procedures followed at a facility to protect human health and the environment.

Perched aquifer. Aquifer that is separated from another water-bearing stratum by an impermeable layer.

Person-Sievert (person-Sv). The product of the average dose per person times the number of people exposed. 1 person-Sv = 100 person-rem.

pH. Measure of hydrogen ion concentration in an aqueous solution. The pH scale ranges from 0 to 14. Acidic solutions have a pH less than 7; basic solutions have a pH greater than 7; and neutral solutions have a pH of 7.

Pliocene. Geological epoch of the Tertiary period, starting about 12 million years ago.

PM-10. Fine particulate matter with an aerodynamic diameter equal to or less than 10 micrometers.

Point source. Any confined and discrete conveyance (e.g., pipe, ditch, well, stack).

Practical quantitation limit (PQL). Level at which the laboratory can report a value with reasonably low uncertainty (typically 10–20% uncertainty).

Pretreatment. Any process used to reduce a pollutant load before it enters the sewer system.

Quality assurance (QA). System of activities whose purpose is to provide the assurance that standards of quality are attained with a stated level of confidence.

Quality control (QC). Procedures used to verify that prescribed standards of performance are attained.

Quaternary. Geologic era encompassing the last 2 to 3 million years.

Rad. Unit of absorbed dose and the quantity of energy imparted by ionizing radiation to a unit mass of matter such as tissue, and equal to 0.01 joule per kilogram, or 0.01 gray.

Radioactive decay. Spontaneous transformation of one radionuclide into a different nuclide (which may or may not be radioactive), or de-excitation to a lower energy state of the nucleus by emission of nuclear radiation, primarily alpha or beta particles, or gamma rays (photons).

Acronyms and Glossary

Radioactivity. Spontaneous emission of nuclear radiation, generally alpha or beta particles, or gamma rays, from the nucleus of an unstable isotope.

Radionuclide. Unstable nuclide. See also **nuclide** and **radioactivity**.

Reactive organic gases/precursor organic compounds (ROGs/POCs). Classes of chemicals that are precursors to the production of ozone and the photochemical formation of smog.

Regional Water Quality Control Board (RWQCB). California regional agency responsible for water quality standards and the enforcement of state water quality laws within its jurisdiction. California is divided into nine RWQCBs; the Livermore site is in the San Francisco Bay Region, and Site 300 is in the Central Valley Region.

Rem. Unit of radiation dose equivalent and effective dose equivalent describing the effectiveness of a type of radiation to produce biological effects; coined from the phrase “roentgen equivalent man,” and the product of the absorbed dose (rad), a quality factor (Q), a distribution factor, and other necessary modifying factors. 1 rem = 0.01 sievert.

Resource Conservation and Recovery Act of 1976 (RCRA). Program of federal laws and regulations that govern the management of hazardous wastes, and applicable to all entities that manage hazardous wastes.

Risk assessment. Qualitative and quantitative evaluation of the risk posed to human health and/or the environment by the actual or potential presence and/or use of specific pollutants.

Roentgen (R). Unit of measurement used to express radiation exposure in terms of the amount of ionization produced in a volume of air.

San Francisco Bay Regional Water Quality Control Board (SFRWQCB). Local agency responsible for regulating ground and surface water quality in the San Francisco Bay Area.

San Joaquin County Environmental Health Department (SJCEHD). Local agency that enforces underground-tank regulations in San Joaquin County, including Site 300.

San Joaquin Valley Air Pollution Control District (SJVAPCD). Local agency responsible for regulating stationary air emission sources (including Site 300) in San Joaquin County.

Sanitary waste. Most simply, waste generated by routine operations that is not regulated as hazardous or radioactive by state or federal agencies.

Saturated zone. Subsurface zone below which all rock pore-space is filled with water; also called the phreatic zone.

Sensitivity. Capability of methodology or instrumentation to discriminate between samples having differing concentrations or containing varying amounts of analyte.

Sievert (Sv). SI unit of radiation dose equivalent and effective dose equivalent, that is the product of the absorbed dose (gray), quality factor (Q), distribution factor, and other necessary modifying factors. 1 sievert = 100 rem.

Sigma (σ) denotes the standard deviation of a statistical distribution.

Site-wide maximally exposed individual (SW-MEI). Hypothetical person who receives, at the location of a given publicly accessible facility (such as a church, school, business, or residence), the greatest LLNL-induced effective dose equivalent (summed over all pathways) from all sources of radionuclide releases to air at a site. Doses at this receptor location caused by each emission source are summed, and yield a larger value than for the location of any other similar public facility. This individual is assumed to continuously reside at this location 24 hours per day, 365 days per year.

Specific conductance. Measure of the ability of a material to conduct electricity; also called conductivity.

Superfund. Common name used for the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). California has also established a “State Superfund” under provisions of the California Hazardous Waste Control Act.

Superfund Amendments and Reauthorization Act (SARA). Enacted in 1986, these laws amended and reauthorized CERCLA for five years.

Surface impoundment. A facility or part of a facility that is a natural topographic depression, man-made excavation, or diked area formed primarily of earthen materials, although it may be lined with man-made materials. The impoundment is designed to hold an accumulation of liquid wastes, or wastes containing free liquids, and is not an injection well.

Système International d'Unités (SI). International system of physical units which include meter (length), kilogram (mass), kelvin (temperature), becquerel (radioactivity), gray (radioactive dose), and sievert (dose equivalent).

Thermoluminescent dosimeter (TLD). Device used to measure external beta or gamma radiation levels, and which contains a material that, after exposure to beta or gamma radiation, emits light when processed and heated.

Total dissolved solids (TDS). Portion of solid material in a waste stream that is dissolved and passed through a filter.

Total suspended solids (TSS). Total mass of particulate matter per unit volume suspended in water and wastewater discharges that is large enough to be collected by a 0.45-micron filter.

Tritium. Radioactive isotope of hydrogen, containing one proton and two neutrons in its nucleus, which decays at a half-life of 12.3 years by emitting a low-energy beta particle.

Transuranic waste (TRU). Material contaminated with alpha-emitting transuranium nuclides, which have an atomic number greater than 92 (e.g., plutonium-239), half-lives longer than 20 years, and are present in concentrations greater than 100 nCi/g of waste.

Universal waste. Hazardous waste that is widely produced by households and many different types of businesses. Universal waste includes televisions, computers and other electronic devices as well as batteries, fluorescent lamps, mercury thermostats, and other mercury-containing equipment. California's Universal Waste Rule allows individuals and businesses to transport, handle, and recycle universal waste in a manner that differs from the requirements for most hazardous wastes.

Unsaturated zone. Portion of the subsurface in which the pores are only partially filled with water and the direction of water flow is vertical; is also referred to as the vadose zone.

U.S. Department of Energy (DOE). Federal agency responsible for conducting energy research and regulating nuclear materials used for weapons production.

U.S. Environmental Protection Agency (EPA). Federal agency responsible for enforcing federal environmental laws. Although some of this responsibility may be delegated to state and local regulatory agencies, EPA retains oversight authority to ensure protection of human health and the environment.

Vadose zone. Partially saturated or unsaturated region above the water table that does not yield water to wells.

Volatile organic compound (VOC). Liquid or solid organic compounds that have a high vapor pressure at normal pressures and temperatures and thus tend to spontaneously pass into the vapor state.

Waste accumulation area (WAA). Officially designated area that meets current environmental standards and guidelines for temporary (less than 90 days) storage of hazardous waste before pickup by the Radioactive and Hazardous Waste Management Division for off-site disposal.

Wastewater treatment system. Collection of treatment processes and facilities designed and built to reduce the amount of suspended solids, bacteria, oxygen-demanding materials, and chemical constituents in wastewater.

Water Resources Division: The City of Livermore governmental organization dedicated to meeting Livermore's water, wastewater, and storm water utility needs.

Water table. Water-level surface below the ground at which the unsaturated zone ends and the saturated zone begins, and the level to which a well that is screened in the unconfined aquifer would fill with water.

Weighting factor. Tissue-specific value used to calculate dose equivalents which represents the fraction of the total health risk resulting from uniform, whole-body irradiation that could be contributed to that particular tissue.

Zone 7. Common name for the Alameda County Flood Control and Water Conservation District, Zone 7, which is the water agency for the Livermore–Amador Valley with responsibility for regional flood control and drinking water supply.

APPENDIX A

Data Tables Checked

The data tables listed in this appendix are accessible at <https://saer.llnl.gov/>, the website for the LLNL annual environmental report.

A.1 Air Effluent (Chapter 4)

- A.1.1 Summary of gross alpha and gross beta ($\mu\text{Bq}/\text{m}^3$) in air effluent samples from the monitored emission point at Livermore Site, Building 235, 2020
- A.1.2 Summary of tritium in air effluent samples (Bq/m^3) from the monitored emission points at Livermore Site, Building 331, 2020
- A.1.3 Summary of gross alpha and gross beta ($\mu\text{Bq}/\text{m}^3$) in air effluent samples from the monitored emission points at Livermore Site, Building 332, 2020
- A.1.4 Summary of gross alpha and gross beta ($\mu\text{Bq}/\text{m}^3$) in air effluent samples from the monitored emission point at Livermore Site, Building 581, 2020
- A.1.5 Summary of representative gamma suite for radioactive particulate ($\mu\text{Bq}/\text{m}^3$) in air effluent samples from the monitored emission point at Livermore Site, Building 581, 2020
- A.1.6 Summary of tritium in air effluent samples (Bq/m^3) from the monitored emission point at Livermore, Building 581, 2020
- A.1.7 Summary of tritium exchange on particulate filter (Bq/m^3) in air effluent samples from the monitored emission point at Livermore Site, Building 581, 2020
- A.1.8 Summary of Iodine-131 ($\mu\text{Bq}/\text{m}^3$) in air effluent samples from the monitored emission point at Livermore Site, Building 581, 2020
- A.1.9 Summary of gross alpha and gross beta ($\mu\text{Bq}/\text{m}^3$) in air effluent samples from the monitored emission point at Livermore Site, Building 695, 2020
- A.1.10 Summary of gross alpha and gross beta ($\mu\text{Bq}/\text{m}^3$) in air effluent samples from the monitored emission point at Site 300, Building 801, 2020

A.2 Ambient Air (Chapter 4)

- A.2.1(a) Bi-weekly gross alpha concentrations ($\mu\text{Bq}/\text{m}^3$) from air particulate samples from the Livermore perimeter locations, 2020
- A.2.1(b) Bi-weekly gross beta concentrations ($\mu\text{Bq}/\text{m}^3$) from air particulate samples from the Livermore perimeter locations, 2020
- A.2.2 Tritium concentrations (mBq/m^3) in air on the Livermore Site, 2020
- A.2.3 Beryllium concentration (pg/m^3) in air particulate samples at the Livermore Site and Site 300, 2020
- A.2.4 Plutonium-239+240 concentrations (nBq/m^3) in air particulate samples from the Livermore perimeter and Site 300 perimeter composite, 2020
- A.2.5 Uranium mass concentrations (pg/m^3) and atom ratios in air particulate samples from Livermore Site (composite) and Site 300 onsite and offsite locations, 2020
- A.2.6(a) Bi-weekly gross alpha concentrations ($\mu\text{Bq}/\text{m}^3$) from air particulate samples from the Livermore Valley downwind locations, 2020
- A.2.6(b) Bi-weekly gross beta concentrations ($\mu\text{Bq}/\text{m}^3$) from air particulate samples from the Livermore Valley downwind locations, 2020
- A.2.7 Tritium concentrations (mBq/m^3) in air, Livermore Valley, 2020

A. Data Tables

- A.2.8(a) Bi-weekly gross alpha concentrations ($\mu\text{Bq}/\text{m}^3$) from air particulate samples from Livermore Valley upwind location and the special interest location, 2020
- A.2.8(b) Bi-weekly gross beta concentrations ($\mu\text{Bq}/\text{m}^3$) from air particulate samples from Livermore Valley upwind location and the special interest location, 2020
- A.2.9 Plutonium-239+240 concentrations (nBq/m^3) in air particulate samples from the Livermore Valley, 2020
- A.2.10 Tritium concentrations (mBq/m^3) in air, Site 300, 2020
- A.2.11(a) Bi-weekly gross alpha concentrations ($\mu\text{Bq}/\text{m}^3$) from air particulate samples from Site 300 on-site and off-site locations, 2020
- A.2.11(b) Bi-weekly gross beta concentrations ($\mu\text{Bq}/\text{m}^3$) from air particulate samples from Site 300 on-site and off-site locations, 2020
- A.2.12 Iodine-131 concentrations ($\mu\text{Bq}/\text{m}^3$) in air TEDA samples from the Livermore Valley, 2020
- A.2.13 Air filter particulates by gamma spectroscopy (mBq/m^3) for the Livermore Site and Site 300, 2020

A.3 Livermore Site Wastewater (Chapter 5)

- A.3.1 Daily monitoring for tritium (mBq/mL) in the Livermore Site sanitary sewer effluent, 2020
- A.3.2 Daily flow totals for Livermore Site sanitary sewer effluent (ML), 2020
- A.3.3 Monthly and annual flow summary statistics for Livermore Site sanitary sewer effluent (ML), 2020
- A.3.4 Monthly monitoring results for physical and chemical characteristics of the Livermore Site sanitary sewer effluent, 2020
- A.3.5 Monthly monitoring results for gross alpha, gross beta and tritium in Livermore Site sanitary sewer effluent, 2020
- A.3.6 Quarterly composite metals in Livermore Site sanitary sewer effluent, 2020

A.4 Storm Water (Chapter 5)

- A.4.1 Industrial permit (2014-0057-DWQ) metals in storm water runoff ($\mu\text{g}/\text{L}$), Livermore Site, 2020
- A.4.2 Industrial permit (2014-0057-DWQ) analytes other than metals in storm water runoff, Livermore Site, 2020
- A.4.3 Industrial permit (2014-0057-DWQ) metals in storm water runoff ($\mu\text{g}/\text{L}$), Site 300, 2020
- A.4.4 Industrial permit (2014-0057-DWQ) analytes other than metals in storm water runoff, Site 300, 2020

A.5 Livermore Site Groundwater (Chapter 5)

- A.5.1 Livermore Site metals surveillance wells, 2020
- A.5.2 Livermore Site Buildings 514 and 612 area surveillance wells, 2020
- A.5.3 Livermore Site near Decontamination and Waste Treatment Facility (DWTF) surveillance wells, 2020
- A.5.4 Livermore Site East Traffic Circle Landfill surveillance wells, 2020
- A.5.5 Livermore Site Tritium Facility surveillance wells, 2020
- A.5.6 Livermore Site perimeter off-site surveillance wells, 2020
- A.5.7 Livermore Site perimeter on-site surveillance wells, 2020
- A.5.8 Livermore Site near the National Ignition Facility (NIF) surveillance wells, 2020
- A.5.9 Livermore Site Taxi Strip surveillance wells, 2020
- A.5.10 Livermore Site background surveillance wells, 2020
- A.5.11 Tritium activity in Livermore Valley wells, 2020

A.6 Site 300 Groundwater (Chapter 5)

- A.6.1 Site 300 annually monitored off-site surveillance wells, 2020
- A.6.2 Site 300 off-site surveillance well CARNRW1, 2020
- A.6.3 Site 300 off-site surveillance well CARNRW2, 2020
- A.6.4 Site 300 off-site surveillance well CDF1, 2020
- A.6.5 Site 300 off-site surveillance well CON1, 2020
- A.6.6 Site 300 off-site surveillance well CON2, 2020
- A.6.7 Elk Ravine surveillance wells, Site 300, 2020
- A.6.8 Site 300 off-site surveillance well GALLO1, 2020
- A.6.9 Site 300 potable supply well 18, 2020
- A.6.10 Site 300 potable supply well 20, 2020

A.7 Other Water (Chapter 5)

- A.7.1 Tritium activity (Bq/L) in rainwater samples collected in the vicinity of the Livermore Site and Site 300, 2020
- A.7.2 Radioactivity (Bq/L) in surface and drinking water in Livermore Valley, 2020

A.8 Soil (Chapter 6)

- A.8.1 Radionuclides in soils in the Livermore Valley, 2020
- A.8.2 Radionuclides and beryllium in soil at Site 300, 2020

A.9 Ambient Radiation (Chapter 6)

- A.9.1 Calculated dose (mSv) from TLD environmental radiation measurements, Livermore Site perimeter, 2020
- A.9.2 Calculated dose (mSv) from TLD environmental radiation measurements, Livermore Valley, 2020
- A.9.3 Calculated dose (mSv) from TLD environmental radiation measurements, Site 300 vicinity, 2020
- A.9.4 Calculated dose (mSv) from TLD environmental radiation measurements, Site 300 perimeter, 2020
- A.9.5 Quarterly concentrations of tritium in plant water (Bq/L) for the Livermore Site, Livermore Valley, and Site 300, 2020

This page is intentionally left blank.

APPENDIX B

Wildlife Survey Results

Table B-1. Site 300 wildlife species list. Includes species for which there are verified observations; it is not intended to be a complete list of Site 300 species.

Taxa	Common Name	Scientific Name	Regulatory Status ^(a)	Source
Invertebrates	Valley Elderberry Longhorn Beetle	<i>Desmocerus californicus dimorphus</i>	FT	Arnold 2002
	California linderiella	<i>Linderiella occidentalis</i>		Weber 2002
	California Clam Shrimp	<i>Cyzicus californicus</i>		Weber 2002
Amphibians	Arboreal Salamander	<i>Aneides lugubris</i>		Woollett 2005
	California Tiger Salamander	<i>Ambystoma californiense</i>	FT, ST	LLNL 2002
	California Slender Salamander	<i>Batrachoseps attenuatus</i>		Burkholder 2008
	California Newt	<i>Taricha torosa</i>		Woollett 2005
	California Red-legged Frog	<i>Rana draytonii</i>	FT, CDFW:SSC	LLNL 2002
	Sierran Treefrog	<i>Pseudacris sierra</i>		LLNL 2002
	Western Spadefoot	<i>Spea hammondii</i>	CDFW:SSC	LLNL 2002
	California Toad	<i>Anaxyrus boreas halophilus</i>		LLNL 2002
Reptiles	PWestern Pond Turtle	<i>Actinemys marmorata</i>	CDFW:SSC	Woollett 2005
	Alameda Whipsnake	<i>Masticophis lateralis euryxanthus</i>	FT, ST	Swaim 2002
	San Joaquin Coachwhip	<i>Masticophis flagellum ruddocki</i>	CDFW:SSC	LLNL 2002
	Blainville's (Coast) Horned Lizard	<i>Phrynosoma blainvillii</i>	CDFW:SSC	LLNL 2002
	California Legless Lizard	<i>Anniella pulchra</i>	CDFW:SSC	Swaim 2002
	Common Side-blotched Lizard	<i>Uta stansburiana</i>		LLNL 2002; Swaim 2002
	California Whiptail	<i>Aspidoscelis tigris munda</i>		LLNL 2002; Swaim 2002
	Northwestern Fence Lizard	<i>Sceloporus occidentalis occidentalis</i>		LLNL 2002; Swaim 2002
	Western Skink	<i>Plestiodon skiltonianus</i>		LLNL 2002; Swaim 2002
	Gilbert's Skink	<i>Plestiodon gilberti</i>		LLNL 2002; Swaim 2002
	Forest Alligator Lizard	<i>Elgaria multicarinata multicarinata</i>		LLNL 2002; Swaim 2002
	Western Yellow-Bellied Racer	<i>Coluber constrictor mormon</i>		LLNL 2002; Swaim 2002
	Pacific Gophersnake	<i>Pituophis catenifer catenifer</i>		LLNL 2002; Swaim 2002
	California Kingsnake	<i>Lampropeltis californiae</i>		LLNL 2002; Swaim 2002
	California Nightsnake	<i>Hypsiglena ochrorhyncha nuchalata</i>		LLNL 2002; Swaim 2002
	California Glossy Snake	<i>Arizona elegans occidentalis</i>	CDFW:SSC	LLNL 2002; Swaim 2002
	Long-nosed Snake	<i>Rhinocheilus lecontei</i>		LLNL 2002; Swaim 2002

B. Wildlife Survey Results

Table B-1. Site 300 wildlife species list. Includes species for which there are verified observations; it is not intended to be a complete list of Site 300 species.

Taxa	Common Name	Scientific Name	Regulatory Status ^(a)	Source
Reptiles (cont.)	Western Black-headed Snake	<i>Tantilla planiceps</i>		Swaim 2002
	Pacific Ring-necked Snake	<i>Diadophis punctatus amabilis</i>		Woollett 2005
	California Striped Racer	<i>Coluber lateralis lateralis</i>		LLNL 2002; Swaim 2002
	Northern Pacific Rattlesnake	<i>Crotalus oreganus oreganus</i>		LLNL 2002; Swaim 2002
Birds	Pied-billed Grebe	<i>Podilymbus podiceps</i>	MBTA	LLNL 2003
	Double-crested Cormorant	<i>Phalacrocorax auritus</i>	MBTA, CDFW:WL	LLNL 2003
	Great Egret	<i>Ardea alba</i>	MBTA	LLNL 2003
	Bufflehead	<i>Bucephala albeola</i>	MBTA	LLNL 2003
	Common Goldeneye	<i>Bucephala clangula</i>	MBTA	LLNL 2003
	Mallard	<i>Anas platyrhynchos</i>	MBTA	LLNL 2003
	Northern Shoveler	<i>Anas clypeata</i>	MBTA	LLNL 2003
	Cinnamon Teal	<i>Anas cyanoptera</i>	MBTA	LLNL 2003
	American White Pelican	<i>Pelecanus erythrorhynchos</i>	MBTA	GANDA 2016
	Turkey Vulture	<i>Cathartes aura</i>	MBTA	LLNL 2003
	Golden Eagle	<i>Aquila chrysaetos</i>	BGEPA, MBTA, CDFW:FP, CDFW:WL, BCC	LLNL 2003
	Red-shouldered Hawk	<i>Buteo lineatus</i>	MBTA	LLNL 2003
	Rough-legged Hawk	<i>Buteo lagopus</i>	MBTA	LLNL 2003
	Ferruginous Hawk	<i>Buteo regalis</i>	MBTA, CDFW:WL, BCC	LLNL 2003
	Red-tailed Hawk	<i>Buteo jamaicensis</i>	MBTA	LLNL 2003
	Swainson's Hawk	<i>Buteo swainsoni</i>	MBTA, ST, BCC	LLNL 2003
	White-tailed Kite	<i>Elanus leucurus</i>	MBTA, CDFW:FP	LLNL 2003
	Osprey	<i>Pandion haliaetus</i>	MBTA, CDFW:WL	LLNL 2003
	Cooper's Hawk	<i>Accipiter cooperii</i>	MBTA, CDFW:WL	LLNL 2003
	Sharp-shinned Hawk	<i>Accipiter striatus</i>	MBTA, CDFW:WL	LLNL 2003
	Northern Harrier	<i>Circus cyaneus</i>	MBTA, CDFW:SSC	LLNL 2003
	Prairie Falcon	<i>Falco mexicanus</i>	MBTA, CDFW:WL, BCC	LLNL 2003
	Peregrine Falcon	<i>Falco peregrinus</i>	MBTA, CDFW:FP	GANDA 2016
	American Kestrel	<i>Falco sparverius</i>	MBTA	LLNL 2003
	Wild Turkey	<i>Meleagris gallopavo</i>		LLNL 2003

B. Wildlife Survey Results

Table B-1. Site 300 wildlife species list. Includes species for which there are verified observations; it is not intended to be a complete list of Site 300 species.

Taxa	Common Name	Scientific Name	Regulatory Status ^(a)	Source
Birds (cont.)	California Quail	<i>Callipepla californica</i>		LLNL 2003
	Virginia Rail	<i>Rallus limicola</i>	MBTA	U.S. DOE and UC 1992
	Sora	<i>Porzana carolina</i>	MBTA	Woollett 2009
	Killdeer	<i>Charadrius vociferus</i>	MBTA	LLNL 2003
	American Avocet	<i>Recurvirostra americana</i>	MBTA	Scott 2002
	Greater Yellowlegs	<i>Tringa melanoleuca</i>	MBTA	LLNL 2003
	Wilson's Snipe	<i>Gallinago delicata</i>	MBTA	LLNL 2003
	Mourning Dove	<i>Zenaida macroura</i>	MBTA	LLNL 2003
	Eurasian Collared-dove	<i>Streptopelia decaocto</i>		Woollett 2017
	Rock Pigeon	<i>Columba livia</i>		U.S. DOE and UC 1992
	Greater Roadrunner	<i>Geococcyx californianus</i>	MBTA	LLNL 2003
	Barn Owl	<i>Tyto alba</i>	MBTA	LLNL 2003
	Long-billed curlew	<i>Numenius americanus</i>	MBTA, CDFW:SSC , BCC	Woollett 2014
	Short-eared Owl	<i>Asio flammeus</i>	MBTA, CDFW:SSC	LLNL 2003
	Long-eared Owl	<i>Asio otus</i>	MBTA, CDFW:SSC	LLNL 2003
	Great Horned Owl	<i>Bubo virginianus</i>	MBTA	LLNL 2003
	Burrowing Owl	<i>Athene cunicularia</i>	MBTA, CDFW:SSC, BCC	LLNL 2003
	Western Screech Owl	<i>Megascops kennicottii</i>	MBTA	LLNL 2003
	Common Poorwill	<i>Phalaenoptilus nuttallii</i>	MBTA	LLNL 2003
	White-throated Swift	<i>Aeronautes saxatalis</i>	MBTA	LLNL 2003
	Allen's Hummingbird	<i>Selasphorus sasin</i>	MBTA, BCC	U.S. DOE and UC 1992
	Rufous Hummingbird	<i>Selasphorus rufus</i>	MBTA, BCC	LLNL 2003
	Costa's Hummingbird	<i>Calypte costae</i>	MBTA, BCC	LLNL 2003
	Anna's Hummingbird	<i>Calypte anna</i>	MBTA	LLNL 2003
	Northern Flicker	<i>Colaptes auratus</i>	MBTA	LLNL 2003
	Nuttall's Woodpecker	<i>Picoides nuttallii</i>	MBTA, BCC	LLNL 2003
	Acorn Woodpecker	<i>Melanerpes formicivorus</i>	MBTA	U.S. DOE and UC 1992
	Lewis's Woodpecker	<i>Melanerpes lewisi</i>	MBTA	LLNL 2018
	Ash-throated Flycatcher	<i>Myiarchus cinerascens</i>	MBTA	LLNL 2003
	Cassin's Kingbird	<i>Tyrannus vociferans</i>	MBTA	LLNL 2003
	Western Kingbird	<i>Tyrannus verticalis</i>	MBTA	LLNL 2003
	Western Wood-peewee	<i>Contopus sordidulus</i>	MBTA	U.S. DOE and UC 1992
	Willow Flycatcher	<i>Empidonax traillii</i>	SE, MBTA, BCC,	van Hattem 2005
	Pacific-slope Flycatcher	<i>Empidonax difficilis</i>	MBTA	LLNL 2003

B. Wildlife Survey Results

Table B-1. Site 300 wildlife species list. Includes species for which there are verified observations; it is not intended to be a complete list of Site 300 species.

Taxa	Common Name	Scientific Name	Regulatory Status ^(a)	Source
Birds (cont.)	Black Phoebe	<i>Sayornis nigricans</i>	MBTA	LLNL 2003
	Say's Phoebe	<i>Sayornis saya</i>	MBTA	LLNL 2003
	Loggerhead Shrike	<i>Lanius ludovicianus</i>	MBTA, CDFW:SSC, BCC	LLNL 2003
	California (Western) Scrub Jay	<i>Aphelocoma californica</i>	MBTA	LLNL 2003
	American Crow	<i>Corvus brachyrhynchos</i>	MBTA	LLNL 2003
	Common Raven	<i>Corvus corax</i>	MBTA	LLNL 2003
	Horned Lark	<i>Eremophila alpestris</i>	MBTA	LLNL 2003
	Tree Swallow	<i>Tachycineta bicolor</i>	MBTA	LLNL 2003
	Cliff Swallow	<i>Petrochelidon pyrrhonota</i>	MBTA	LLNL 2003
	Northern Rough-winged Swallow	<i>Stelgidopteryx serripennis</i>	MBTA	LLNL 2003
Mammals	Oak Titmouse	<i>Baeolophus inornatus</i>	MBTA, BCC	LLNL 2003
	Bushtit	<i>Psaltriparus minimus</i>	MBTA	LLNL 2003
	House Wren	<i>Troglodytes aedon</i>	MBTA	LLNL 2003
	Rock Wren	<i>Salpinctes obsoletus</i>	MBTA	LLNL 2003
	Bewick's Wren	<i>Thryomanes bewickii</i>	MBTA	LLNL 2003
	Ruby-crowned Kinglet	<i>Regulus calendula</i>	MBTA	LLNL 2003
	Hermit Thrush	<i>Catharus guttatus</i>	MBTA	LLNL 2003
	Swainson's Thrush	<i>Catharus ustulatus</i>	MBTA	LLNL 2003
	Blue-gray Gnatcatcher	<i>Polioptila caerulea</i>	MBTA	LLNL 2019
	Western Bluebird	<i>Sialia mexicana</i>	MBTA	LLNL 2003
	Mountain Bluebird	<i>Sialia currucoides</i>	MBTA	LLNL 2003
	American Robin	<i>Turdus migratorius</i>	MBTA	LLNL 2003
	Varied Thrush	<i>Ixoreus naevius</i>	MBTA	LLNL 2003
	California Thrasher	<i>Toxostoma redivivum</i>	MBTA	LLNL 2003
	Northern Mockingbird	<i>Mimus polyglottos</i>	MBTA	LLNL 2003
	European Starling	<i>Sturnus vulgaris</i>	MBTA	LLNL 2003
	Cedar Waxwing	<i>Bombycilla cedrorum</i>	MBTA	LLNL 2003
	Phainopepla	<i>Phainopepla nitens</i>	MBTA	LLNL 2003
	MacGillivray's Warbler	<i>Geothlypis tolmiei</i>	MBTA	LLNL 2003
Reptiles and Amphibians	Common Yellowthroat	<i>Geothlypis trichas</i>	MBTA	LLNL 2003
	Wilson's Warbler	<i>Cardellina pusilla</i>	MBTA	LLNL 2003
	Orange-crowned Warbler	<i>Oreothlypis celata</i>	MBTA	LLNL 2003
	Spotted Salamander	<i>Desmognathus maculatus</i>	MBTA	LLNL 2003

B. Wildlife Survey Results

Table B-1. Site 300 wildlife species list. Includes species for which there are verified observations; it is not intended to be a complete list of Site 300 species.

Taxa	Common Name	Scientific Name	Regulatory Status ^(a)	Source
	Yellow Warbler	<i>Setophaga petechia</i>	MBTA, CDFW:SSC, BCC	LLNL 2003
Birds (cont.)	Yellow-rumped Warbler	<i>Setophaga coronata</i>	MBTA	LLNL 2003
	Black-throated Gray Warbler	<i>Setophaga nigrescens</i>	MBTA	LLNL 2003
	Western Tanager	<i>Piranga ludoviciana</i>	MBTA	LLNL 2003
	Song Sparrow	<i>Melospiza melodia</i>	MBTA	LLNL 2003
	Lincoln's Sparrow	<i>Melospiza lincolni</i>	MBTA	LLNL 2003
	Fox Sparrow	<i>Passerella iliaca</i>	MBTA	LLNL 2003
	White-crowned Sparrow	<i>Zonotrichia leucophrys</i>	MBTA	LLNL 2003
	Golden-crowned Sparrow	<i>Zonotrichia atricapilla</i>	MBTA	LLNL 2003
	Dark-eyed Junco	<i>Junco hyemalis</i>	MBTA	LLNL 2003
	Black-throated Sparrow	<i>Amphispiza bilineata</i>	MBTA	LLNL 2003
	California Towhee	<i>Melozone crissalis</i>	MBTA	LLNL 2003
	Vesper Sparrow	<i>Pooecetes gramineus</i>	MBTA	U.S. DOE and UC 1992
	Lark Sparrow	<i>Chondestes grammacus</i>	MBTA	LLNL 2003
	Bell's Sparrow	<i>Artemisiospiza belli</i>	MBTA	LLNL 2003
	Savannah Sparrow	<i>Passerculus sandwichensis</i>	MBTA	LLNL 2003
	Grasshopper Sparrow	<i>Ammodramus savannarum</i>	MBTA, CDFW:SSC	LLNL 2003
	Rufous-crowned Sparrow	<i>Aimophila ruficeps</i>	MBTA	LLNL 2003
	Lazuli Bunting	<i>Passerina amoena</i>	MBTA	LLNL 2003
	Blue Grosbeak	<i>Passerina caerulea</i>	MBTA	LLNL 2003
	Black-headed Grosbeak	<i>Pheucticus melanocephalus</i>	MBTA	U.S. DOE and UC 1992
	Bullock's Oriole	<i>Icterus bullockii</i>	MBTA	LLNL 2003
	Brown-headed Cowbird	<i>Molothrus ater</i>	MBTA	LLNL 2003
	Red-winged Blackbird	<i>Agelaius phoeniceus</i>	MBTA	LLNL 2003
	Tricolored Blackbird	<i>Agelaius tricolor</i>	BCC, MBTA, , ST	LLNL 2003
	Western Meadowlark	<i>Sturnella neglecta</i>	MBTA	LLNL 2003
	Brewer's Blackbird	<i>Euphagus cyanocephalus</i>	MBTA	LLNL 2003
	Lesser Goldfinch	<i>Spinus psaltria</i>	MBTA	LLNL 2003
	House Finch	<i>Haemorhous mexicanus</i>	MBTA	LLNL 2003
	Merlin	<i>Falco columbarius</i>	MBTA	Woollett 2011
Mammals	Broad-footed Mole	<i>Scapanus latimanus</i>		Woollett 2011

B. Wildlife Survey Results

Table B-1. Site 300 wildlife species list. Includes species for which there are verified observations; it is not intended to be a complete list of Site 300 species.

Taxa	Common Name	Scientific Name	Regulatory Status ^(a)	Source
Mammals (cont.)	Pallid Bat	<i>Antrozous pallidus</i>	CDFW:SSC, WBWGH	Rainey 2003
	Western Red Bat	<i>Lasiurus blossevillii</i>	CDFW:SSC, WBWGH	Rainey 2003
	Hoary Bat	<i>Lasiurus cinereus</i>		Rainey 2003
	California Myotis	<i>Myotis californicus</i>		Rainey 2003
	Yuma Myotis	<i>Myotis yumanensis</i>		Rainey 2003
	Canyon Bat	<i>Parastrellus hesperus</i>		Rainey 2003
	Brazilian Free-tailed Bat	<i>Tadarida brasiliensis</i>		Rainey 2003
	Audubon's (Desert) Cottontail	<i>Sylvilagus audubonii</i>		LLNL 2002; Clark et al. 2002
	Black-tailed Jackrabbit	<i>Lepus californicus</i>		LLNL 2002; Clark et al. 2002
	California Ground Squirrel	<i>Otospermophilus beecheyi</i>		LLNL 2002
	Botta's Pocket Gopher	<i>Thomomys bottae</i>		LLNL 2002; West 2002
	Heermann's Kangaroo Rat	<i>Dipodomys heermanni</i>		LLNL 2002; West 2002
	California Pocket Mouse	<i>Chaetodipus californicus</i>		LLNL 2002; West 2002
	San Joaquin Pocket Mouse	<i>Perognathus inornatus</i>		Clark et al. 2002
	California Vole	<i>Microtus californicus</i>		LLNL 2002; West 2002
	House Mouse	<i>Mus musculus</i>		LLNL 2002; West 2002
	Dusky-footed Woodrat	<i>Neotoma fuscipes</i>		LLNL 2002; West 2002
	Brush Mouse	<i>Peromyscus boylii</i>		LLNL 2002; West 2002
	Deer Mouse	<i>Peromyscus maniculatus</i>		LLNL 2002; West 2002
	Western Harvest Mouse	<i>Reithrodontomys megalotis</i>		LLNL 2002; West 2002
	Red Fox	<i>Vulpes vulpes</i>		Woollett 2005
	Gray Fox	<i>Urocyon cinereoargenteus</i>		Woollett 2005
	Coyote	<i>Canis latrans</i>		LLNL 2002; Clark et al. 2002
	Raccoon	<i>Procyon lotor</i>		LLNL 2002; Orloff 1986
	Long-tailed Weasel	<i>Mustela frenata</i>		LLNL 2002; Orloff 1986
	Striped Skunk	<i>Mephitis mephitis</i>		LLNL 2002; Orloff 1986
	Western Spotted Skunk	<i>Spilogale gracilis</i>		LLNL 2002; Orloff 1986
	American Badger	<i>Taxidea taxus</i>	CDFW:SSC	LLNL 2002; Clark et al. 2002

B. Wildlife Survey Results

Table B-1. Site 300 wildlife species list. Includes species for which there are verified observations; it is not intended to be a complete list of Site 300 species.

Taxa	Common Name	Scientific Name	Regulatory Status ^(a)	Source
Mammals (cont.)	Bobcat	<i>Lynx rufus</i>		LLNL 2002; Clark et al. 2002
	Mountain Lion	<i>Puma concolor</i>		LLNL 2002
	Mule Deer	<i>Odocoileus hemionus</i>		LLNL 2002; Clark et al. 2002
	Wild Pig	<i>Sus scrofa</i>		LLNL 2002; Clark et al. 2002

(a) BCC = U.S. Fish and Wildlife Service Birds of Conservation Concern (US Fish and Wildlife Service 2008)

BGEPA = Bald and Golden Eagle Protection Act

CDFW:FP = California Department of Fish and Wildlife Fully Protected Species (CA Fish and Game Code Section 3511)

CDFW:SSC = California Species of Special Concern (CA Dept. of Fish and Wildlife, Special Animals List, April 2021)

Candidate CESA = Candidate for listing under the California Endangered Species Act

CDFW:WL = California Department of Fish and Wildlife – Watch List

FT = Threatened under the Federal Endangered Species Act

MBTA = Migratory Bird Treaty Act

SE = Endangered under the State Endangered Species Act

ST = Threatened under the State Endangered Species Act

WBWGH = Western Bat Working Group High Priority

This page is intentionally left blank.

APPENDIX C

Extra Resources

The documents listed below are accessible at <https://saer.llnl.gov>, the website for the LLNL annual environmental report.

LLNL FY20 Site Sustainability Plan

Ottaway, H., B. Howing, J. Adams, J. Arbelaez-Novak, A. Ashbaugh, L. Au, A.M. Bailey, P. Burke, J. Ferrin-Pann, M. Morgan, H. Nassor-Covington, C. Snyder, K. Tan, and T. Wegrecki (2019). *Lawrence Livermore National Laboratory FY2020 Site Sustainability Plan*. Livermore, CA: Lawrence Livermore National Laboratory, LLNL-AR-999948.

LLNL Ground Water Project 2020 Annual Report

Noyes, C., K. Quamme, E. Yeh, A. Porubcan, J. Radyk, Z. Demir, and A. Verce (Eds.) (2021). *LLNL Ground Water Project 2020 Annual Report*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-126020-20.

LLNL NESHAPs 2020 Annual Report

Wilson, K., H. Byrnes, , and A. Wegrecki (2021). *LLNL NESHAPs 2020 Annual Report*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-113867-21.

Site 300 Compliance Monitoring Program for the Closed Building 829 Facility Annual Report 2020

Will, E. (2021). *Lawrence Livermore National Laboratory Experimental Test Site 300 Compliance Monitoring Program for the Closed Building 829 Facility Annual Report 2020*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-143121-20.

Site 300 2020 Compliance Monitoring Annual Report

Buscheck, M., S. Chamberlain, Z. Demir, E Edwards, S. Harris, J. McKaskey, L. Paterson, A. Porubcan, J. Radyk, M. Taffett, and A. Verce (2021). *Annual 2020 Compliance Monitoring Report for Lawrence Livermore National Laboratory Site 300*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-AR-206319-20.

Site 300 Compliance Monitoring Report for Waste Discharge Requirement Order No. R5-2008-0148 Second Semester/Annual Report 2020

Chan, A. (2021). *LLNL Experimental Test Site, Site 300 Compliance Monitoring Report for Waste Discharge Requirement (WDR) Order No. R5-2008-0148, Second Semester/Annual Report 2020*. Livermore, CA: Lawrence Livermore National Laboratory, LLNL-AR-411431-21-3.

Site 300 Compliance Monitoring Program for Closed Landfill Pit 1 First Quarter Report 2020

Chan, A. (2020). *LLNL Experimental Test Site 300 Compliance Monitoring Report for Closed Pit 1 Landfill, First Quarter Report for 2020*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-10191-20-1.

Supplementary Topics on Radiological Dose

Sanchez, L., P.E. Althouse, N.A. Bertoldo, R.G. Blake, S.L. Brigdon, R.A. Brown, C.G. Campbell, T. Carlson, E. Christofferson, L.M. Clark, G.M. Gallegos, A.R. Grayson, R.J. Harrach, W.G. Hoppe, H.E. Jones, J. Larson, D. Laycak, D.H. MacQueen, S. Mathews, M. Nelson, L. Paterson, S.R. Peterson, M.A. Revelli, M.J. Taffet, P.J. Tate, R. Ward, R.A. Williams, and K. Wilson (2003). *Environmental Report 2002*. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-50027-02, Appendix D.

This page is intentionally left blank.

APPENDIX D

Errata

Protocol for Errata in LLNL Environmental Reports

The primary form of publication for the LLNL Environmental Report is electronic: the report is posted on the Internet. A limited number of copies are printed and distributed, including to local libraries. If errors are found after publication, the Internet version is corrected. Because the printed versions cannot be corrected, errata for these versions are published in a subsequent report. In this way, the equivalency of all published versions of the report is maintained.

In 1998, LLNL established the following protocol for post-publication revisions to the environmental report: (1) the environmental report website must clearly convey what corrections, if any, have been made and provide a link to a list of the errata, (2) the Internet version must be the most current version, incorporating all corrections, and (3) the electronic and printed versions must be the same in that the printed version plus errata, if any, must provide the same information as the Internet version.

LLNL environmental reports from 1994 through 2020 can be accessed at <https://saer.llnl.gov/>

Record of Changes to Environmental Report 2019

No changes have been made to the Internet version of *Environmental Report 2019*.

This page is intentionally left blank.

APPENDIX E

Percentage of In-Control Duplicate Pairs for Field Collocated Samples

Monitoring Program	Media	Analyte	Percent of Pairs within Control Limit ^(a)
Livermore Site and Site 300 Ambient Air	Air Filters	Beryllium	94%
Livermore Site and Site 300 Ambient Air	Air Filters	Uranium-235	75%
Livermore Site and Site 300 Ambient Air	Air Filters	Uranium-235/238	100%
Livermore Site and Site 300 Ambient Air	Air Filters	Uranium-238	75%
Livermore Site and Site 300 Ambient Air	Air Filters	Gross alpha	60%
Livermore Site and Site 300 Ambient Air	Air Filters	Gross beta	89%
Air Tritium	Silica Gel	Tritium	76%
Livermore Site, Livermore Valley and Site 300 Ambient Radiation	Dosimeters	Radiation dose, average	100%
Livermore Site, Livermore Valley and Site 300 Ambient Radiation	Dosimeters	Radiation dose, 90-days	100%
Groundwater from Off-site Wells and Springs	Groundwater	Arsenic	100%
Groundwater from Off-site Wells and Springs	Groundwater	Barium	100%
Groundwater from Off-site Wells and Springs	Groundwater	Bicarbonate Alk (as CaCO ₃)	100%
Groundwater from Off-site Wells and Springs	Groundwater	Boron	100%
Groundwater from Off-site Wells and Springs	Groundwater	Bromide	100%
Groundwater from Off-site Wells and Springs	Groundwater	Cadmium	100%
Groundwater from Off-site Wells and Springs	Groundwater	Calcium	100%
Groundwater from Off-site Wells and Springs	Groundwater	Chloride	100%
Groundwater from Off-site Wells and Springs	Groundwater	Chromium	100%
Groundwater from Off-site Wells and Springs	Groundwater	Copper	75%
Groundwater from Off-site Wells and Springs	Groundwater	Fluoride	100%
Groundwater from Off-site Wells and Springs	Groundwater	Gross alpha	57%
Groundwater from Off-site Wells and Springs	Groundwater	Gross beta	78%
Groundwater from Off-site Wells and Springs	Groundwater	Iron	100%
Groundwater from Off-site Wells and Springs	Groundwater	Magnesium	100%
Groundwater from Off-site Wells and Springs	Groundwater	Manganese	100%
Groundwater from Off-site Wells and Springs	Groundwater	Nickel	100%
Groundwater from Off-site Wells and Springs	Groundwater	Nitrate (as N)	33%
Groundwater from Off-site Wells and Springs	Groundwater	Nitrate (as NO ₃)	82%

E. Percentage of In-Control Duplicate Pairs for Field Collected Samples

Monitoring Program	Media	Analyte	Percent of Pairs within Control Limit ^(a)
Groundwater from Off-site Wells and Springs	Groundwater	Ortho-Phosphate	100%
Groundwater from Off-site Wells and Springs	Groundwater	Perchlorate	100%
Groundwater from Off-site Wells and Springs	Groundwater	Potassium	100%
Groundwater from Off-site Wells and Springs	Groundwater	Selenium	100%
Groundwater from Off-site Wells and Springs	Groundwater	Sodium	100%
Groundwater from Off-site Wells and Springs	Groundwater	Specific Conductance	100%
Groundwater from Off-site Wells and Springs	Groundwater	Sulfate	100%
Groundwater from Off-site Wells and Springs	Groundwater	Total Alkalinity (as CaCO ₃)	100%
Groundwater from Off-site Wells and Springs	Groundwater	Total Hardness (as CaCO ₃)	100%
Groundwater from Off-site Wells and Springs	Groundwater	Total Phosphorus (as PO ₄)	67%
Groundwater from Off-site Wells and Springs	Groundwater	Total dissolved solids (TDS)	100%
Groundwater from Off-site Wells and Springs	Groundwater	Trichloroethene	100%
Groundwater from Off-site Wells and Springs	Groundwater	Trichlorotrifluoroethane	100%
Groundwater from Off-site Wells and Springs	Groundwater	Tritium	83%
Groundwater from Off-site Wells and Springs	Groundwater	Uranium-233/234	100%
Groundwater from Off-site Wells and Springs	Groundwater	Uranium 235 and 236	50%
Groundwater from Off-site Wells and Springs	Groundwater	Uranium-238	100%
Groundwater from Off-site Wells and Springs	Groundwater	Vanadium	100%
Pre-construction Soil	Soil	2-Butanone	100%
Pre-construction Soil	Soil	Acetone	73%
Pre-construction Soil	Soil	Arsenic	94%
Pre-construction Soil	Soil	Barium	82%
Pre-construction Soil	Soil	Beryllium	100%
Pre-construction Soil	Soil	Chromium	100%
Pre-construction Soil	Soil	Cobalt	94%
Pre-construction Soil	Soil	Copper	100%

E. Percentage of In-Control Duplicate Pairs for Field Collected Samples

Monitoring Program	Media	Analyte	Percent of Pairs within Control Limit^(a)
Pre-construction Soil	Soil	Diesel Fuel	0%
Pre-construction Soil	Soil	Fuel Oil (No. 2-Diesel)	25%
Pre-construction Soil	Soil	Gross alpha	67%
Pre-construction Soil	Soil	Gross beta	100%
Pre-construction Soil	Soil	Lead	88%
Pre-construction Soil	Soil	Mercury	62%
Pre-construction Soil	Soil	Molybdenum	82%
Pre-construction Soil	Soil	Nickel	100%
Pre-construction Soil	Soil	Nitrate (as N)	100%
Pre-construction Soil	Soil	Plutonium 239+240	100%
Pre-construction Soil	Soil	Selenium	100%
Pre-construction Soil	Soil	Vanadium	100%
Pre-construction Soil	Soil	Zinc	94%
Livermore Site, Livermore Valley and Site 300 Soil	Soil	Beryllium	100%
Livermore Site, Livermore Valley and Site 300 Soil	Soil	Cesium-137	100%
Livermore Site, Livermore Valley and Site 300 Soil	Soil	Plutonium-238	100%
Livermore Site, Livermore Valley and Site 300 Soil	Soil	Plutonium-239/240	100%
Livermore Site, Livermore Valley and Site 300 Soil	Soil	Potassium-40	100%
Livermore Site, Livermore Valley and Site 300 Soil	Soil	Radium-226	100%
Livermore Site, Livermore Valley and Site 300 Soil	Soil	Radium-228	100%
Livermore Site, Livermore Valley and Site 300 Soil	Soil	Thorium-228	100%
Livermore Site, Livermore Valley and Site 300 Soil	Soil	Uranium-235	100%
Livermore Site, Livermore Valley and Site 300 Soil	Soil	Uranium-238	33%
Livermore Site, Livermore Valley and Site 300 Vegetation	Vegetation	Tritium	100%
Livermore Site Storm Water Runoff	Storm Water	Lead	0%
Livermore Site Storm Water Runoff	Storm Water	Magnesium	100%

E. Percentage of In-Control Duplicate Pairs for Field Collected Samples

Monitoring Program	Media	Analyte	Percent of Pairs within Control Limit ^(a)
Livermore Site Storm Water Runoff	Storm Water	Total suspended solids	100%
Livermore Site Storm Water Runoff	Storm Water	Chemical oxygen demand	100%
Livermore Valley Wine	Wine	Tritium	50%
Sanitary Sewer Discharge to Livermore WRD	Sewer Effluent	Gross beta	85%
Sanitary Sewer Discharge to Livermore WRD	Sewer Effluent	Tritium	84%
Sanitary Sewer Discharge to Livermore WRD	Sewer Effluent	Biochemical oxygen demand	100%
Sanitary Sewer Discharge to Livermore WRD	Sewer Effluent	Bromodichloro methane	100%
Sanitary Sewer Discharge to Livermore WRD	Sewer Effluent	Chloroform	100%
Sanitary Sewer Discharge to Livermore WRD	Sewer Effluent	Dibromochloro methane	100%
Sanitary Sewer Discharge to Livermore WRD	Sewer Effluent	Specific conductance	100%
Sanitary Sewer Discharge to Livermore WRD	Sewer Effluent	Tritium	84%

(a) Control limit is set at 30-percent; an RPD (relative percent difference) > 30-percent is out of control.
See Chapter 8, Section 8.2.3, for more information about RPDs. Data date April 28, 2021.

APPENDIX F
Number of Samples Collected with Valid Analytical Results
versus Planned

Program Description	Sample Matrix	Analysis Method	Sampling Frequency	Number Completed	Number Planned	Percent Complete
Routine						
Air Particulate	Air Filter	ICP-MS, beryllium	Monthly	146	148	99
Air Particulate	Air Filter	Gross α / β	Biweekly	674	763	88
Air Particulate	Air Filter	Gamma spec suite of nine radionuclides	Monthly	36	36	100
Air Particulate	Air Filter	Alpha spec isotopes of Pu	Monthly	227	228	99
Air Particulate	Air Filter	ICP-MS isotopes of uranium	Monthly	140	144	97
Air Tritium	Silica gel	Tritium on silica gel by LCS	Biweekly	507	563	90
Liv Valley Annual Wells	Groundwater	Tritium in groundwater by LSC	Annually	14	18	78
Annual Soils	Soil	Tritium by LSC	Annually	4	5	80
Annual Soils	Soil	Gross α / β	Annually	4	4	100
Annual Soils	Soil	Gamma spectroscopy for a suite of ten radionuclides	Annually	30	31	97
Annual Soils	Soil	Alpha spectroscopy for isotopes or plutonium	Annually	18	18	100
Annual Soils	Soil	Total metals	Annually	12	12	100
B581 STACK data	Air Filter	Gross α / β	Weekly	48	52	92
B581 STACK data	Air Filter	Tritium by LSC	Weekly	48	52	92
B581 STACK data	Air Filter	Gamma spectroscopy for a suite of five radionuclides	Weekly	48	52	92
B581 STACK data	Air Filter	Iodine 131 by gamma spectroscopy	Weekly	48	52	92
TEDA Air Filter	Air Filter	Iodine 131 by gamma spectroscopy	Weekly	48	53	90
Wine	Wine	Tritium by LSC	Annually	12	12	100
Vegetation	Vegetation	Tritium by LSC	Quarterly	72	72	100
Valley Other Waters	Drinking Water	Gross α / β	Semi-annually	5	5	100
Valley Other Waters	Drinking Water	Tritium by LSC	Semi-annually	5	5	100

F. Number of Samples Collected with Valid Analytical Results versus Planned

Program Description	Sample Matrix	Analysis Method	Sampling Frequency	Number Completed	Number Planned	Percent Complete
Valley Other Waters	Groundwater	Gross α / β	Annually	3	7	43
Valley Other Waters	Groundwater	Tritium by LSC	Annually	3	7	43
Sewer Non-Rad	Wastewater	Solids by Methods 2540 and 160.4	Monthly (increased to weekly mid-year)	34	41	83
Sewer Non-Rad	Wastewater	Cyanide by Method 335.4	Quarterly	4	4	100
Sewer Non-Rad	Wastewater	Organochlorine pesticides by Method 608	Monthly	13	13	100
Sewer Non-Rad	Wastewater	Volatile organic compounds by Method 624	Monthly	13	13	100
Sewer Non-Rad	Wastewater	Semi-volatile organics by Method 625	Monthly	13	13	100
Sewer Non-Rad	Wastewater	Tritium by LSC	Monthly	2	1	200
Sewer Non-Rad	Wastewater	Gross α / β and tritium	Weekly plus monthly duplicates	66	66	100
Sewer Non-Rad	Wastewater	Biochemical oxygen demand by SM 5210B	Monthly (increased to weekly mid-year)	35	42	83
Sewer Non-Rad	Wastewater	Metals by Method 200.8	Quarterly	4	4	100
Sewer Rad	Wastewater	Cesium 137 by gamma spectroscopy	Monthly	36	36	100
Sewer Rad	Wastewater	Gross α / β	Monthly	37	37	100
Sewer Rad	Wastewater	Gamma spectroscopy suite of nine radionuclides	Quarterly	4	3	133
Sewer Rad	Wastewater	Plutonium isotopes by alpha spectroscopy	Monthly (quarterly for L-WRDC-SW)	40	39	103
Sewer Rad	Wastewater	Tritium by LSC	Monthly composite of daily	12	12	100
Sewer Rad	Wastewater	Tritium by LSC	Monthly	36	36	100

F. Number of Samples Collected with Valid Analytical Results versus Planned

Sewer Rad	Wastewater	Gross α / β and tritium	Monthly gross α / β , daily tritium, plus duplicates	481	481	100
Sewer Rad	Wastewater	Metals	Monthly, discontinued after February sampling	6	18	33
TLDs all Sites	Dosimeters	Thermoluminescent dosimetry	Quarterly	66	99	67
Non-Routine						
Pre-construction Soils	Soil	Soil reuse analytical suite	As needed	1187	1702	70
Industrial Management Area Storm Water Runoff	Stormwater	NPDES permit analytical suite	Storm dependent	67	162	41
Rain	Rain	Tritium by LSC	Storm dependent	0	16	0

See Chapter 8, Section 8.2.3.2, for more information about completeness. Data date April 29, 2021.

This page is intentionally left blank.