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3 I Abstract Text

The concept of using reversible computing to circumvent fundamental
physical limits on energy efficiency has historical roots going all the way back
the 1961 work of Landauer, and was shown to be theoretically workable by
Bennett in 1973. But, over the last 59 years, relatively little attention has been
paid, from a fundamental physics perspective, to the question of just how
energy efficient, as a function of speed, practical physical implementations of
reversible computing can be made to be. To finally answer this question in a
definitive way is becoming an increasingly important task as the conventional,
non-reversible computing paradigm approaches its limits. Recruiting the
physics community to turn increased attention to solving this and related
problems is one of the major motivations for this workshop. In this talk, we
kick off the Fundamental Physics session by giving an overview of what's
already known about the fundamental physics of reversible computing, and
highlighting some important research challenges in this area.



4 Outline of Talk

Fundamental Physics of Reversible Computing
An Introduction
• I. Motivation & Brief History
• II. Foundational Topics:

O Computational and Physical Information
O Fundamental Theorem of the Thermodynamics of Computing

O Landauer's Principle

O Fundamental Theorem of Traditional Reversible Computing

O Fundamental Theorem of Generalized Reversible Computing

O Quantum Dynamics of Classical Computing—a generic formulation

O Some known fundamental relations between speed and dissipation (likharev, Feynman)

° In Looking Ahead:
O What advances in the fundamental physics of reversible computing are needed to provide a foundation for
a robust engineering discipline?
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6 M otiv at i o n

Why are we here?
o Progress in the energy-efficiency of the conventional (non-reversible) computing
paradigm is approaching hard limits, which ultimately trace back to fundamental
thermodynamic issues.
O Industry is already struggling to continue to advance along the traditional scaling path.

o Energy efficiency is a fundamental limiting factor on the economic utility of
computing.
O Without energy efficiency gains, there are diminishing returns from optimizing every other aspect of
computing.

o Transitioning to the unconventional computing paradigm known as reversibk
computing provides the only physically possible alternative scaling path for allowing
the energy efficiency of general digital computing to continue improving
indefinitely...
O And, so far, no fundamental limit to the (even practically) achievable efficiency is known.

o The overall economy is becoming increasingly dependent on computing, as a
larger and larger share of economic activity takes place in the cyber realm...
O Making reversible computing practical thus has the potential to multiply the total economic value of civilkation
(for any given amount of available energy resources) by indefinitely many orders of magnitude.



7 I Semiconductor Roadmap is Ending...
Thermal noise on gate electrodes of minimum-width
segments of FET gates leads to significant channel PES
fluctuations when Ag' < 1-2 eV
• Increases leakage, impairs practical device performance

Thus, roadmap has minimum gate energy asymptoting to -2 eV

Also, real logic circuits incur many compounding overhead
factors multiplying this limit:
• Transistor width 10-20x minimum width in fast logic.

o Parasitic (junction, etc.) transistor capacitances (-2x).
• Multiple (-2) transistors fed by each input to a given logic gate.
• Fan-out of each gate to a few (-3) downstream logic gates.
• Parasitic wire capacitance (-2x).

Due to all these overhead factors, the energy of each logic
bit in real logic circuits is many times larger than the
minimum-width gate energy!
• 375-600x (!) larger in ITRS'15.

Practical bit energy for irreversible logic asymptotes to -1 keV!

Practical, real-world logic circuit designs can't just magically
cross this —500x architectural gap!

Thermodynamic limits imply much larger practical limits!
The end is near!
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8 Implications for FLOPS & power

Note: The limits suggested by the diagonal lines do not even
include power overheads for interconnects, memory, or cooling!

Prohibitively Large Total System Power Levels!
G -

MW E+05

0

—4.-- 2015 ITR5

—so— 2030 ITRS

—sr— 2030 m it gate E

—a-- Landuaer

, Top 100 Supercomputerf:

1000000

M FLOP/s

1E+Cr9

QFLOP/s

HP C 
Evolution . .

over time 
. •

•

1E+12

TF LOP/s

FLOPSIs

•

The "Forever
Forbidden Zon "

for All Non-reversi
Computing

1E-15

PFLONs

1E+18

EF LOP/s

What would it
take for a
zettaFLOP?

>10GW today

>1GW in 2030

>1MW near
thermal noise

41111 lOs of kWat Landauer

Any Hope of
Sustained
Long-Term

Progress
Absolutely
Requires

Reversible
Computing!

ILE,21

7'LCPIs



Section 11: Foundational Topics

Fundamental Physics of Reversible Computing—An Introduction



10 I Section 11: Foundational Topics (Outline)

Big Picture: Non-Kquilibrium Open Quantum Systems Framework

The (Classical) Computational State Abstraction—And its Quantum Representation
O Proto-computational Basis
O Computational vs. Non-Computational Subspaces
O Time-Dependent Formulation

The Fundamental Theorem of the Thermodynamics of Computation
o Relates computational and physical entropies

Computational Operations
o Logical Reversibility (Unconditional and Conditional)
O Time-Dependent Formulation

Landauer's Principle (properly understood!)

Quantum Model of Classical Computational Operations
o Open vs. Closed System cases
O Quantum Statistical Operating Contexts
O Quantum Contextualized Computations
o What it means to physically implement a (classical) computation

Some known fundamental relations between speed and dissipation (Likharev, Feynman)



11 I Big Picture (Non-Equilibrium Open Quantum System Framework)

Divide the model universe 21 into the "system"
(computing system) S and its external
environment .
o System 0 can contain its own free energy supply.

. E.g., a battery

o System 0 can expel waste heat to the environment .

O Although to some extent, this is all just a formal convenience...

. A large enough closed system can approximate an open one.

Assume the universe's Hilbert space factorizes:
O gisu = 34 0 j_co

Also important assumption: Correlations
between S and aren't effectively tracked or
maintained...
O ... Pu = PV 0 P3

O Effectively, after a short thermalization timescale after emitting
energy AQ .

Model universe /1

Environment

Thermal flow

' Computing
II System 3

1116



12  Computational State Abstraction

There is no need to worry yet
CI ±

about exactly how the digital
computing machine will be
organized, at this early stage of
modeling...
° Instead, just say that, at any given time, we can define some number n of valid discrete
computational states cl, c, ... , cr, that the machine could theoretically be in
o The set of all of these defined computational states is called C.

° We can add a single extra "dummy computational state" c1 to represent the generic
circumstance that the system is not currently strictly occupying any of these defined
computational states.
O The computer might be broken, vaporized, or just one of its state bits might just be a &Ile bit outside of its defined
error marglns.

o The set of all "computational states" including c ± is called C.

0 Call this "the augmented computational state set."



13 Proto-Computational Basis

A proto-computational basis for the
computing system 3 just means any
appropriate orthonormal basis B for
the system's Hilbert space 3-C 3 such
that the exact computational state
C E C1 is consistently and
unambiguously determined by a
complete projective measurement of
the quantum state of the machine
onto the basis B.
Given such a B, it follows that C1 can
then be identified with a set-theoretic
partition of the set B.

••••
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Example of a computational state space
C consisting of 3 distinct computational
states c1, c2, c1, each defined as an
equivalence class of basis states in B.
The catch-all state c1 = B — Ulii_lci is
considered computationally invalid.
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'Computational and Non-Computational Subspaces

In some cases, we may be able to factor the Hilbert
space 3- fs of the computing system into separate Hilbert
spaces for "computational" and "non-computational"
degrees of freedom:
0 Ho = j--t- 0 j-CTE

i

I

Computing System ( )
1

Non-Computational
But, this may not always be possible! Subsystem (JM)
° H.g. different states of the computational subsystem may put

differing constraints on the TT system, such that we can't
properly describe the 9ri system by itself using the very same
Hilbert space for all cases.

However, in such cases, we can still represent 3-C s via a
subspace sum:

u)° 3-ro = EVil=0 3-cgtE
ru-u) :where .1 L 9-tE is a Hilbert space for the TT subsystem that is

applicable when the state happens to be cj. (Let co = c1.)

1 i Computational
i Subsystem (fl

IThanks to Karpur for this insight!

I

1



15  Time-Dependent Description

Computational states are discrete, but (physical) systems evolve continuousY; therefore,
the important entities in this model have to be treated in a time-dependent way in
general:
O C (t) - The discrete set of computational states defined for the computing system at time t.
° The cardinality of this set may jump discontinuously at some times.

o B (t) - A protocomputational basis for 3-C3 that could be used to unambiguously measure the
computational state at time t.
-A

o b i (t) — The ith particular protocomputational basis state in B (t) .

o c i (t) g B (t) - The subset of protocomputational basis states that corresponds to the Ph

computational state in C (t) , in some arbitrary enumeration of computational states.

o C±(t) = B (t) — Uril 1 C i - The subset of protocomputational basis states for which the
computational state is undefined at time t.

o Ci(t) = C(t) U {c1(t)} — The augmented computational state space at time t;

° As before, this is a partition of B(t). The number and sizes of the subsets may jump discontinuously.

o c (t) - The actual computational state at time t (if fully decohered).



I Fundamental Theorem of the
1 6 Thermodynamics of Computation

NOTE: I distinguish this from
Landauer's Principle proper.

Let sl) E 3-fa represent a microstate (pure quantum state) of the computing system S.
O Let (/) be hypothetically sampled by applying a complete projective measurement of 3 onto some
protocomputational basis B.

. Thus (to can be identified as (Pi, corresponding to some Eisi E B.

o The probability distribution p(0i) is given as usual by the Born rule, or equivalently by the diagonal
elements of the ps density matrix in the B basis.

Note that the distribution p (4 )4 i) implies a derived distribution over the computational states:

P(cj) = 1 19(0i) .
(pi c ci

And, the total entropy of the physical system (random variable ci) for the state 0) can
always be written as S (0) = H (C) + S (1)1C),
O where C is a random variable for the computational state, and S, H are the entropies based on the probability
distributions p, P respectively.



17 I Fundamental Theorem Illustrated

The total entropy of any given computing
system 3 can always be partitioned as a
sum of the entropies associated to its
computational vs. non-computational
subsystems.
0 In this picture, we are implicitly imagining
hypothetically sampling S by measuring it in an
appropriate protocomputational basis B...
° When this is not the case, or at times when the system
becomes (perhaps briefly) entangled with its environment
we need to be a little bit more careful.

° Karpur's approach will aim to be a little bit more general
here.

Computing System (S),
total entropy S(0) - — E p log p

Non-Computational
Subsystem (M)

non-computational /
conditional entropy

snc = S(OIC) = S(1)) — H(C)

Computational
Subsystem R)

info. entropy H(C) = — P log P



18 I Com p ut at i o nal Operations

For our purposes, a (classical) computational operation 0 on a computational state set C is a
(potentially stochastic) map:

0 : C —> I' (C)
O Maps each initial state ci E C to a corresponding probability distribution Pi E .7)(C) over final states.

A computational operation 0 is called deterministic (for our purposes) when the final
state entropy H(Pi) = 0 for all i.
O Also we can have that 0 is just deterministic over a subset A c C of initial states, but not the whole set C.
O If 0 is not deterministic, we call it stochastic.
. So as not to be confused with the computer science meaning of nondeterministic.



19 I Logically Reversible Operations

We say that an operation 0 is (unconditionally, logicalY) reversible if and only if there is no
final state Ck E C that is reachable from two different ci, ci (i ~ j), i.e., where:

Pi(ck) ~ O and Pj(ck) ~ O.

° Otherwise, we say that 0 is logically irreversible.

We say that 0 is conditionally (logically) reversibk under the precondition that the initial state c E A,
for some A g C, if and only if there is no final state ck E C reachable from two ci, Cj E
A (i ~ j).

0 Although it's not very widely known, it's only this weaker, conditional form of reversibility (given a
context where the precondition is guaranteed to be satisfied) that's required to avoid the information
loss that causes necessary dissipation under Landauer's Principle!

0 Models of reversible (as well as quantum) computing can be generalized in ways that take advantage of this.



20 I Time-Dependent Case

We can write Ost to denote a computational operation being applied over the time
interval between starting time s E IR and terminating time t E IR, with t > s:

0/: C(s) —> P(C(t))

The remaining definitions (for determinism, reversibility, etc.) change correspondingly
in the obvious ways.

0
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22 An Important Remark on Landauer's Principle

Some authors identify the Fundamental Theorem of the Thermodynamics of Computing
(described earlier) with Landauer's Principle, but I would argue that to make that
identification is, properly speaking, an misleading misapprehension, which misses
certain key points gained through a proper understanding of Landauer.
° The Fundamental Theorem merely has to do with how we happen to group physical states into
computational states, and how total entropy can always be expressed as a sum of computational and
non-computational entropies.
O Merely changing the grouping (e.g. merging or unmerging computational states) does not inherently increase total entropy!

O It only moves it (potentially reversibly) between nominally computational versus non-computational forms.

0 E.g. raise/lower a potential energy barrier separating two degenerate states

° But I would argue that the statement that is more property called Landauer's Principle is actually a
very dffferent kind of statement, about a somewhat more complicated theoretical setup, namely this:
o If we take (all, or part of) a (fully or partially) known computational state, or (as a special case of this) an unknown state but

with known correlations, and we obliviously allow some of the previously-known information to thermalize, that is, to become more uncertain,
then this uncertaino increase represents (quite immediately, by definition!) a net increase in absolute entropy.

o The prototypical case, namely, oblivious erasure of a deterministically computed (and therefore, correlated) computational
bit, is then just a trivial special case of this—since a correlated bit lost to a thermal environment is quickly thermalized.

O To make the above statement mathematically precise and rigorous takes just a little bit more work (and some information
theory), but is straightforward.



23 1 Proof of Landauer's Principle (example for correlated-subsystems case)

Let X ,Y be state variables corresponding to any two disjoint
computational subsystems X, within a larger computer T.

O There is a joint probability distribution P(X, Y), and a corresponding
joint entropy H(X,Y).

• Reduced entropies H(X), H(Y) of the individual subsystems are
defined in the usual way.

The mutual information between I and is defined as:
I(X; Y) def H(X) H(Y) — H(X ,Y).

Now, define the independent entropy in as the rest of T's (reduced
subsystem) entropy, besides the mutual information I that has
with £:

Sind (Y)
def 
 H(Y) — I(X; Y) =

• Same thing as the conditional entropy of V, conditioned on X.

Now, consider erasing via any oblivious physical mechanism...
• Meaning, set H(Y) = 0 unconditional#, without reference to X or to any

other information we may have about Y.
• E.g., remove an energy barrier separating Y = 0 and Y = 1 computational states, and

call the merged state Y = O.

And assume, in general, non-computational information will fairly rapidly
thermalke. (If not, then why even consider it non-computational?)
• This thermalization process is when/where the absolute entropy

increase happens in Landauer!
• By assumption, environment evolution is not tracked, ergo T4 correlation is lost.

Oblivious erasure of a correlated bit
X 0 X = 1 X = 0 X = 1

®®® 000 000 000
®®® 000 ®®® 000
000 0 0 C) 000

000
000
000Merg>Y states

(000 ®®®
000 ®®® 000 ®®®
000 ®®® 00,0 0 0

AS = 1 bit

arXiv:1901.10327

X = 0 X = 1

®®®
®®®
®®®
000
®®®
®®®

Note that we could try to "reverse" the whole erasure process to
restore the original reduced entropy H(Y) of the subsystem...

But now, I(X; )V- /new = 0 (any correlations have become lost!)

° Sind(Y) = ASind(Y) = --tot.= I(X; Y)orig AS

If, originally, Y was (deterministically) computed from X, then:
H(YIX)orig = 0, i.e., Sind(Y) = 0, so H(Y) = I(X; Y)orig.

Apparent entropy of all computed bits is actualty entirely mutual information!

a.k.a. "information-bearing entropy" in Anderson's terminology

Independent entropy (and total universe entropy!) has increased by

AStot = ASind(Y) = norig = H(Y).

Erasing computed (as opposed to random° bits turns
their digital information into new physical entropy.

Q.E.D.! •

I



24  Basic Reversible Computing Theory
(For full proofs, see arxiv.org:1806.10183)

Fundamental theorem of traditional
reversible computing:

• A deterministic computational operation is
(unconditionally) non-entropy-ejecting if and only if
it is unconditional/y logically reversible (injective over
its entire domain).

Fundamental theorem of generalized 
reversible computing:

O A spec?* (contextualized) deterministic computation
is (specifically) non-entropy-ejecting if and only if it
is speczjical/y logically reversible (injective over the set
of nonero-probabilio initial states).

Also, for any deterministic computational operation, which is
conditionally reversible under some assumed precondition, then
the entropy required to be ejected by that operation approaches 0
as the probability that the precondition is satisfied approaches 1.

Bottom line: To avoid requiring Landauer costs,
it is sufficient just to have reversibility when some specified
preconditions are satisfied.

O Basis for practical engineering implementations.
Well see some examples in tomorrow's talk.

Traditional Unconditionally
Reversible "Gates" (Operations)

NOT
(in-place)

cNOT

ccNOT
(Toffoli)

cSWAP
(Fredkin)

Generalized Conditionally Reversible Operations

z

OpName

IP(x,y,z)

X

►

Generic symbol for 3-variable operation

X ram X' x rUnCOPY._ •
•y ly = v y lY = x ►

v

(Using
• default

value v)

Reversible copy x to y Reversible uncopy y from x

rSET

I x =

0 1
Reversible set-to-one

rF

lz = v z,

► x rCLR
x = 1

1 0
Reversible clear-to-zero

Reversible
do/undo any
function F,
w.r.t. default
value of v

•

  Fa v .



25 Physical Implementation of Computational Operations

Consider the universe U.
o The computer system S together with its surrounding environment .

O Let the joint Hilbert space Hu = 3-1' 0 3-C3.

Consider a computational operation Ost taking place within S.
o Between starting time s E IR and terminating time s E IR, with s < t.

Assuming perfect knowledge of physics, the transformation of Hu from time s to t is described by some
time evolution operator Ul = IJ,(10 that applies for It between those times.
O In general, the final density matrix pt =Ustps(Ust)t.

Note that 1/1 describes the effect of all physical processes taking place within 11, including:
O Dynamical evolution of the physical computational mechanisms in S.

o Delivery of needed free energy to the active computing elements in S.

O Thermal flows of dissipated energy out into the environment .

We can call this the open gstem case.



Closed-System Variant

Simplified vs. open system model, but still physically realistic.
o A real computer could actually be operated as an approximate# closed system for some limited period of
time.

. Until internal energy stores run out, and/or enclosure overheats.

So now, restrict our attention to the subspace of 3-Cu that is the Hilbert space 3-Cs of the
computer sytem itself.
o Ignore, temporarily, any thermal flows across the 3- boundary.

. Imagine that 3 is wrapped in a perfect thermal insulating barrier.

O Now model the effect of the dynamics within 3 as being described by a local unitary time-evolution
operator U1(3) operating on 3-Cs.

Note, the change in the protocomputational basis B between times s and t can also be
. B(t)

modeled by a unitary matrlx, v(s) U.

o Then denote a "basis-corrected" version of U1(3) as:

ul(s, B) = 1373((st U • Ill (S).



Quantum Statistical Operating Contexts

This generalizes the concept of a statistical operating context or initial probability distribution
P that is needed to define a statisticagy-contextualked computational process.

Define as a mixed state ps encompassing all of our uncertainty, as modelers, regarding the
initial quantum state of the system at time s, prior to performing the computational
operation O.

Also require that ps is block-diagonal in the initial basis B(s).
° And, the blocks need to correspond to the initial partition C(s).

. I.e., no quantum coherences should exist between the different computational states.

. Formally: ps has no off-diagonal terms between basis states bi. , b2 E B(s) where b1 E Ci and b2 E c1 for ci, ci E C(s) where
i ~ j.

. This constraint is needed for modeling classical computation.

. Can weaken when extending this framework to the quantum case.

. There can be coherences within a computational state, though...

. This could correspond, e.g., to physical qubits that may exist within the machine (e.g., long-lived nuclear spins in supporting
materials) that are unrelated to the classical digital data being represented.



28 I Quantum Contextualized Computations

This generalizes the concept of a statistically contextualized computation
C(0 , P) from the Generalized Reversible Computing paper
(arxiv.org:1806.10183) .

A (quantum contextualked) computation Cst (0 st A Ps) refers to the act of
performing the computational operation Ost within the computer system S
when the initial mixed state of S at time s is given by a quantum statistical
operating context ps.
0 Must meet the conditions from the previous slide for B(s) and C(s).



What it means to physically
29 implement a given (classical) computation

The basis-adjusted time-evolution operator Ul(S, B) implements the quantum
contextualized computation est (01, ps), written:

U1(3,B) IF C1(01, p ),
0 if and only if the density matrix pt =U1(3,B)psUl(3,B)t that results from applying the unitary
U1(3, B) to the initial mixed state ps has the following property:

0 For any initial computational state ci(s) E C(s) that has nonzero probability under ps, if we zero out all elements of ps
outside the set of rows/columns corresponding to ci(s) and renormalize, and then apply ul(T, B) to this restricted p's, the
resulting final mixed state ir4 implies the same probability distribution Pi (t) over final computational states in C(t) as is
specified by applying the stochastic map 01 to the initial state, 01(ci (s)).

Note: It can OK, under this definition, if small coherences temporarily arise between
different final computational states in C(t),
° as long as the subsequent evolution causes them to decay very quickly.

0 That is, we don't want these "parasitic" coherences to impact the dynamics of subsequent operations.



30 I Some next steps for this framework looking forwards...

Show some specific examples of time-dependent BM, C(T) and basis-adjusted unitaries
Ul(S, B) that meet the above definition of the "implements" operator IF for the case of
desired classical reversible operations O.
0 And, show that some such unitaries can in turn be (at least approximately) implemented by real,
buildable physical mechanisms.

Characterize the departures from ideality of theoretically realizable approximate physical
implementations of reversible operations Ost in terms of the resulting increase AS in total
entropy.
° Can we derive a general lower bound on AS that depends on simple parameters such as the time delay
d = t — s to perform the operation?

Generalize the above theoretical treatment as needed to address the (marginally more
realistic) open-system case.



31 I Likharev's dissipation limits

Likharev '82 analyzed limits of dissipation for his reversible
JJ-based Parametric Quantron (PQ) technology concept.

o Based on analyzing rates of crossing a potential energy barrier
through thermal excitation and quantum tunneling.

International Journal of Theoretical Physics, Vol. 21, Nos. 3/4, 1 982

Classical and Quantum Limitations on Energy
Consumption in Computation

K. K. Likharev

Department of Physics, Moscow State Universio,, Moscow 117234, U.S.S.R.

Received May h. / 981

Main results:
o Limit due to classical thermal excitation over barrier (assuming underdamped junction):

kBT 1
Wc ln— 

(1)cr (1)117.
k 20 

o Cuc = with elasticity modulus k =
2

dx2
U
and effective viscosity n; and 2,6, is the superconducting gap energy;

O (DA approximates to the JJ plasma frequency (.0 = 1.\/7 = V2gelc1hC, and "T is the cycle period;

• p is the tolerable error probability per operation.

Limit due to quantum-mechanical tunneling through the barrier:
1

—ln 
T Wc-rpo

WC

However! Likharev himself admits the limitations of this analysis:

• It is not a fundamental, technology-independent analysis.

o Alternative device concepts might do better!

Our approach to the problem, of course, Ieaves open whether it is
possible to invent some novel device providing lower power consumption. If
we limit ourselves to the quasistatic devices, where the computation can be
stopped at any moment, without inducing an error, one can hardly get away
from the above estimates. In fact, the only role of the parametric quantron
in our discussion has been to demonstrate how a flexible bistable potential

well could be physically realized. (Of course, some numerical factors can
appear in the estimates if peculiar well shapes are taken into account.)

One can, however, argue that the above-mentioned condition of quasi-

statics is by no means compulsory, and that the information can be

processed by some "dynamical" devices, where the cycle period can be

shorter than the relaxation time. This problem is left for further analysis.

1



32 I Feynman's dissipation limits

In lectures for his 1983-1986 CalTech course,
"Potentialities and Limitations of Computing
Machines," Feynman derived a limit on energy
dissipation per step for Brownian machines (e.g., DNA
copying) driven by chemical potentials.

° He concludes that an approximate formula for this is:

EDITED BY TONY HEY AND REIN W. ALLEN

FEYNMAN
LECTURES ON
COMPUTATION

An example we gave of reversible computing was that of the chemical
process of copying DNA. This involved a machine (if you like) that progressed
in fits and starts, going forward a bit, then backwards, but more one than the
other because of some driving force, and so ended up doing some computation
(in this case, copying). We can take this as a rnodel for more general
considerations and will use this "Brownian" concept to derive a formula for the
energy dissipation in such processes. This will not be a general formula for
energy dissipation during computation but it should show you how we go about
calculating these things. However, we will precede this discussion by first giving
the general formula', and then what follows can be viewed as illustration.

7Ibis rule Ls pretty gencral, but there will be exceptions, requiring slight corrections. We vAll

discuss one such, a 'ballistic" computer, in {5.5. [RPF]

minimum time taken/ step
energy loss/step = kT  

time 1 step actually taken

However, he mentions in a footnote that a "slight correction" to this expression would be needed for ballistic
machines, and later argues, quite informally, that in that case, the expression should be:

time to make collision time to make collision
kT  kT 

 

speed [sic] at which it hap
speed at which it happens.

° An arguably very similar expression, but:

The whole argument in this part of the notes is extremely brief and informal ("hand-wavy")

• The possible application of e.g. the Landauer-Zener formula for quantum-mechanical scattering processes is not considered at all

• Modern STA (Shortcuts to Adiabaticity) techniques had not even been developed yet, and so of course are also not considered

• Asynchronous ballistic models (e.g. ABRC) which avoid chaotic instabilities had also not been invented yet

(5.37)

This cxpression has not been analyzed in any great detail for thc billiard ball
machine.

Thus, we must conclude that Feynman's analysis of this problem is not definitive, nor the final word.



Section 111: Looking Ahead

Fundamental Physics of Reversible Computing—An Introduction



34 Key Questions for the Physics of Reversible Computing

Are there fundamental (i.e., technology-independent) lower bounds (greater than zero) that follow
from general non-equilibrium quantum thermodynamics on energy dissipation per reversible
computational operation as a function of, say, the speed of the operation (and/or other fundamental
physical parameters such as size, temperature, etc.)?
0 And, if so, can such bounds be expressed via simple analytic scaling relations?

Can we deduce anything regarding e.g. exotic quantum phenomena, materials properties, etc., that
would need to be leveraged in order for a technology to saturate the bounds?
0 Examples of quantum phenomena that are (or might be found to be) useful for this:

o Decoherence-free subspaces (DFSs), Zurek pointer states
o Topological invariants?

° e.g., signed flux charge threading a bounded planar superconducting circuit.
O Dynamical versions of the quantum Zeno effect (QZE)?

...others???

Answering the above questions can then become a starting point for innovation of breakthrough
technologies for reversible computing that exhibit vastly improved engineering characteristics....



35 1 Existing Dissipation-Delay Products (DdP)

Non-reversible Semiconductor Circuits

Conventional (non-reversible) CMOS Technology:
o Recent roadmaps (e.g., IRDS '17) show Dissipation-delay
Product (DdP) decreasing by only <-10x from now to the end

of the roadmap (-2033).

o Note the typical dissipation (per logic bit) at end-of-roadmap is projected to be
-0.8 fJ = 800 aJ = -5,000 eV.

o Optimistically, let's suppose that ways might be found to lower

dissipation by an additional 10x beyond even that point.

O That still puts us at 80 aJ = -500 eV per bit.

o We need at least —1 eV ,r-z--,' 40 kT electrostatic energy at a
minimum-sized transistor gate to maintain reasonably low

leakage despite thermal noise,

o And, typical structural overhead factors compounding this within fast random logic
circuits are roughly 500x,

o so, -500 eV is indeed probably about the practical limit.

0 At least, this is a reasonable order-of-magnitude estimate.
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36  Existing Dissipation-Delay Products (DdP)
Adiabatic Reversible Superconducting Circuits

Reversible adiabatic superconductor logic:
o State-of-the-art is the RQFP (Reversible Quantum Flux
Parametron) technology from Yokohama National
University in Japan.

• Chips were fabricated, function validated.

o Circuit simulations predict DdP is >1,000x lower than
even end-of-roadmap CMOS.

• Dissipation extends far below the 300K Landauer limit (and even
below the Landauer limit at 4K).

• DdP is still better even after adjusting by a conservative factor for
large-scale cooling overhead (1,000x).

Question: Could some other reversible technology
do even better than this?
o We have a project at Sandia exploring one possible
superductor-based avenue for this...

• But, what are the fundamental (technology-independent) limits, if any?

RQFP =
Reversible

Quantum Flux
Parametron

(Yokohama U.)
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37 I Can dissipation scale better than linearly with speed?

Some observations from Pidaparthi &
Lent (2018) suggest Yes!
O Landau-Zener (1932) formula for quantum
transitions in e.g. scattering processes with
a missed level crossing...
° Probability of exciting the high-energy state
(which then decays dissipatively) scales down
exponentially as a function of speed...
0 This scaling is commonly seen in many quantum systems!

o Thus, dissipation-delayproduct may have no lower bound
for quantum adiabatic transitions—ifthis kind of
scaling can actually be realized in practice.
o I.e., in the context of a complete engineered system.

o Question: Will unmodeled details (e.g., in the driving
system) fundamentally prevent this, or not?
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38  Shortcuts to Adiabaticity (STA)

A line of theoretical physics research showing that, in principle, quantum state
transformations can always be carried out with exactly  ero dissipation, even at any given
finite delay!
0 Requires the introduction of a finely-tuned "counterdiabatic" perturbation to the system's time-
dependent Hamiltonian.

0 Again, we ask: Is this idealized prediction actually achievable, if fundamental thermodynamic limits
that apply to the complete system are accounted for?
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1 Limits to Reversible Computing?
An approach from the theory of Open Quantum Systems

(Work with Karpur Shukla, Brown University, and Victor V. Albert, CalTech)

• Computational states modelled as decoherence-free subspace blocks (DFSB)

of overall Hilbert space.

• Quantum Markov equation with multiple asymptotic states: admits

subspace dynamics (including DFSB structures) for open systems

under Markov evolution.

• Induces geometric tensor for manifold of asymptotic states.

• Similar to quantum geometric tensor / Berry curvature for closed systems.

• Current work: use multiple asymptotic state framework to derive

thermodynamic quantities...

• Uncertainty relations, dissipation and dissipation-delay product.

BROWN
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40 Conclusion
lo

Some form of reversible computing is absolute/y required in order for the energy et 01

againstfirm thermal barriers in the foreseeable future. lr_"t
efficiency (and thus, cost efficiency) of general digital computing to avoid asymptoting 

Ill e
4inipawo This follows directly from the proper understanding of Landauer's Principle (slide 21) that is

substantiated by the (rigorous) arguments summarized in slides 22-23.

o Various researchers who have misapprehended Landauer are simply missing the whole point.
Various critics of Landauer & Bennett have simply failed to appreciate the essential, unavoidable role that information-theoretic correlation
plays in computing, which is the ultimate origin of the absolute entropy increase that is rigorously caused by Landauer erasure...

...when the true meaning of Landauer's Principle is understood properly!

o All conventional (i. e., non-reversible) digital circuit architectures relyfundamentally on frequent oblivious erasure of
correlated bits, ergo, they can never surpass the Landauer limit (by the elementary proof on slide 22).
In contrast, properly-designed reversible architectures are designed to avoid such erasure, ergo are not subject to the Landauer limit.

The fundamental limits of reversible computing are still very far from being fully understood...
o There is a significant opportunity for physicists to develop fundamental new results in this area.

Leveraging of exotic quantum phenomena may be required to saturate the fundamental limits.

It seems likely that breakthrough technologies for reversible computing remain to be discovered.
O And this, in turn, would lead to incalculable increases in the value of computing, and civilization!


