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* High temperature-stable particles enable the use of a high efficiency sCO2 Brayton cycle.

* The performance of the particle-sCO2 heat exchanger is crucial to the levelized cost of

electricity.




; ‘ Particle-sCO2 Heat Exchanger Design
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* Design of a | MW, particle-sCO, heat exchanger for the G3P3 Particle Pilot Plant.

* The performance, sizing, and start-up procedure for the heat exchanger was determined.



‘ Particle-sCO2 Heat Exchanger Model
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Modeling Obijectives:

* Determine thermal performance via the overall heat transfer coefficient (U).
* Calculate the number of microchannel plates required for a | MWth thermal duty.

* Establish a start-up procedure which does not create stresses outside the allowable range.



5 ‘ Steady State Results
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* Adding the particle flow around the headers reduced U by less than |%.
* The overall heat transfer coefficient was determined to be 434.47 W/m?2-K, an improvement
from 167 W/m2-K [I] for a cross-flow heat exchanger design.

The number of 0.58 m wide, 1.28 m tall plates required for a | MW, thermal duty was 35.

[I] Albrecht, K. J. and Ho, C. “Heat Transfer Models of Moving Packed Bed Particle to sCO 2 Heat Exchangers,” Power Energy (2017).



6 ‘ Particle Mass Flow Rate Ramping
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* The particle flow rate was increased at various rates until the target flow rate was reached.
* The heat exchanger was initially set to the target inlet temperature of the sCO,.

* All flow rate ramps caused a peak stress around 130 MPa, well above the allowable stress.
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* The particle inlet temp. was increased at various rates until the target temp. was reached.
* The heat exchanger was initially set to the target inlet temperature of the sCO,. ‘
* All temperature ramps caused less peak stress than the flow rate ramps. I



| Plate Vertical Edge Effects
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Plate Stress During Start-Up

* This space at the sides of the plate caused areas of high stress during start-up.

* Initially the plate’s design had a 15.4 mm space from the edge of the plate to the It channel. |
* Reducing this space to 3 mm decreased the stress on the sides of the plate significantly. ‘
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Von Mises Stress (MPa)

| Start-Up Procedure Analysis
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The particle inlet temperature ramps were then applied to the heat exchanger with 3 mm
spacers.

The spacers’ peak stress reduced significantly when the spacers were reduced to 3mm.
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The particle inlet temperature ramps were then applied to the design with 3 mm spacers.
A 20 °C per minute ramp was determined as the quickest start-up procedure to stay under

the allowable stress on the vertical sides.



. | Conclusions 1N

* Key factors found in the modeling of this heat exchanger:
o Around |160% increase in U for counter-flow from cross-flow HX.

> Areas within the plate without bad thermal communication cause high

stress.

o Temperature ramps induced less stress than flow rate ramps.

* Further model development:

°Implement a CFD analysis of the sCO2 flow through microchannel

plate.

°Investigate stress around microchannels with refined mesh.
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