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Motivation and Objective

Ceramic to metal brazes are used in many applications:
o Medical devices
o Electronic packaging and connectors
o Hermetically sealed joints
> High power insulators

Brazing temperature profiles cause residual stresses to accumulate in the joint due to coetficient of
thermal expansion (CTE) differences. If we can minimize these residual stresses by optimizing
the brazing thermal profile, we can increase the joint strength.

https://www.mdcvacuum.com/ https://www.mdcvacuum.com/
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‘ Model and Materials

Two alumina ceramic parts are brazed to a Kovar®
spacer to create the “ceramic button” test article.

o ASTM F-19 Standard Test Method for Tension and
Vacuum Testing Metallized Ceramic Seals!

Six braze materials are studied:
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Kovar and its Curie point

Kovar is a low expansion alloy made up of iron, nickel, and cobalt!

Kovar has a Curie temperature of 435°C

o Curie temperature represents the temperature above which the material loses its ferromagnetic properties?

o 'This change in magnetic properties also impacts other material properties such as modulus and thermal strain
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Finite Element Model @)

|

Sierra Solid Mechanics! code was used to simulate brazing process and an applied tensile load.

An axisymmetric wedge model was created. Also assumed half symmetry about Kovar washer.

A mesh convergence study was run to ensure two elements through braze thickness can resolve the axial stress in the
brazed joint. |
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‘ Boundary Value Problem

To understand the physics of the problem, four cooling

profiles that bound the solution space were developed L cetnkalCoolg = = Sowinl Coolee
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Contoured stresses show cooling rate impacts
Fast Initial Cooling Rate

Temperature =400°C

Temperature = 300°C
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‘ Stresses in ceramic tracked at location near outer diameter

Initial cooling rate has largest impact on stress at

400°C and 20°C

Final cooling rate only has small impact on stress at

20°C

Fast initial cooling rate maximizes stress at 400°C

while minimizing stress at 20°C
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Axial Stress (MPa)

Interface stresses show cooling rate effects

Fast initial cooling rate model sees higher
compression stress near the outer diameter at
400°C leading to lower amounts of tensile stress at

20°C
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Axial Stress (MPa)

Tensile Load Application on Boundary Value Problem ()

After cooling is completed, the sample is subjected to a tensile load
Residual stress in brazed joint decreases strength during tensile test

~16 MPa difference in residual stress leads to a 2 kIN difference in break load if break happens at 75
MPa

Axial stress in ceramic at 6.4 kN
of applied tension
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Optimization

Optimization Variables:
° Initial cooling rate
o Anneal temperature
o Dwell time

° Final cooling rate

Dakota, an optimization tool developed by
Sandia, was used to vary inputs and minimize
stress

> Objective function — minimize axial and
maximum principal stress in ceramic near braze
interface
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Peak Axial Stress (MPa)

Optimization Results

Results of individual runs
i during optimization

analysis for AgCuZr Anneal
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Optimal Solution

High initial cooling rates and annealing
temperatures < 300°C lead to minimized axial stress
in the ceramic

) Initial Cooling Anneal Dwell Time | Final Cooling
Material . .
Rate (°C/min) |Temperature (°C) | (hours) |Rate (°C/min)
AgCuZr 20.0 298.2 10.0 1.0
AuGe 1.0 219.9 10.0 5.2
CusSil 18.8 355.5 10.0 1.0
InCuSil15 20.0 200.0 10.0 1.0
NiCusSil 20.0 300.0 7.8 1.0
Silver 20.0 279.2 34 1.0
) Peak Axial Stress (MPa)
Material
Minimum | Maximum | Difference
AgCulZr 38.2 45.0 6.8
AuGe 40.8 53.7 12.9
CusSil 43.6 53.0 9.4
InCuSil15 46.8 60.6 13.9
NiCusSil 36.6 47.7 11.0
Silver 12.4 16.0 3.6
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Summary

Kovar’s Curie temperature has significant impact on material properties during a brazing thermal
profile

A fast initial cooling rate maximizes transient tensile stress in ceramic at the Curie temperature but
minimizes the residual tensile stress at room temperature.

> A slow cooling rate below the Curie temperature also reduced residual tensile stress a small amount

Less residual stress after the brazing procedure increases strength of brazed joint

Predicted residual stress in the ceramic can be minimized by optimizing the thermal profile for
specific braze materials
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