
Manipulating Jaqal with Jaqalpaq

1

liffr NffSit

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-9765PE



2 I Overview

Parsing Jaqal

Generating Jaqal

Programmatically creating IR

Manipulating IR



3 Parsing Jaqal

Use parse_jaqal_string or parse_jaqal_file

Found in jaqalpaq/parser/parser.py

Input is code as a Python (Unicode) string or
text file.

Output is Circuit object (referred to as
Intermediate Representation or IR in this
presentation).

Parsing currently is slow for large files. We will
address this in a future release.

Parameters

jaqal: The Jaqal code.

override_dict: An optional dictionary that overrides let
statements in the Jaqal code. Note: all keys in this 
dictionary must exist as let statements or an error will be
raised.

expand_macro: Replace macro invocations by their body
while parsing.

expand_let: Replace let constants by their value while
parsing.

expand_let_map: Replace let constants and mapped
qubits while parsing. expand_let is ignored if this is True.

return_usepulses:.Whether to both add a second return
value and populate it with the usepulses statement.

inject_pulses: If given, use these pulses specifically.

autoload pulses:Whether to employ the usepulses
statement for parsing. Requires appropriate gate
definitions.

•



4 I Autoload Pulses

Looks up pulse files using standard Python module lookup
0 I.e. Search through PYTHONPATH

Used in Emulator

Not used as part of JaqalPaw

See qscout-gatemodels project qscout/v1/std/ init .py for the canonical example

° Package std contains NATIVE GATES list of GateDefinition objects



5 I Generating Jaqal

Use generate_jaqal_program

Found in jaqalpaq/generator/generator.py

Input is Circuit object.

Output is code as a Python (Unicode) string or text file.

Roughly the inverse of the parsing method.



6 I Programmatically Creating IR

Object-Oriented API

o CircuitBuilder

o SequentialBlockBuilder

o ParallelBlockBuilder

"Undocumented" Lisp-like API

o Available Upon Request



7 Programmatic IR Creation Example

Jaqal

register q[2]

let angle@ 0.123

let anglel 0.987

prepare_all

MS q[0] q[1] angle0 anglel

measure all

IR Creation

gates = \

qscout.v1.std.NATIVE_GATES

b = \
CircuitBuilder(native_gates=gates)

q = b.register("q"„ 2)

b.let("angle0"„ 0.123)

b.let("anglel"„ 0.987)

b.gate("prepare_all")

b.gaterMS"„ q[0], q[1],

"angle0"„ "anglel")

b.gate("measure_all")

b.build()



8 I Circuit Class

Container for statements and metadata
o Let constants

O Macros

O Registers

o Fundamental Registers

O Map aliases

o Native Gates

O Body

Immutable — All changes must be done by creating a new Circuit

Found in jaqalpaq/core/circuit.py



9 Modifying Existing Circuit

Say we want to change

register q[2]

prepare_all

H q[0]

H q[1]

measure all

to

register q[2]

loop 100 {

prepare_all

H q[0]

H q[1]

measure all

c = \
parse_jacial_file("hadamard2.jaqa1")

reg = c.registers["q"]

b = CircuitBuilder(native_gates=gates)

r = b.register(reg.name, reg.size)

b.loop(100, c.body)

b.build()


