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3 | Abstract Text

The concept of using reversible computing to circumvent fundamental
physical limits on energy efficiency has historical roots going all the way back
the 1961 work of LLandauer, and was shown to be theoretically workable by
Bennett in 1973. But, over the last 59 years, relatively little attention has been
paid, from a fundamental physics perspective, to the question of just how
energy efficient, as a function of speed, practical physical implementations of
reversible computing can be made to be. To finally answer this question in a
definitive way is becoming an increasingly important task as the conventional,
non-reversible computing paradigm approaches its limits. Recruiting the
physics community to turn increased attention to solving this and related
problems 1s one of the major motivations for this workshop. In this talk, we
kick off the Fundamental Physics session by giving an overview of what's
already known about the fundamental physics of reversible computing, and
highlighting some important research challenges in this area.
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4 | Outline of Talk

Fundamental Physics of Reversible Computing—
An Introduction
o [. Motivation & Briet History

o II. Foundational Topics:

o Computational and Physical Information

o

Fundamental Theorem of the Thermodynamics of Computing

o

Landauer’s Principle

o

Fundamental Theorem of Traditional Reversible Computing

o

Fundamental Theorem of Generalized Reversible Computing

o

Quantum Dynamics of Classical Computing—a generic formulation

> Some known fundamental relations between speed and dissipation (Likharev, Feynman)

o III. Looking Ahead:

o What advances in the fundamental physics of reversible computing are needed to provide a foundation for
a robust engineering discipline?
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Motivation

Why are we here?

> Progress in the energy-efficiency of the conventional (non-reversible) computing
paradigm is approaching hard limits, which ultimately trace back to fundamental
thermodynamic issues.

o Industry is already struggling to continue to advance along the traditional scaling path.

o Energy efficiency is a fundamental limiting factor on the economic utility of
computing.
o Without energy efficiency gains, there are diminishing returns from optimizing every other aspect of
computing,

° Transitioning to the unconventional computing paradigm known as reversible
computing provides the only physically possible alternative scaling path for allowing
the energy efficiency of general digital computing to continue improving
indefinitely...

> And, so far, no fundamental limit to the (even practically) achievable efficiency is known.
° The overall economy is becoming increasingly dependent on computing, as a
larger and larger share of economic activity takes place in the cyber realm..

o Making reversible computing practical thus has the potential to multiply #be total economic valne of vzm/zzaz‘z'm
(for any given amount of available energy resources) by indefinitely many orders of magnitude.




7

Thermal noise on gate electrodes of minimum-width
segments of FET gates leads to significant channel PES
fluctuations when Eg < 1-2eV

° Increases leakage, impairs practical device performance

° Thus, roadmap has minimum gate energy asymptoting to ~2 eV

Also, real logic circuits incur many compounding overhead
factors multiplying this limit:

° Transistor width 10-20X minimum width in fast logic.

° Parasitic (junction, etc.) transistor capacitances (~2X).

° Multiple (~2) transistors fed by each input to a given logic gate.

° Fan-out of each gate to a few (~3) downstream logic gates.

° Parasitic wire capacitance (~2X).

Due to all these overhead factors, the energy of each logic
bit in real logic circuits is many times larger than the
minimum-width gate energy!

° 375-600% (1) larger in I'TRS’15.

o .. Practical bit energy for irreversible logic asymptotes to ~1 keV!

Practical, real-world logic circuit designs can’t just magically

cross this ~500X architectural gap!
° .. Thermodynamic limits imply much /arger practical limits!

o The end is neat!

Energy (in kT, with T=300K)

100000 -

Semiconductor Roadmap is Ending...

Data source: International Technology Roadmap for Semiconductors, 2015 edition
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Only reversible computing can take us from ~1 keV at the
end of the CMOS roadmap, all the way down to « KT.

[ @33 z°z°0°0909 &S 090 |



8 ‘ Implications for FLOPS & power

Note: The limits suggested by the diagonal lines do not even whatwould it
include power overheads for interconnects, memory, or cooling!  [etrs

i

~ >10GW today

ProhiBitively Larée Total Sysfem Power Levels! _
: >1GW in 2030

GW 1.E+09
—g=— 2015 ITRS
R L Rl | | 2090 TR A >1hMe\3/tYrrI11aGIarrmoise
2 —a— 2030 min.gateE 10s of kW
2 — s~ Landuaer ‘at Landauer
FCW 1.E+03 /

rial \

Top 100 Supercomputers

ot
Colul

erres

n

W 1LE+0D

Power Dissmatinn I:W]

The “Forever

mW 1E-03 Forbidden Zone”
/ for All Non-reversible
‘ | Computing
uUW 1E-06 ° — = - . , . . .
1000000 1E+09 1E+12 1E+15 1E+18 1E+21
MFLOP/s GFLOP/s TFLOP/s PFLOP/s EFLOP/s ZFLOP/s

FLOPS/s



Section |ll: Foundational Topics
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10 | Section Il: Foundational Topics (Outline)

Big Picture: Non-Equilibrium Open Quantum Systems Framework

The (Classical) Computational State Abstraction—And its Quantum Representation
° Proto-computational Basis

> Computational vs. Non-Computational Subspaces
> Time-Dependent Formulation

The Fundamental Theorem of the Thermodynamics of Computation
o Relates computational and physical entropies

Computational Operations
° Logical Reversibility (Unconditional and Conditional)
o Time-Dependent Formulation

Landauer’s Principle (propetly understood!)

Quantum Model of Classical Computational Operations
o Open vs. Closed System cases

o Quantum Statistical Operating Contexts
o Quantum Contextualized Computations
o What it means to physically implement a (classical) computation

Some known fundamental relations between speed and dissipation (Likharev, Feynman)

[ @309 &=N= &= |



11 Blg Picture (Non-Equilibrium Open Quantum System Framework)

Divide the model universe U into the “system” Model universe U

(computing system) G and its external N
environment €. o I

° System © can contain its own free energy supply.

& H.g.,abattery

° System & can expel waste heat to the environment €.

o Although to some extent, this is all just a formal convenience...

° A large enough closed system can approximate an open one.

Assume the universe’s Hilbert space factorizes:
° Hy =He ® He

Also important assumption: Correlations
between © and € aren’t effectively tracked or
maintained. ..

° . pu = pg B Ps

o Effectively, after a short thermalization timescale after emitting

energy AQ.



12 I Computational State Abstraction

There 1s no need to worry yet
about exactly Jow the digital
computing machine will be
organized, at this early stage of
modeling. ..

° Instead, just say that, at any given time, we can define some number n of valid discrete
computational states €1, Cy, ..., Cy that the machine could theoretically be in

° The set of a// of these defined computational states is called C.

> We can add a single extra “dummy computational state” €, to represent the generic
circumstance that the system 1s not currently strictly occupying any of these defined
computational states.

> The computer might be broken, vaporized, or just one of its state bits might just be a /##/ bit outside of its defined
error margins.

° The set of a// “computational states” zncluding €, is called C | .

o (all this “the augmented computational state set.”



13 I Proto-Computational Basis

A proto-computational basis tor the
computing system © just means azny
appropriate orthonormal basis B for
the system’s Hilbert space Hg such
that the exact computational state

c € C, 1s consistently and
unambiguously determined by a
complete projective measurement of
the guantum state of the machine
onto the basis B.

o Given such a B, it follows that €, can
then be identified with a set-theoretic
partition of the set B.

—— o  mm Em m Em Em Em E m Em Em Em E E m mm Em— a,

-

Example of a computational state space
C consisting of 3 distinct computational
states ¢4, c,, ¢, each defined as an
equivalence class of basis states in B.
The catch-all state ¢, = B — U} c; is
considered computationally invalid.



14 IComputational and Non-Computational Subspaces

In some cases, we may be able to factor the Hilbert
space Hg of the computing system into separate Hilbert
spaces for “computational” and “non-computational”
degrees of freedom:

° He = He® Hag

Computing System (©)

But, this may not always be possible!

° F.g. different states of the computational subsystem € may put
differing constraints on the JNEC system, such that we can’t
propetly describe the NE system by itself using the very same
Hilbert space for all cases.

However, in such cases, we can still represent Hg via a
subspace sumr:

_ ()

¢ Fg = ?=0 Hmcg
where 17'[9%) is a Hilbert space for the Jt€ subsystem that is
applicable when the € state happens to be Cj. (Let Co — CJ_.) jThankS to Karpur for this Ins,ghtl




15 I Time-Dependent Description

Computational states are discrete, but (physical) systems evolve continuously; theretore,
the important entities in this model have to be treated in a time-dependent way in
general:
o C(t) - The discrete set of computational states defined for the computing system at time t.
° The cardinality of this set may jump discontinuously at some times.
o B(t) - A protocomputational basis for Hg that could be used to unambiguously measure the
computational state at time .

0 Ei (t) — The i particular protocomputational basis state in B(t).

ok (t) € B(t) - The subset of protocomputational basis states that corresponds to the jt
computational state in C(t), in some arbitrary enumeration of computational states.

oc,(t) =B(t) — ?:1 Cj - The subset of protocomputational basis states for which the
computational state is undefined at time .

o C;(t) = C(t) U{c,(t)} — The augmented computational state space at time t;
o As before, this is a partition of B(t). The number and sizes of the subsets may jump discontinuously.

o ¢(t) - The actual computational state at time t (if fully decohered).



Fundamental Theorem of the NOTE: | distinguish this from
16 I Thermodynamics of Computation Landauer’s Principle proper.

° Let ¢ be hypothetically sampled by applying a complete projective measurement of & onto some

Let ¢ € Hg represent a microstate (pure quantum state) of the computing system ©. ‘
protocomputational basis B.

° Thus ¢ can be identified as ¢;, corresponding to some Bi € B.

° The probability distribution p(¢;) is given as usual by the Born rule, or equivalently by the diagonal
elements of the pg density matrix in the B basis.

Note that the distribution p(¢;) implies a derived distribution over the computational states:

P(c;) = z p(¢;).
¢; € Cj
And, the total entropy of the physical system (random variable @ for the state ¢) can
always be written as S(®) = H(C) + S(®|C),

o where C is a random variable for the computational state, and S, H are the entropies based on the probability
distributions p, P respectively.



17 I Fundamental Theorem lllustrated

The total entropy of any given computing Computing System (),
. total entropy S(®) = — Y. plogyp
system © can always be partitioned as a

sum of the entropies associated to its

computational vs. non-computational
subsystems.
° In this picture, we are implicitly imagining
hypothetically sampling © by measuring it in an
appropriate protocomputational basis B...

> When this 1s not the case, or at times when the system

becomes (perhaps briefly) entangled with its environment €,
we need to be a little bit more careful.

o Karpur’s approach will aim to be a little bit more general
here.




18 | Computational Operations

For our purposes, a (classical) computational operation O on a computational state set € is a
(potentially stochastic) map:

0:C - P(C)

o Maps each initial state ¢; € C to a corresponding probability distribution P; € P (C) over final states.

A computational operation O is called deterministic (for our purposes) when the final
state entropy H(P;) = 0 for all i.

o Also we can have that O 1s just deterministic over a subset A € € of initial states, but not the whole set C.

o If O is not deterministic, we call it stochasts.

o So as not to be confused with the computer science meaning of nondeterministic.



19 | Logically Reversible Operations

We say that an operation O is (unconditionally, logically) reversible if and only if there is no
final state ¢ € C that is reachable from two different ¢;, ¢j (I # ), z.e., where:

Pi(ck) # 0 and Pj(Ck) * 0.

o Otherwise, we say that O is logically irreversible.

We say that O is conditionally (logically) reversible under the precondition that the initial state ¢ € A,
for some A € C, if and only if there is no final state ¢ € € reachable from two ¢;, ¢j €
A +])).

° Although it’s not very widely known, it’s only this weaker, conditional form of reversibility (given a |

context where the precondition 1s guaranteed to be satisfied) that’s required to avoid the information
loss that causes necessary dissipation under Landauer’s Principle!

> Models of reversible (as well as quantum) computing can be generalized in ways that take advantage of this.

[ @309 &=N= &= |



20 I Time-Dependent Case

We can write O¢ to denote a computational operation being applied over the time
interval between starting time S € R and terminating time t € R, with t > s:

0t:C(s) » P(C())

The remaining definitions (for determinism, reversibility, etc.) change correspondingly
in the obvious ways.

[ @309 &=N= &= |
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22

An Important Remark on Landauer’s Principle

Some authors identity the Fundamental Theorem of the Thermodynamics of Computing

(desctibed eatlier) with Landauet’s Principle, but I would argue that to make that
identification is, properly speaking, an misleading misapprehension, which misses
certain key points gained through a proper understanding of Landauer.

° 'The Fundamental Theorem merely has to do with how we happen to group physical states into

computational states, and how total entropy can always be expressed as a sum of computational and
non-computational entropies.

> Merely changing the grouping (e.g. merging or unmerging computational states) does not inherently zncrease total entropy!
o It only moves it (potentially reversibly) between nominally computational versus non-computational forms.
o E.g raise/lower a potential energy barrier separating two degenerate states
> But I would argue that the statement that is more properly called Landauer’s Principle is actually a
very different kind of statement, about a somewhat more complicated theoretical setup, namely this:

o If we take (all, or part of) a (fully or partially) krown computational state, or (as a special case of this) an unknown state but
with &nown correlations, and we obliviously allow some of the previously-known information to thermalize, that is, to become more uncertain,
then this wncertainty increase represents (quite immediately, by definition!) a net increase in absolute entropy.

° The prototypical case, namely, oblivious erasure of a deterministically computed (and therefore, correlated) computational
bit, is then just a trivial special case of this—since a correlated bit lost to a thermal environment is quickly thermalized.

° To make the above statement mathematically precise and rigorous takes just a little bit more work (and some information
theory), but is straightforward.




‘ Proof of Landauer’s Principle (example for correlated-subsystems case)

Let X, Y be state variables corresponding to any #wo disjoint
computational subsystems X, %) within a larger computer C.

o There is a joint robabﬂlty distribution P(X,Y), and a corresponding
joint entropy H (X F

> Reduced entropies H (X ), H(Y) of the individual subsystems are
defined in the usual way.

The mutual information between X and %) is defined as:

IX;Y) ¥ HX)+H(Y) —H(X,Y).

Now, define the independent entropy in ) as the rest of IY’s (reduced
subsystem) entropy, besides the mutual information I that ) has
with X:

Sina(Y) € H(Y) - I(X;Y) = H(Y|X),

° Same thing as the conditional entropy of ), conditioned on X.

Now, consider erasing ) via any oblivious physical mechanism...

o Meaning, set H(Y) = O wnconditionally, without reference to X or to any
other information we may have about Y.

o FE.g., remove an energy barrier separating ¥ = 0 and ¥ = 1 computational states, and
call the merged state ¥ = 0.

And assume, 1n general, non-computational information will fairly rapidly

thermalize. (If not, then why even consider it non-computational?)

° This thermalization process is when/where the absolute entropy
increase happens in Landauer!

o By assumption, environment evolution is not tracked, ergo €-€ correlation is lost.

Oblivious erasure of a correlated bit

X=0\(X=1\ X=0 X=1 X=0 X =i
-(O@® (0]0]0)
H[@@@

. @OO|I®O®
@@&\® @0®
N (€ = @O
Tf ggg @@ ®| 5 =1bit
~000 @@ 2JCJ0)

arXiv:1901.10327

Note that we could try to “reverse” the whole erasure process to
restore the original reduced entropy H(Y) of the ¥ subsystem...

But now, I(X; Y)pew = 0 (any correlations have become lost!)
Sind(Y) = H(Y), - ASind(Y) = I(X; Y)orig = AStot.

If, originally, Y was (deterministically) computed from X, then:
o H(Y|X)orig = 0, ie, Sina(Y) = 0, s0 H(Y) = I(X; Y)grig.-
o Apparent entropy of al/ computed bits is actually entirely mutual information!

° ak.a. “information-bearing entropy” in Anderson’s terminology

Independent entropy (and total universe entropy!) has increased by
AStot - ASmd(Y) = I(X; Y)orlg = H(Y)-

~ Erasing computed (as opposed to random!) bits turns
thelr digital information into new physical entropy.

Q.E.D.! m

i
i

|
|
|



24 | Basic Reversible Computing Theory

(For full proofs, see arxiv.org:1806.10183)

Fundamental theorem of traditional
reversible computing:

> A deterministic computational operation is
(unconditionally) non-entropy-ejecting if and only if
it is unconditionally logically reversible (injective over
its entire domain).

Fundamental theorem of generalized
reversible computing:

o A specific (contextualized) deterministic computation
is (specifically) non-entropy-ejecting if and only if it
is specifically logically reversible (injective over the set
of nonzero-probability initial states).

o Also, for any deterministic computational operation, which is
conditionally reversible under some assumed precondition, then
the entropy required to be ejected by that operation approaches 0
as the probability that the precondition is satisfied approaches 1.

Bottom line: To avoid requiring Landauer costs,
1t 1S sufficient just to have reversibility when some specified
preconditions are satisfied.

° Basis for practical engineering implementations.

o We'll see some examples in tomorrow’s talk.

Traditional Unconditionally
Reversible “Gates” (Operations)

f.® s

NOT
(in-place)

ccNOT ESVIr
(Toffoli) (Fredkin)

—~

cNOT

Generalized Conditionally Reversible Operations

Generic symbol for 3-variable operation

»x rcopy X
dy br=v

- >

qvl' >

Reversible copy x to y

Uy
> » —
> "X ruUnCOPY, X Jip cF e —
> "y ly==x y' - |z=v ’
— — -
(Using Reversible
default " =1 . 2 , do/undo any
value v) ‘ » function F,
=" olp __ , Ww.rt default
Reversible uncopy y from x value of v

Reversible set-to-one

A
-~ N
!/
— T xXt— X rSE'T rCE..R
1 |x=0 |x=1
— > y—>
|IP(x,y,2)
- o B —{0 1f—> —{1 o}—

Reversible clear-to-zero

y y
lz=F(xy) ,
- 4 ST

rUnfF, |

R

Yy vy




25 | Physical Implementation of Computational Operations

Consider the universe U.

° The computer system & together with its surrounding environment €.
° Let the joint Hilbert space Hy = Hg ® Hg.

Consider a computational operation O¢ taking place within &.

o Between starting time S € R and terminating time § € R, with s < t.

Assuming perfect knowledge of Lp

hysics, the transformation of Hy; from time S to t is described by some

time evolution operator U = U (W) that applies for U between those times.

° In general, the final density matrix

py = Ulps,(UHT.

Note that UL describes the effect of a// physical processes taking place within 1, including:

> Dynamical evolution of the physic

al computational mechanisms in ©.

° Delivery of needed free energy to the active computing elements in ©.

o Thermal flows of dissipated energy out into the environment €.

We can call this the open system case.

[ @309 &=N= &= |



26 | Closed-System Variant

Simplified »s5. open system model, but still physically realistic.

o A real computer could actually be operated as an approximately closed system for some limited period of
time.

o Until internal energy stores run out, and/or enclosure overheats.

So now, restrict our attention to the subspace of Hyy that is the Hilbert space Hg of the
computer sytem itself.

o Ignore, temporarily, any thermal flows across the ©-E boundary.

o Imagine that © is wrapped in a perfect thermal insulating barrier.

> Now model the effect of the dynamics within © as being described by a /oca/ unitary time-evolution

operator UL(S) operating on Hg.

Note, the change in the protocomputational basis B between times S and t can also be
B(t) U

modeled by a unitary matrix, B(s)

o Then denote a “basis-corrected” version of U£(S) as:

UL(S,B) = U - US(S).



27 | Quantum Statistical Operating Contexts

This generalizes the concept of a statistical operating context or initial probability distribution
P that is needed to define a statistically-contextualized computational process.

Define as a mixed state pg encompassing all of our uncertainty, as modelers, regarding the ‘
initial quantum state of the system at time S, prior to performing the computational
operation O¢.

Also require that pg is block-diagonal in the initial basis B(S).

o And, the blocks need to correspond to the initial partition €(s).

° Le., no quantum coherences should exist between the different computational states.

o Formally: pg has no off-diagonal terms between basis states l;l, 52 € B(s) where l;l € ¢; and l;z € ¢; for ¢;, ¢j € C(s) where
[ #].
° This constraint is needed for modeling classical computation.
o Can weaken when extending this framework to the quantum case.
° There can be coherences within a computational state, though. ..

> This could correspond, e.g., to physical qubits that may exist within the machine (e.g., long-lived nuclear spins in supporting
materials) that are unrelated to the classical digital data being represented.



28 | Quantum Contextualized Computations

This generalizes the concept of a statistically contextualized computation
C (0, P) from the Generalized Reversible Computing paper
(arxiv.org:1806.10183).

A (quantum contextualized) computation CE(OE, pg) refers to the act of
performing the computational operation Of within the computer system &
when the initial mixed state of © at time S is given by a quantum statistical
operating context .

> Must meet the conditions from the previous slide for B(s) and C(s).

[ @309 &=N= &= |



What it means to physically
2 | implement a given (classical) computation @

The basis-adjusted time-evolution operator UL (S, B) implements the quantum
contextualized computation CZ (0, ps), written:

U:(S,B) I+ CL(04, py),

° if and only if the density matrix p; = US(S, B) p,UL(S, B)T that results from applying the unitary
UL (G, B) to the initial mixed state pg has the following property:

o For any initial computational state ¢;(s) € €(s) that has nonzero probability under pg, if we zero out all elements of pg
outside the set of rows/columns corresponding to ¢;(s) and renormalize, and then apply UE(C, B) to this restricted ps, the
resulting final mixed state p; implies the same probability distribution P;(t) over final computational states in C(t) as is
specified by applying the stochastic map Of to the initial state, ¢ (¢;(s)).

Note: It can OK, under this definition, if small coherences zemporarily arise between
different final computational states in C(t),

° as long as the subsequent evolution causes them to decay very quickly.

° That 1s, we don’t want these “parasitic”” coherences to impact the dynamics of subsequent operations.

[ @309 &=N= &= |



3 I Some next steps for this framework looking forwards...

Show some specific examples of time-dependent B(7), C(T) and basis-adjusted unitaries
UL (S, B) that meet the above definition of the “implements” operator IF for the case of
desired classical reversible operations O .

> And, show that some such unitaries can in turn be (at least approximately) implemented by real,
buildable physical mechanisms.

Characterize the departures from 1deality of theoretically realizable approximate physical
implementations of reversible operations O¢ in terms of the resulting increase AS in total
entropy.

> Can we derive a general lower bound on AS that depends on simple parameters such as the time delay
d =t — s to petform the operation?

Generalize the above theoretical treatment as needed to address the (marginally more
realistic) open-system case.

[ @309 &=N= &= |



International Journal of Theoretical Physics, Vol. 21, Nos. 3/4, 1982

31 ‘ Likharev’s dissi patio n limits Classical and Quantum Limitations on Energy
Consumption in Computation

Likharev ‘82 analyzed limits of dissipation for his reversible R i
JJ-based Parametric Quantron (PQ) technology concept.

. . . ) Department of Physics, Moscow State University, Moscow 117234, U.S.S.R.
° Based on analyzing rates of crossing a potential energy barrier

. . s Received May 6, 1981
through thermal excitation and quantum tunneling, hihabaiai

Main results:

° Limit due to classical thermal excitation over barrier (assuming underdamped junction):

kgT 1
W, = In :
WT  WyTP

k 24 : 3 d*u o a ; ;
e Ty with elasticity modulus k = Tz and effective viscosity 7]; and 2A is the superconducting gap energy;

° W, approximates to the JJ plasma frequency @ = \/k/n = 1/2q,l./hC, and T is the cycle period;

° p is the tolerable error probability per operation.

Limit due to quantum-mechanical tunneling through the barrier:

h 1 Our approach to the problem, of course, leaves open whether it is

W P l possible to invent some novel device providing lower power consumption. If
c ~ n . we limit ourselves to the quasistatic devices, where the computation can be

T CUC Tp stopped at any moment, without inducing an error, one can hardly get away

from the above estimates. In fact, the only role of the parametric quantron
in our discussion has been to demonstrate how a flexible bistable potential
well could be physically realized. (Of course. some numerical factors can
appear in the estimates if peculiar well shapes are taken into account.)
One can, however, argue that the above-mentioned condition of quasi-
. . . statics 18 by no means compulsory, and that the information can be
? Alternatlve dCVlCC Concepts mlght dO better! processed by some “dynamical” devices, where the cycle period can be

shorter than the relaxation time. This problem is left for further analysis.

However! Likharev himself admits the limitations of this analysis:

o It 1s not a fundamental, technology-independent analysis.
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EDITED BY TONY HEY AND ROBIN W. ALLEN

(e#©) CRC Press

Feynman’s dissipation limits
An example we gave of reversible computing was that of the chemical

process of copying DNA. This involved a machine (if you like) that progressed
in fits and starts, going forward a bit, then backwards, but more one than the
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(=]
o
<<
b =
o

Iﬂ lectures fOI' hlS 1 983_1 986 CalTech coursc, Bl other because of some driving force, and so ended up doing some computation
43 P L o : : (in this case, copying). We can take this as a model for more general
POt@ﬂtlﬂhthS and leltﬂtIOl'lS Of Computlng F EY N M A N considerations and will use this "Brownian” concept to derive a formula for the

1 2 ” {41 energy dissipation in such processes. This will not be a general formula for
Machlnes, Feynman dCflVCd a hmlt on energy LECT U R ES 0 N energy dissipation during computation but it should show you how we go about

dis sipation per step for Brownian machines (e.g.) DNA CO M PU TAT I O N calculating these things. However, we will precede this discussion by first giving

the general formula’, and then what follows can be viewed as illustration.

COPYlﬂg) driven by Chemical pOteﬂtiaIS. - ) "This rule is pretty general, but there will be exceptions, requiring slight corrections. We will i

R . discuss one such, a "ballistic" computer, in §5.5. [RPF]
> He concludes that an approximate formula for this is:

minimum time taken/step

l tep = kT
energy loss/step time/step actually taken

However, he mentions in a footnote that a “slight correction” to this expression would be needed for ballistic
machines, and later argues, quite informally, that in that case, the expression should be:

time to make collision B T —
k speed at which it happens’

speed [sic]| at which it happens

This expression has not been analyzed in any great detail for the billiard ball

° An arguably very similar expression, but: machine.

(5.37)

> The whole argument in this part of the notes is extremely briet and informal (“hand-wavy”)
> The possible application of e.g. the Landauer-Zener formula for quantum-mechanical scattering processes is not considered at all
> Modern STA (Shortcuts to Adiabaticity) techniques had not even been developed yet, and so of course are also not considered

o Asynchronous ballistic models (e.g. ABRC) which avoid chaotic instabilities had also not been invented yet

Thus, we must conclude that Feynman’s analysis of this problem is no# definitive, nor the final word.

[ @309 &=N= &= |



Section lll: Looking Ahead

Fundamental Physics of Reversible Computing—An Introduction
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Key Questions for the Physics of Reversible Computing @

Are there fundamental (i.e., technology-independent) lower bounds (greater than zero) that follow
from general non-equilibrium quantum thermodynamics on energy dissipation per reversible
computational operation as a function of; say, the speed of the operation (and/or other fundamental
physical parameters such as size, temperature, ef.)?

> And, if so, can such bounds be expressed via simple analytic scaling relations?

Can we deduce anything regarding e.g. exotic quantum phenomena, materials properties, ef., that
would need to be leveraged in order for a technology to saturate the bounds?

o Examples of quantum phenomena that are (or might be found to be) useful for this:
> Decoherence-free subspaces (DFSs), Zurek pointer states
° Topological invariants?
° eg., signed flux charge threading a bounded planar superconducting circuit.
o Dynamical versions of the guantum Zeno effect (QZE)?
° ...others???

Answering the above questions can then become a starting point for innovation of breakthrough
technologies for reversible computing that exhibit vastly improved engineering characteristics....

[ @33 z°z°0°0909 &S 090 |



35 | Existing Dissipation-Delay Products (DdP)

—Non-reversible Semiconductor Circuits nergy & delay, CMOS FO3 Hp
1E-14
Sl
. . RN
Conventional (non-reversible) CMOS Technology: .,
R R
° Recent roadmaps (e.g., IRDS “17) show Dissipation-delay e
Product (DdP) decreasing by only <~10X from now to the end y N
of the roadmap (~2033). 200 L)
> Note the typical dissipation (per logic bit) at end-of-roadmap is projected to be % On? CMOS \\\
~0.8 f] = 800 a] = ~5,000 eV : logic gate
5 . . ° 9 ° w \\
O.pt.lm1§t1cally, let’s suppose that ways might be found to lower 2 s | .
dissipation by an additional 10X beyond even that point. °
2033{("1 nm"
> That still puts us at 80 a] = ~500 €V per bit. 5 ) J
: O .
> We need at least ~1 eV = 40 £7T electrostatic energy at a
minimum-sized transistor gate to maintain reasonably low N
: : N7
leakage despite thermal noise, < S,
T O~
o And, typical structural overhead factors compounding this within fast random logic Source: IRDS ‘17 \\j’f/
circuits are roughly 500X, More Moore chapter e
° so, ~500 eV is indeed probably about the practical limit. 1E-16 i
1.E-12 1.E-11

o At least, this is a reasonable order-of-magnitude estimate.
CV/l delay, s



36 ‘ Existing Dissipation-Delay Products (DdP)—
Adiabatic Reversible Superconducting Circuits

Energy & delay for full adder cell

1E-13
: : : : CMOS FA
Reversible adiabatic superconductor logic: exs [ 2m7ri0mm
o State-of-the-art is the RQFP (Reversible Quantum Flux /
5 2033 ("1 nm"
Parametron) technology from Yokohama National e
University in Japan. E
o Chips were fabricated, function validated. 4 § 1E10 =
o Circuit simulations predict DAP is >1,000X /ower than RQFP = 5 160
even end-of-roadmap CMOS. Reversibile B
o Dissipation extends far below the 300K Landauer limit (and even Quantum Flux “:é 1E-18 =
below the Landauer limit at 4K). Parametron "é =
= o
o DdP is s#// better even after adjusting by a conservative factor for (Yokohama U.) < § dia 8
large-scale cooling overhead (1,000X). ! X
> 1E-20
Question: Could some ozher reversible technology §  [WeT-30k T W A,
. 1E-21 |
do even better than this?
: : : : Data f
> We have a project at Sandia exploring one possible €22 T_a\t(_z_m';em_ ______
superductor-based avenue for this. .. kT@T=4K ASC ‘18
° But, what are the fundamental (technology-independent) limits, if any? hees

| ~de-SQUID 1.E-12 1.E-11 1LE100 1.E-09 1.E08 1E-O7

Full adder delay / Clock period, s



Can dissipation scale better than linearly with speed?

Some observations from Pidaparthi &
Lent (2018) suggest Yes!

o Landau-Zener (1932) formula for quantum

transitions in e.g. scattering processes with
a missed level crossing...
° Probability of exciting the hlgh energy state

J. Low Power Electron. Appl. 2018, 8(3), 30; https://doi.org/10.3390
/ipeaB030030

Exponentially Adiabatic Switching in Quantum-Dot
Cellular Automata

Subhash S. Pidaparthi & and Craig S. Lent* &8 ©

Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
* Author to whom correspondence should be addressed.

Received: 15 August 2018 / Revised: 5 September 2018 / Accepted: 5 September 2018 / Published:
7 September 2018

(This article belongs to the Special Issue Quantum-Dot Cellular Automata (QCA) and Low Power

Application)

|

(which then decays dissipatively) scales down — Pp = e—2ml wog o =008 AE = 5o
exponentially as a function of speed... =% . Yow, §§Z?§ ‘5
'\-‘. e v=0.10,AE.=10¢
° This scaling is commonly seen in many quantum systems! 10° pti
°'Thus, dissipation-delay product may have no lower bound A '*a S ——
f d b " rF T h kl d f S: - } transferred to system
or quantum adiabatic transitions—izfthis kind o d =
scaling can actually be realized in practice. 3w e
~.\
° Le., in the context of a complete engineered system. 10 LSS
. : : : - = Y,
° Question: Will unmodeled details (e.g., in the driving o e eT
system) fundamentally prevent this, or not?
1012

30



318 | Shortcuts to Adiabaticity (STA)

A line of theoretical physics research showing that, 7z principle, quantum state _
transformations can always be carried out with exactly zero dissipation, even at any given

finite delay!

° Requires the introduction of a finely-tuned “counterdiabatic” perturbation to the system’s time-
dependent Hamiltonian.

o Again, we ask: Is this idealized prediction acz‘m/f/y achievable, it fundamental thermodynamic limits
that apply to the complete system are accounted for?

Population in the instantaneous eigenstates

e
©

e
=

e
>

e
N

o
T

e B

< Ground state
occupancy
probability

< Excited state
occupancy
probability

1 " . . 1 L . L 1 L . L 1 L . . 1 . . . 1

0 0.2 0.4 0.6 0.8 1

Normal quantum adiabatic process:
Substantial excitation/dissipation

Figure credit:
Collaborator
David Guéry-0Odelin
(Université de Toulouse)

Population in the instantaneous eigenstates

= Bt

< Ground state
occupancy
probability

Excited state
< occupancy
probability

L 1 L L L 1 L L L 1 L L L 1 L L

0.2 0.4 0.6 0.8

Using counterdiabatic protocol:
Zero net excitation/dissipation

1



Limits to Reversible Computing?

—An approach from the theory of Open Quantum Systems
(Work with Karpur Shukla, Brown University, and Victor V. Albert, CalTech)

* Computational states modelled as decoberence-free subspace blocks (DEFSB)

of overall Hilbert space.

* Quantum Markov equation with multiple asymptotic states: admits

subspace dynamics (including DFSB structures) for open systems

under Markov evolution.

* Induces geometric tensor for manifold of asymptotic states.
* Similar to quantum geometric tensor / Berry curvature for closed systems.
* Current work: use multiple asymptotic state framework to derive

thermodynamic quantities. ..

* Uncertainty relations, dissipation and dissipation-delay product.



420 | Conclusion

Some form of reversible computing is absolutely required in order for the energy
efficiency (and thus, cost efficiency) of general digital computing to avoid asymptoting
against fir thermal barriers in the foreseeable future.

o This follows directly from the proper understanding ot Landauer’s Principle (slide 21) that 1s
substantiated by the (rigorous) arguments summarized in slides 22-23.

° Various researchers who have misapprehended Landauer are simply wzissing the whole point.

° Various critics of Landauer & Bennett have simply failed to appreciate the essential, #zavoidable role that information-theoretic correlation
plays in computing, which 1s the ultimate origin of the absolute entropy increase that is rigorously caused by Landauer erasure...

° ...when the true meaning of Landauer’s Principle is understood properly!

o All conventional (i.e., non-reversible) digital circuit architectures rely fundamentally on trequent oblivious erasure of
correlated bits, ergo, they can never surpass the Landauer limit (by the elementary proof on slide 22).

° In contrast, propetly-designed reversible architectures are designed to avoid such erasure, ergo are not subject to the Landauer limit.

The fundamental limits of reversible computing are still very far from being fully understood...

° There 1s a significant opportunity for physicists to develop fundamental new results in this area.

Leveraging of exotic quantum phenomena may be required to saturate the fundamental limits.

It seems likely that breakthrough technologies for reversible computing remain to be discovered.

o And this, in turn, would lead to incalculable increases in the value of computing, and civilization!

‘
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