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Abstract—Power systems operation is facing great challenges
from natural disasters and cyber-attacks. It is critical but also
difficult to enhance the reliability and resilience against extreme
events. To better response to inevitable outages or blackouts,
service restoration in distribution networks is important to
minimize the disastrous impacts of catastrophic events. The
increasing penetration of distributed energy resources (DERs)
provides new opportunities to expedite the restoration process.
However, the coordination with conventional distribution system
control devices and the uncertainty and variability of intermittent
renewable energy resources requires new operation and control
strategies for distribution service restoration (DSR). This paper
develops an optimal bottom-up DSR strategy by coordinating
DERs with voltage regulators and capacitor banks. The chance-
constrained (CC) programming approach is used to model the
probabilistic output limit of solar radiation and PV genera-
tion. The Markov’s inequality and Latin hypercube sampling
techniques are applied to convert and incorporate the chance
constraints into the DSR optimization problem. The CC-DSR
problem is formulated as a mixed integer convex programming
problem, considering various operational cost functions and
bidirectional three-phase unbalanced load flow. Simulation results
on the modified IEEE 13-node test feeder system demonstrate the
effectiveness and flexibility of the bottom-up DSR strategy.

Index Terms—Chance constrained optimization, Distribution
service restoration, Markov’s inequality, Mixed integer convex
programming, PV generation uncertainty

I. INTRODUCTION

The growing dependency on electrical energy requires sys-
tem operators to maintain and enhance power system relia-
bility and resilience. However, power systems are not only
extremely complex and nonlinear, but also being constantly
threatened by various natural or man-made extreme events,
such as hurricanes or cyber-attacks. It is exceptionally chal-
lenging and costly to make power systems resilient against
various disturbances [1]. Therefore, outages or blackouts are
inevitable. After a major outage, system operators depend
on coordinated and optimal restoration efforts from different
sections, including generation, transmission, and distribution
systems to restore the entire system back to normal operating
conditions [2].

Distribution service restoration (DSR) is the process of
minimizing outage impacts by finding the optimal set of loads
to be restored [2]. Traditionally, this procedure starts after
a substantial part of transmission systems been restored and
reached to a certain level of stability. The DSR strategy is a

complicated decision-making process, involving various inde-
pendent entities with their own specific constraints. System
operators should provide coordinated control actions to drive
the procedure while satisfying these constraints and main-
taining system reliability and stability. In the literature, the
DSR problem is formulated based on system reconfiguration
or available upstream network capacity [3]–[5]. In the top-
down approach, DSR is initiated once the connected substation
becomes energized. This procedure consists of various tasks
including, picking up dispatchable or non-dispatchable loads
at different nodes, and the operation of voltage regulator (VR)
and capacitor banks at each restoration time step.

The recent development of new smart grid technologies and
integration of distributed energy resources (DERs) provide
great potentials to expedite the DSR procedure. Active dis-
tribution networks (DNs) with emerging DERs and remotely
controllable devices enable the bottom-up strategy in service
restoration [6]. Therefore, optimal operation and control strate-
gies should be developed to coordinate DERs and conventional
distribution system control devices for more efficient restora-
tion solutions. However, most DNs are operated in radial
topology due to the limited protection system coordination
[7]. The high penetration of DERs not only introduces new
decision variables and operational constraints, but also brings
challenges of bidirectional power flow for DSR.

Among various DERs, the integration of renewable energy
resources (RESs) such as photovoltaic (PV) generators is fast
growing, due to the exhaustion of fossil energy, the global
warming issue, and the limitation of available transmission
corridors [8]. Although the integration of RESs helps alleviate
global warming issues and postpone transmission expansion
projects, the high penetration of RESs could result in risks for
the secure operation of power systems. In the literature, studies
in [6], [9] proposed DSR procedure based on isolated entities
or microgrids with their own DERs and then synchronization
of these isolated entities. Nevertheless, most of recent studies
have not yet considered the uncertainty of RESs during DSR.

PV generation is different from traditional generators in
terms of variability, which it changes with solar radiation,
and uncertainty, which it cannot be perfectly predicted [10].
Different approaches have been proposed to model this un-
certainty into power system operation. Paper [11] modeled
PV uncertainty as a Markov process. However, this approach

978-1-5386-3596-4/18/$31.00 c©2018 IEEE PMAPS 2018



usually needs establishing a huge transition matrix which
is computationally expensive. Paper [12] modeled RESs un-
certainties by generating scenarios for microgrid operation
problems. However, it is difficult to select an appropriate
number of scenarios to balance modeling accuracy, computa-
tional efficiency, and solution feasibility. A chance-constrained
(CC) approach is utilized in [13] to model PV generation
uncertainty for volt/var control problem in DNs. However,
the study applied PV generation probability density function
(PDF) into the CC programming which is usually unavailable.

In this paper, an optimal DSR strategy is developed by
coordinating microturbine (MT) and inverter-based PV genera-
tors with VRs and capacitor banks. First, a chance-constrained
approach is proposed to model solar radiance and PV gener-
ation uncertainty. Then, Markov’s inequality and Latin hyper-
cube sampling (LHS) techniques are applied to convert and
incorporate the probabilistic constraints into the DSR opti-
mization problem. Finally, the CC-DSR problem is formulated
as a mixed integer convex programming problem. Detailed
components modeling and different operational constraints are
considered in this paper, including various operational cost
functions, three-phase VR modeling, bidirectional load flow
in three-phase unbalanced DNs, and etc. The developed CC-
DSR algorithm is tested in the modified IEEE 13-node test
feeder. Different sensitivity analyses are presented to exam the
effectiveness and flexibility of the bottom-up DSR strategy and
the impact of RESs uncertainty.

II. MODELING OF PV GENERATION UNCERTAINTY

This section presents the model of PV generation un-
certainty. The random variable of PV generation depends
on weather conditions, such as solar radiation, temperature,
humidity, etc. In this paper, the PV generation is modeled as
a function of solar radiation. The probabilistic PV generation
output limits are formulated as chance-constrained constraints.
The Markov’s inequality and Latin hypercube sampling (LHS)
techniques are applied to convert chance constraints into
deterministic constraints and integrate into the DSR problem.

A. Solar Radiation and PV Generation Modeling

The solar radiation is usually considered as the main factor
affecting the output power of PV generators. Abundant litera-
ture work have demonstrated that the stochastic solar radiation
approximately follows a Beta distribution [14] with parameters
αt and βt during tth time interval as follows:

fb(st) =

{
Γ(αt+βt)

Γ(αt)·Γ(βt)
× sαt−1

t × (1− st)βt−1 for 0 ≤ st ≤ 1

0 Otherwise
(1)

where st represents solar radiation in kW/m2 at time step t.
To calculate the parameters of the Beta distribution function,
mean (µt) and variance (σ2

t ) of the random variable st are
utilized as follows [14]:

βt = (1− µt)×
(
µt × (1 + µt))

σ2
t

− 1

)
(2a)

αt =
µt × βt
1− µt

(2b)

Note that in this model, the mean value equals to the
predicted solar radiation, and the variance value is calculated
using historical solar radiation data. The output power of PV
generators is a function of solar radiation, as stated by the
radiation-power curve in [15]:

P genPVi,t
=


P ratedPVi

(
s2t

SSTD Sc
) if 0 ≤ st < Sc

P ratedPVi

st
SSTD

if Sc ≤ st < SSTD

P ratedPVi
if SSTD ≤ st

(3)

where P genPVi,t
is the output of PV generator i at time t, and

P ratedPVi
is the capacity of PV generator i. Sc is a certain

radiation point and usually set to 150 W/m2, and SSTD is
solar radiation in standard conditions and set to 1 kW/m2 [8].

B. Chance-constrained PV Generation Output Limits

To capture the uncertainty of PV generation, the available
PV generation P genPVi,t

is modeled as a random variable. The
injected power of inverter-based PV generator P injPVi,t

must be
no more than P genPVi,t

. The inverter-based PV generators also
provide the capability of active power curtailment [16]. The
chance-constrained formulation with confidence level δi for
each PV generator i is modeled as follows:

Pr
{
P injPVi,t

≤ P genPVi,t

}
≥ δi (4)

Given a non-negative random variable X for any positive
real number a, Markov’s inequality states that P (X ≥ a) ≤
E(X)/a [17]. Applying the Markov’s inequality to equation
(4), one obtains:

δi ≤ Pr
{
P injPVi,t

≤ P genPVi,t

}
≤
E(P genPVi,t

)

P injPVi,t

(5)

Combing both ends of (5), one can achieve:

P injPVi,t
≤ 1

δi
· E(P genPVi,t

) (6)

An advantage of (6) is that empirical estimates of the
expected values can be obtained via sample averaging [18].
Accordingly, given Ns samples of random variable P genPVi,t

, an
approximation of (6) can be achieved:

P injPVi,t
≤ 1

δi
· 1

Ns
·
Ns∑
s=1

P gen,sPVi,t
(7)

where Ns shows the total number of random scenarios at time
step t. Generating sufficiently large number of scenarios leads
to covering all sample space, and guarantees the convergence
of the right-hand side (RHS) of (7) to (6). The sample
generation method is described in next subsection.



C. Scenario Generation

The forecasted PV generation is modeled by scenario gen-
eration using LHS strategy. A large number of scenarios are
generated to completely represent the stochastic nature of
the solar generation. These scenarios are generated based on
generating random numbers for the PDF of solar radiation in
(1) for every restoration time step. LHS method can accurately
cover the probabilistic factor through fewer and established
samples compared to the Monte-Carlo method [19]. The PDF
function is divided into n equal non-overlapping intervals
within which sampling procedure is performed. Therefore,
it is guaranteed that one sample exists at each interval and
the entire PDF space including tails are completely covered.
Then, these random solar radiation scenarios are employed to
generate solar generation scenarios for each PV generator i. In
this paper, it is assumed that, PV generators are geographically
close to each other in which solar radiation scenarios are
similar for all PV generators.

III. PROBLEM FORMULATION OF CC-DSR

The CC-DSR problem is modeled as a mixed integer
convex optimization problem. Given a DN with Nn nodes,
the substation node is shown by 1 and N := {1, 2, ...,Nn}
represents the set of all nodes. The total restoration planning
horizon is τ = {1, ..., t, ..., T} with total T discrete time steps.

A. Objective Function

The objective of CC-DSR problem is to maximize total
restored loads throughout the entire restoration period of τ .
The objective function is defined as:

max
∑
t∈τ

{∑
i∈L

wi,t × P Load
i,t −

4∑
k=1

Jk,t

}
(8)

where L represents total loads of DN, P Load
i,t and wi,t represent

total demand and priority of load i at time step t, respectively.
Jk,t represent cost functions of PV curtailment, MT operation,
voltage regulator (VR) operation, and total network loss, as
follows:

J1,t =
∑

j∈NPV

c1 · P injPVj ,t
(9)

J2,t =
∑

j∈NMT

c2 · PMT
j,t (10)

J3,t = c3 · |ntap,t − ntap,t−1| (11)

J4,t =
∑
j∈Line

c4 · rLine
j × (ILine

j,t )2 (12)

where NPV and NMT show the total number of PVs and MTs,
respectively. PMT

j,t is the generation output of MTj at time
step t, and ntap,t shows VR tap position at time step t. rLine

j

and ILinej
j,t represent resistance and current flow of distribution

line j, respectively. ci is the coefficient of each cost function,
depending on system operators’ emphasis.

B. Constraints

Let xLoad
i,t and xMT

j,t denote the status of dispatchable load
i and MT unit j at time step t, respectively. Constraint
(13) defines the pick-up capacity of non-dispatchable load.
The maximum active and reactive power limits of loads are
guaranteed in (14). Constraint (15) sets voltage limits, which
Vi,t represents the three-phase unbalanced nodal voltage of
node i at time step t. Constraint (16) checks the branch current
to satisfy the limit Imaxl . Once a load is energized, it should
not be shed during the restoration procedure. This sequencing
constraint is satisfied by (17). The restoration capacity of
the distribution network is checked in (18). Constraint (19)
presents a convex inequality relation to limit the output capac-
ity of inverter i, Scapinvi

. The chance-constrained PV generation
output limit developed in section II is presented in (20). MT
operational constraints for maximum capacity and ramp up
and down limits are included in (21), (22) and (23) [6]. Also,
the capacitor bank maximum capacity is limited in (24), where
QCi,t shows the reactive power of capacitor bank i at time step
t. Three-phase voltage regulators can be modeled by three
single phase voltage regulators. In this paper, VR is assumed
to be wye-connected type B. The relationship between primary
and secondary side of a VR is presented by (25), where a
stands for voltage ratio. A linearized model of VR presented
in [20] which is used in this paper.

P Load
i,t = xLoad

i,t · Pmax
i,t , ∀ i ∈ L (13)

0 ≤ P Load
i,t ≤ Pmax

i,t , 0 ≤ QLoad
i,t ≤ Qmax

i,t (14)

V min ≤ Vi,t ≤ V max, ∀ i ∈ N (15)

ILine
l,t ≤ Imaxl , ∀ l ∈ Line (16)

P Load
i,t ≥ P Load

i,t−1, ∀ i ∈ N (17)

0 ≤ P Line
1,t ≤ P sub

l,t , 0 ≤ QLine1,t ≤ Qsub
l,t (18)[

P injPVi,t

2
+QinjPVi,t

2
]
≤ Scapinvi

2 (19)

P injPVi,t
≤ 1

δi
· 1

Ns
·
Ns∑
s=1

P gen,sPVi,t
(20)

xMT
j,t · P

MT,min
j,t ≤ PMT

j,t ≤ xMT
j,t · P

MT,max
j,t (21)

xMT
j,t ·Q

MT,min
j,t ≤ QMT

j,t ≤ xMT
j,t ·Q

MT,max
j,t (22)

(−1× RampMT
j ) ≤ PMT

j,t − PMT
j,t−1 ≤ RampMT

j (23)

0 ≤ QC
i,t ≤ Q

C,max
i (24)

Vi,t = a · V sub
t : a = 1 + R% · (ntap,t/ntap) (25)

In this paper, the branch flow model (BFM) in [6] is used
to model power flow in three-phase unbalanced DNs. The
equations are improved by including the lines loss in the power
balance equation. And the convex relaxation method in [21] is
applied to convexify these constraints instead of linearizion.

Ui,t = Uj,t − 2
(
r̃ji · PLinei,t + x̃ji ·QLinei,t

)
+ Z̃ji · `i,t (26a)



PLinei,t = PLoadi,t +
∑
j∈Ci

PLinej,t − PDERi,t + rji · `i,t (26b)

QLinei,t = QLoadi,t +
∑
j∈Ci

QLinej,t −QDERi,t −QCi,t+xji ·`
φ
i,t (26c)

Uj,t � `i,t =
[
PLinei,t � PLinei,t +QLinei,t �QLinei,t

]
(26d)

where, the element-wise product is denoted by �, and

r̃ji = Re {α� rji} − Im {α� xji} (27a)

x̃ji = Re {α� xji}+ Im {α� rji} (27b)

z̃ji = |zji| � |zji| (27c)

Also, Ui,t =
[∣∣V ai,t∣∣2 , ∣∣V bi,t∣∣2 , ∣∣V ci,t∣∣2] stands for the square

of the voltage at each phase. Moreover, Ci shows set of
children nodes for node i and li,t stands for square of the
current in distribution line i. The α matrix is defined by:

α =

 1 e−j2π/3 ej2π/3

ej2π/3 1 e−j2π/3

e−j2π/3 ej2π/3 1

 (28)

IV. SIMULATION RESULTS

A. Test System

The developed CC-DSR algorithm is tested on the modified
IEEE 13-node test feeder, as shown in Fig. 1. The total load
is 3,266 kW, with the minimum power factor assumed as
0.85. Two spot loads at nodes 3 and 6 are non-dispatchable
with higher priority than other spot loads. The detailed system
parameters, such as substation capacity and distribution line
characteristics could be referred in [22].

Three DERs are connected to the unbalanced distribution
network. One dispatchable MT is installed at node 3, with
the maximum and minimum capacity of 300 kVA and 60
kVA, respectively. Two different penetration levels of 25%
and 50% are considered to study the impact of PV penetration
on restoration strategies. Accordingly, two inverter-based PVs
are connected at nodes 7 and 11, each with the generation
capacity of 420 kW for 25% and 810 kW for 50% penetrations,
assuming 3-phase balanced injection. Also, it is assumed that
PV inverter have 20% more capacity than PV generators’
capacity, in order to provide reactive power control. In this
paper, 8 restoration time steps (each with the duration of
30 minutes as 1 p.u. time) are assumed to coordinate with
transmission system restoration.

The historical data of solar radiation in Orlando, FL, is
obtained from national solar radiation database of NREL [23].
Accordingly, the data in one random day of August is selected
as the predicted value for next 24 hours. Then, similar days
are selected for generating 300 random scenarios based on
the method in section II. Fig. 2 shows the predicted solar
generation and the upper limit of chance-constrained solar
generation with 0.9 and 0.8 confidence levels. Note that,
the confidence level can be adjusted by system operators
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Fig. 2. Comparisons of PV generation (50% penetration)
with forecasted radiance and CC-based method in different
confidence levels.

depending on the availability of other generation resources
and battery storage systems.

B. CC-DSR Simulation

The CC-DSR algorithm determines the load pick-up amount
and location, the dispatch level of MT and inverter-based
PVs, and the operation of VR and capacitor banks at each
restoration time step. Fig. 3 shows the restoration procedure
of the DN and its total restored power at each time step, for the
case of restoration starting at 3 p.m. with 50% PV penetration.
In this figure, a flat voltage profile of VR secondary is
shown in red curve, as the result of the constant voltage at
substation. The real power supplied from transmission network
to substation is demonstrated by blue dotted line, and total
three-phase demand of DN is depicted by dotted black line.
Note that, the difference between consumed power by loads
and provided power by substation and total DERs, represents
the loss in DN.

The absorbed power by DN, and the generation output of
MT, PV1, and PV2 are shown in dark blue, light blue, green,
and yellow bars, respectively. Considering the operational cost
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of the MT and the cost of unserved loads, MT is operated
within first 7 time steps with gradually reduced amount until
totally turned off in the end. Also, in time steps 4 and 5, a
portion of the provided power from transmission network is
not used, but saved to pick up the bulk non-dispatchable load
with high priority at node 6 in time step 6, shown as the sharp
increase of restored load compared with the base case. More
PV generation is provided to pick up loads in the early stage of
restoration, especially in time step 6. After all loads restored
in time step 7, optimal PV generation output is determined
considering both economic operation and loss minimization.

Furthermore, Fig. 4 shows the three-phase unbalanced volt-
age of all nodes in the last restoration time step. It can be seen
that capacitor banks support voltage (Phase C) at nodes 8 and
9, and PV generation at nodes 7 and 11 cause voltage rises
compared to other nodes without DERs.

C. Sensitivity Analysis of CC-DSR

The CC-DSR is tested on two PV penetration levels and
for outages at two different times of the day. Fig. 5 shows
the comparison of the load restoration procedure in different
case studies. It is shown that utilizing DERs can help restore

more loads, and the uncertainty of renewable generators pose
different impacts based on the penetration level and restoration
starting time. The perfect prediction could be used for the
restoration planning, and CC-DSR with different confidence
levels can provide relaxed capability of PV, which enables to
pick up more load with high priority.

The top-left figure of Fig. 5 shows the restored load for
restoration starting at 9 a.m. with 25% PV penetration. Small
differences among different confidence levels (100%, 90%,
and 80%) can be observed throughout the entire restoration
period. In the bottom-left figure with 50% PV penetration,
increased PV generation provides more restored load, and
large difference between different confidence levels (90% and
80%) can be observed. The non-dispatchable load with high
priority at node 6 is restored at time step 7 under the perfect
prediction, while it is picked up at time step 5 with CC-DSR
due to the relaxed capability.

The right-hand side of Fig. 5 shows the restoration proce-
dure starting at 3 p.m. Comparing two top figures of restoration
under 25% PV penetration and at different times, it can
be seen that less load can be restored at time step 6, for
restoration starting at 3 p.m. with perfect PV prediction and
90% confidence level. It is due to higher load profile in
the afternoon than in the morning. But this difference is
eliminated in the case of 80% confidence level, due to more PV
generation from the relaxed capability. However, for 50% PV
penetration level in the bottom-right figure, similar restoration
performance can be observed for different confidence levels,
due to sufficient PV generation from higher PV penetration
to pick up load. And the relaxed capability from different
confidence levels can provide further but small improvement
in load restoration.

V. CONCLUSIONS

The increased penetration of renewable energy resources
such as PV generators, brings both opportunities and chal-
lenges for power system operation. In this paper, a new math-
ematical formulation of distribution service restoration (DSR)
with renewables is developed under the chance-constrained
(CC) programming framework. Based on Markov’s inequal-
ity, the probabilistic chance-constrained PV generation output
limits are converted into deterministic inequality constraints,
which could cover any arbitrary distribution of random vari-
ables. The chance-constrained service restoration in unbal-
anced distribution networks with PV generation is modeled
as a mixed integer convex programming problem. It is shown
that the CC-DSR model provides relaxed solutions depending
on the confidence level of chance constraints. Compared to the
perfect prediction value of PV generation, the CC-DSR is able
to provide better restoration planning by picking up more loads
with high priority. It also provides system operators the flex-
ibility of choosing different restoration strategies, according
to the confidence level of PV generation output, penetration
levels of renewable, and the restoration starting time.
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Fig. 5. Comparisons of total restored loads in different PV penetration levels and at different starting time.
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