SAND2020- 9765PE

— — @EERdY NISA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
1 Administration under contract DE-NA0003525.



2 | Overview

Parsing Jaqal
Generating Jaqal
Programmatically creating IR

Manipulating IR




3 | Parsing Jaqgal

Use parse_jaqal_string or parse_jaqal_file
Found in jaqalpaq/parser/parser.py

Input 1s code as a Python (Unicode) string or
text file.

Output 1s Circuit object (referred to as
Intermediate Representation or IR in this
presentation).

Parsing currently is slow for large files. We will
address this in a future release.

Parameters
jaqal: The Jaqal code.

override_dict: An optional dictionary that overrides let
statements in the Jaqgal code. Note: all keys in this
dictionary must exist as let statements or an error will be
raised.

expand_macro: Replace macro invocations by their body
while parsing,

expand_let: Replace let constants by their value while
parsing,

expand_let_map: Replace let constants and mapped
qubits while parsing. expand_letis ignored if this 1s True.

return_usepulses: Whether to both add a second return
value and populate it with the usepulses statement.

inject_pulses: If given, use these pulses specifically.

autoload_pulses: Whether to employ the usepulses

statement for parsing. Requires appropriate gate
definitions.



4+ | Autoload Pulses

Looks up pulse files using standard Python module lookup
° Le. Search through PYTHONPATH

Used in Emulator
Not used as part of JaqalPaw

See gscout-gatemodels project qscout/vl/std/__init__ .py for the canonical example
° Package std contains NATIVE_GATES list of GateDefinition objects




s | Generating Jaqal

Use generate_jaqal_program

Found in jaqalpaq/generator/generator.py

Input is Circuit object.

Output is code as a Python (Unicode) string or text file.

Roughly the inverse of the parsing method.




¢ I Programmatically Creating IR

Object-Ortented API
o CircuitBuilder

° SequentialBlockBuilder
o ParallelBlockBuilder

“Undocumented” Lisp-like API
° Available Upon Request




7 I Programmatic IR Creation Example

Jaqal
register q[2]
let angle@® 0.123
let anglel 0.987
prepare_all
MS q[@] gq[1l] angle@ anglel

measure_all

IR Creation

gates = \
gscout.vl.std.NATIVE GATES
b =\

CircuitBuilder(native gates=gates)
= b.register(“q”, 2)
.let(“angle@”, 0.123)
.let(“anglel”, 0.987)
.gate(“prepare_all”)
.gate(“Ms”, qg[e], q[1],
“angle®”, “anglel”)

c O O O QO

b.gate(“measure_all”)
b.build()



s | Circuit Class

Container for statements and metadata
o Let constants

° Macros

° Registers
> Fundamental Registers
° Map aliases

° Native Gates

> Body

Immutable — All changes must be done by creating a new Circuit

Found in jaqalpaq/core/circuit.py




9 I Modifying Existing Circuit

Say we want to change c =\
register q[2] parse_jagal file(“hadamard2.jagal”)
prepare_all reg = c.registers[“qg”]
H gle] b = CircuitBuilder(native gates=gates)
H q[1] : :
r = b.register(reg.name, reg.size)

measure_all
b.loop(100, c.body)

to
register q[2] b.build()
loop 100 {
prepare_all
H g[e]
H q[1]
measure_all




