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1 Factors the Affect Risk of SCC on Spent
Canisters

Spent nuclear fuel is currently stored in welded stainless steel
canisters across the country at ISFSIs

In near-marine applications, deposition of aggressive
(commonly chloride-containing) sea salt aerosols is possible

o As canisters cool, deliquescence of sea salts can form a corrosive brine

o Criteria are met for the risk of chloride induced stress corrosion
cracking
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1 Brine Stability and Reactions
Temperature and Relative
Humidity dictate which salts
deliquesce

Brines can react to form
less deliquescent salts
° Leads to brine dry-out under
deliquescent conditions

80°C, 35% RH

Small white particles identified as
Mg3(OH)4C12:4H20 an elevated

temperature magnesium
hydroxychloride phase



1 Brine Stability and Reactions
Temperature and Relative
Humidity dictate which salts
deliquesce

Brines can react to form less
deliquescent salts
Leads to brine dr. -out under
deliquescent concitions

RDE experiments show
unexpected results due to film
precipitation at the cathode
o Specifically in Mg- rich brines
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Film analyses, after RDE experiments, have been challenging; therefore the identity of

the film has not been confirmed
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R.M. Katona et al., Corros. Sci. 177 (2020) 108935.



5  How can we Identify Mg-precipitated films in-situ?

Obj ective 
Determine why cathodic scans of MgCI
brines on SS experience abnormal
behavior by establishing the conditions
where specific Mg-films precipitate

Why? 
° The identity of the Mg-film controls thc
brine stability as well as the
electrochemistry, and therefore plays an
important role in understanding the
corrosion of SS in the presence of
MgC12 — rich brines (including seawater)

In-situ Raman 
We hypothesize that collecting Raman
measurements during the cathodic scan,
will allow for us to simulate atmospheric
environments and identify the films thai
forms on the surface in-situ
° What is the effect of flow rate?
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6 1 Flow Experiments
Flow experiments allow for us to mimic RDE measurements while
maintaining the ability to probe the precipitating film directly

In-situ Raman cell specifications
o Cell volume = 4.5 mL Reference Electrode

1-

o Electrolyte thickness = 2.25 mm EDGlass Window

Counter Electrode

o Flow rate: 0 mL/min — 50 mL/min (+/- 0.25%)
• Compared to quiescent scans in standard flat cell (-350 mL)

Electrochemical Measurements:
o 1-hour OCP

o Cathodic scan: OCP to -1.4 VAg/AgC1
o Scan rate = 0.167 mV/sec.

o Solution flowing continuously during experimentation

Flow

Copper Contact for WE

Sample (WE)

Flow-through Raman Cell



1 Flow and 02 Depletion 0.6 M NaCI
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As flow rate (Q) increases, the limiting
current density increases

Activation
controlled regio
(OCP to -0.5
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8 
1 Flow and 02 Depletion 0.6 M NaCI

• As flow rate (Q) increases, the limiting
current density increases
• Q < 1.5 mL/min: ilim flow < ilim for a quiescent
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10 1
ilim and Estimation of Boundary Layer Thickness

Previous RDE studies demonstrated Levich behavior in 0.6 M NaC1, where

ilim =

2.0x10-4-
,
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C. Liu, J. Srinivasan, R.G. Kelly, E. J. Electrochem. Soc. 164 (2017) C845-C855.



jun, and Estimation of Boundary Layer Thickness

0.6 M NaCl:

vs Vflow rate is linear

Allows for an estimation of the boundary layer thickness
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Here, we show that we can control the effective boundary layer thickness by adjusting the flow rate, this

allows for investigations of atmospheric corrosion scenarios using flow cells.



Flow and 02 Depletion — 0.189 M MgC12
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13 1 Flow and 02 Depletion 0.189 M MgC12

No dependence  between flow rate and limiting current density
o No value of Q reaches the ilim for expected quiescent ORR (displayed on Pt)
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This result is consistent with RDE experiments, where boundary layer thickness could not be controlled by

adjusting the rotation speed (R.M. Katona et al., Corros. Sci. 177 (2020) 108935).



14 1 Flow and 02 Depletion

In 0.6 M NaCl: 

As flow rate increases, the ilin, increases
• Q < 1.5 mL/min: ilim flow < ilim for a quiescent

• Q =1.5 mL/min: ilim flow = ilim for a quiescent

• Q > 1.5 mL/min: ilim flow > ilim for a quiescent
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1 5 I In-situ Raman Collection

Working and counter

Confocal XploRA Plus Raman microscope electrode

o 532 nm Laser

o Power = 100 mW (spectra collected at 50 %
reduction)

o 10x magnification

o Na = 0.25, and a 2.6 !am beam diameter.

o Scans collected every 2-5 mins over 2800 to 4000 cm-

o Collected for 3 s and averaged over 10 consecutive scans.

• The laser was turned off in between scans to reduce surface
heating

Flow Rate 1.5 mL/min

Monitored ingrowth of the Mg-OHbrucite
stretch at 3654 cm-1

Sample cell

Confocal Microscope

Reference
electrode

1



16 1 In-situ Raman Analysis - 0.189 M MgC12

Zigan F, Rothbauer R (1967) Neues Jahr Mineral 137 143
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17 I Under what conditions does precipitation occur?

Brucite peak grows in starting at —0.88 VAg/Agcl

No evidence of MgCO3 forming (-1095 cm-1)
° Consistent with literature, suggesting that kinetic inhibition
prevents precipitation
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1 Summary and Conclusions
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In-situ spectroelectrochemical
systems, consisting of coupled
Raman flow cells and cathodic
potential scans, can be effective
for for atmospheric corrosion
investigations

0.6 M NaCl: Solution regeneration
is required to prevent oxygen
deficiencies, boundary layer
thickness is controlled by solution
flow rate

0.189 M MgC12: boundary layer
thickness is not related to flow
rate
° Inhibited by the precipitation of Mg-
hydroxide phases (brucite in this case)
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Future work
19

Use in-situ Raman analyses to
identify the Mg-OH-C1 phases
that form as a function of [MgC12]
and temperature

Explore seawater solutions to
identify thin film phase formation
as a function of relative humidity
and temperature
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