

## Background

Ammonia ( $\text{NH}_3$ ) is one of the most commonly produced industrial chemicals worldwide. Fertilizer for agriculture accounts for about 80% of  $\text{NH}_3$  production. Furthermore,  $\text{NH}_3$  is in consideration as a hydrogen carrier or as an energy vector in a deeply decarbonized energy system.

### What are the drawbacks of the current Haber-Bosch (H-B) process?

- An energy-demanding conversion from  $\text{H}_2$  and  $\text{N}_2$  at 150-250 bar;
- The major source of  $\text{H}_2$  and  $\text{N}_2$ , by reforming and combusting hydrocarbons, is highly carbon-intensive;
- The energy to provide process heat and pressure for  $\text{NH}_3$  production also requires combustion of methane.

There is a strong incentive to develop a sustainable  $\text{NH}_3$  synthesis pathway. For example, using concentrating solar irradiation for process heat and pursuing relatively low-pressure operating conditions will significantly help mitigate greenhouse gas emissions and enable flexible operations at a smaller scale than H-B.

## Method

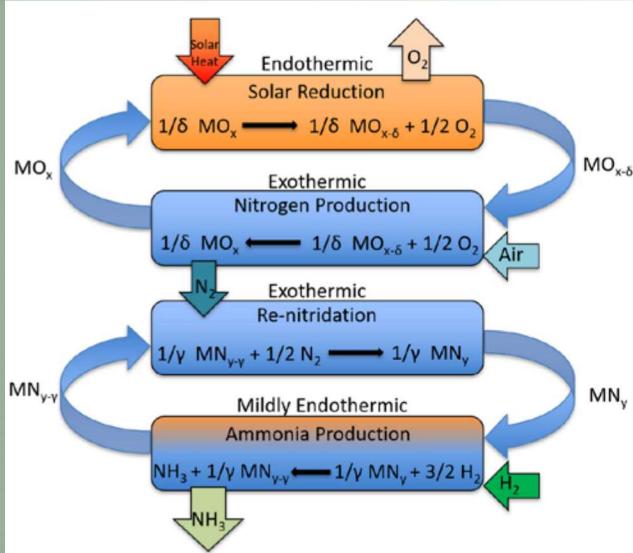



Figure 1: A solar thermochemical looping technology to produce and store  $\text{N}_2$  from air for the subsequent production of  $\text{NH}_3$  via an advanced two-state process.

### What is the proposed $\text{NH}_3$ production method?

- Concentrated solar irradiation first drives the reduction of redox-active metal oxide particles; metal oxides are then re-oxidized by air, resulting in nearly  $\text{O}_2$ -free  $\text{N}_2$  gas;  $\text{H}_2$  can be produced from a net carbon-neutral process;
- $\text{H}_2$  reacts with a metal nitride to produce  $\text{NH}_3$  and a nitrogen deficient nitride;
- The nitrogen deficient nitride reacts with sustainable  $\text{N}_2$  to regenerate the initial nitride.

The target pressure for the  $\text{NH}_3$  synthesis looping cycle is an order of magnitude lower than the H-B process.

## Design Philosophy and Results

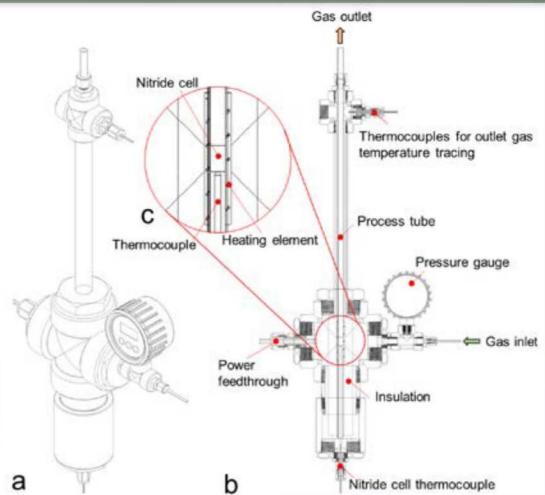



Figure 2: Illustration of the  $\text{NH}_3$  synthesis reactor (ASR). (a) Isometric view. (b) Front cut-plane view with major components labeled. (c) Heated reaction zone.

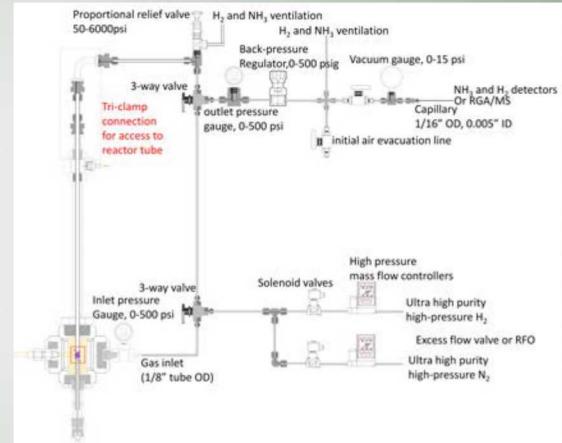



Figure 3: The process and instrumentation design for the ASR system.

### Design of the benchtop $\text{NH}_3$ synthesis test reactor:

- $\text{NH}_3$  synthesis and re-nitridation reactions are achieved in one reactor cyclically by switching between pressurized (up to 30 bar)  $\text{H}_2$  and  $\text{N}_2$  inlet gas flows;
- The design purposely maximizes the utilization of commercial off-the-shelf components;
- Unnecessary dead volume in the pressurized zone is significantly minimized;
- The reactor volume (< 2L) captures the design features of a scaled-up unit to simulate heat transfer and material reactivity losses during cyclic operations.

The ASR enables cool inlet  $\text{H}_2/\text{N}_2$  gases that fill an annulus between the “hot-wall” process tube and the “cold-wall” pressure vessel, to decouple the compound risk of high pressure and high temperature.

## Acknowledgement

We would like to acknowledge the team and institutions involved in this work: Sandia, Georgia Institute of Technology and ASU. This material is based on work supported by the U.S. Department of Energy Solar Energy Technologies Office under Award No. DE-EE0001529. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.