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2 I Particle-sCO2 Solar Power Plant
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• High temperature-stable particles enable the use of a high efficiency sCO2 Brayton cycle.

• The performance of the particle-sCO2 heat exchanger is crucial to the levelized cost of

electricity.



VACUUM PROCESS ENGINEERING

3 I Particle-sCO2 Heat Exchanger Design
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• Design of a l MWth particle-sCO2 heat exchanger for the G3P3 Particle Pilot Plant.

• The performance, sizing, and start-up procedure for the heat exchanger was determined.



4 I Particle-sCO2 Heat Exchanger Model
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Modeling Objectives:

• Determine thermal performance via the overall heat transfer coefficient (U).

• Calculate the number of microchannel plates required for a l MWth thermal duty.

• Establish a start-up procedure which does not create stresses outside the allowable range.
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5 I Steady State Results
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• Adding the particle flow around the headers reduced U by less than 1%.

• The overall heat transfer coefficient was determined to be 434.47W/m2-K, an improvement

from 167W/m2-K [1] for a cross-flow heat exchanger design.

• The number of 0.58 m wide, 1.28 m tall plates required for a 1 MWth thermal duty was 35.

[1] Albrecht, K. J. and Ho, C. "Heat Transfer Models of Moving Packed Bed Particle to sCO 2 Heat Exchangers," Power Energy (2017).



6 I Particle Mass Flow Rate Ramping

5% Particle Flow Rate 10% Particle Flow Rate 20% Parficle Flow Rate
Ramp Ramp Ramp

Time: 0 00

— 3.0e+07

2.5e+7/

CT!
2e+7

4
1 5e+7 '''rb,

:1 e+7 2

5e+6 

0

— 0.0e+00 Time: 0.00

— 3.0e+07 — 3 Oe+07

2.5e+7 • 2.5e+7

Oa.
2e+7 i

1.5e+7 ''',,
114

1 e+7 ;
o

5e+6 >

— 0.0e+00 lime: 0.00

2e+7

1.5e+7
111

1 e+7

5e+6

— 0.0e+00

Plate Stress During Start-Up

140.00

1 30.00

1 20.00

I 10.00
2-
z 100.00

90.00

80.00

fv)
70.00

>c)

60.00

50.00

40.00

30.00

5% rhp per min

----10% rhp per min

20% rhp per min

0 200 400 600 800 1000 1200 1400 1600
Time (seconds)

• The particle flow rate was increased at various rates until the target flow rate was reached.

• The heat exchanger was initially set to the target inlet temperature of the sCO2.

• All flow rate ramps caused a peak stress around 130 MPa, well above the allowable stress.



7 1 Particle Temperature Ramping
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• The particle inlet temp. was increased at various rates until the target temp. was reached.

• The heat exchanger was initially set to the target inlet temperature of the sCO2.

• All temperature ramps caused less peak stress than the flow rate ramps.



Match Vertical Edge Effects
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Plate Stress During Start-Up

• Initially the plate's design had a 15.4 mm space from the edge of the plate to the l St channel.

• This space at the sides of the plate caused areas of high stress during start-up.

• Reducing this space to 3 mm decreased the stress on the sides of the plate significantly.



9 Start-Up Procedure Analysis
65 00  

60.00

A
--,- 55.00 l 1
E 1 I
a_

111 50.00 / I
a)
v) /  ,...4.tr,
al 45.00 / \. # ‘. ..... N .• 

... %

.±L)
/ / / 

"•••••• ........
... 2:"

. ‘"%iiram. ..,=,... ...o.. 
% % 

""=taa..

...C
., 40.00 

/ / , 
/ 

-------
....

-- 
//,'

35.00 il
II:

30.00 V ' ' '
0 200

10 °C/min
---- 20 °C/min
— — 40 °C/min
— - 80 °C/min

1 i i

400 600 800 1000 1200 1400 1600

Time (seconds)

• The particle inlet temperature ramps were then applied to the heat exchanger with 3 mm

spacers.

• The spacers' peak stress reduced significantly when the spacers were reduced to 3mm.



10 I Start-Up Procedure Analysis
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Plate Stress During Start-Up

• The particle inlet temperature ramps were then applied to the design with 3 mm spacers.

• A 20 °C per minute ramp was determined as the quickest start-up procedure to stay under

the allowable stress on the vertical sides.



ii I Conclusions

Key factors found in the modeling of this heat exchanger:

Around 160% increase in U for counter-flow from cross-flow HX.

Areas within the plate without bad thermal communication cause high

stress.

Temperature ramps induced less stress than flow rate ramps.

Further model development:

Implement a CFD analysis of the sCO2 flow through microchannel

plate.

Investigate stress around microchannels with refined mesh.
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