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I Motivation and Objective

Ceramic to metal brazes are used in many applications:
O Medical devices
O Electronic packaging and connectors
O Hermetically sealed joints
O High power insulators

Brazing temperature profiles cause residual stresses to accumulate in the joint due to coefficient of
thermal expansion (CTE) differences. If we can minimize these residual stresses by optimizing
the brazing thermal profile, we can increase the joint strength.

https://www.mdcvacuum.com/ https://www.mdcvacuum.com/

https://www.friatec-ceramics.com/
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Model and Materials

Two alumina ceramic parts are brazed to a Kovar®
spacer to create the "ceramic button" test article.
o ASTM F-19 Standard Test Method for Tension and
Vacuum Testing Metallized Ceramic Seals1

Six braze materials are studied:
O AgCuZr

O AuGe (Georo)

o CuSil

O InCuSill 5

o NiCuSil

o Silver

Braze materials and Kovar are modeled with rate- and
temperature-dependent viscoplastic models that capture
the creep and plasticity behavior of the material.

Alumina is modeled with a simple thermo-elastic
material model.

1 http://www.astm.org/cgi-bin/resolvetcgi?F19-11(2016)
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Kovar and its Curie point

Kovar is a low expansion alloy made up of iron, nickel, and cobalt1

Kovar has a Curie temperature of 435°C
o Curie temperature represents the temperature above which the material loses its ferromagnetic properties2

O This change in magnetic properties also impacts other material properties such as modulus and thermal strain
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1 https://www.carpentertechnology.com/en/product-solutions/cartech-kovar-alloy/
2 Hofmann, Philip. Solid State Physics: An Introduction. John Wiley & Sons, Berlin (2008). 5



I Finite Element Model

Sierra Solid Mechanics1 code was used to simulate brazing process and an applied tensile load.

An axisymmetric wedge model was created. Also assumed half symmetry about Kovar washer.

A mesh convergence study was run to ensure two elements through braze thickness can resolve the axial stress in the
brazed joint.

Tension Application
Flange

Alumina
Ceramic

Axial Direction

Radial Direction
L 

Braze Filler

Kovar Washer

1SIERRA Solid Mechanics Team. "Sierra/Solid Mechanics 4.48 User's Guide." Technical Report No. SAND2018-2961, Sandia National
Laboratories, Albuquerque, NM. 2018. 6



Boundary Value Problem

To understand the physics of the problem, four cooling
profiles that bound the solution space were developed
and studied:
• Fast cooling rate (100°C/sec)

o Slow cooling rate (0.01°C/sec)

O Fast initial cooling, then slow final cooling (FastThenSlow)

O Slow initial cooling, then fast final cooling (SlowThenFast)

Braze material for boundary value problem is AgCuZr
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Contoured stresses show cooling rate impacts
Fast Initial Cooling Rate
Temperature = 300°CTemperature = 400°C

F

Temperature = 400°C
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I Stresses in ceramic tracked at location near outer diameter

Initial cooling rate has largest impact on stress at
400°C and 20°C

Final cooling rate only has small impact on stress at
20°C

Fast initial cooling rate maximizes stress at 400°C
while minimizing stress at 20°C
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I Interface stresses show cooling rate effects
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I Tensile Load Application on BoundaryValue Problem
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After cooling is completed, the sample is subjected to a tensile load

Residual stress in brazed joint decreases strength during tensile test

—16 MPa difference in residual stress leads to a 2 kN difference in break load if break happens at 75
MPa

Axial stress in ceramic at 6.4 kN
of applied tension
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Optimization

Optimization Variables:
O Initial cooling rate

O Anneal temperature

O Dwell time

O Final cooling rate

Dakota, an optimization tool developed by
Sandia, was used to vary inputs and minimize
stress
O Objective function — minimize axial and
maximum principal stress in ceramic near braze
interface
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Optimization Results
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Initial Cooling Rate rChnin)

Material
Initial Cooling

Rate (°C/min)

Anneal

Temperature (°C)

Dwell Time

(hours)

Final Cooling

Rate (°C/min)

AgCuZr 20.0 298.2 10.0 1.0

AuGe 1.0 219.9 10.0 5.2

CuSil 18.8 355.5 10.0 1.0

inCuSill5 20.0 200.0 10.0 1.0

NiCuSil 20.0 300.0 7.8 1.0

Silver 20.0 279.2 3.4 1.0

Optimal Solution

High initial cooling rates and annealing
temperatures < 300°C lead to minimized axial stress
in the ceramic

Material
Peak Axial Stress (MPa)

Minimum Maximum Difference

AgCuZr 38.2 45.0 6.8

AuGe 40.8 53.7 12.9

CuSil 43.6 53.0 9.4

lnCuSill5 46.8 60.6 13.9

NiCuSil 36.6 47.7 11.0

Silver 12.4 16.0 3.6
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Summary

Kovar's Curie temperature has significant impact on material properties during a brazing thermal
profile

A fast initial cooling rate maximizes transient tensile stress in ceramic at the Curie temperature but
minimizes the residual tensile stress at room temperature.
0 A slow cooling rate below the Curie temperature also reduced residual tensile stress a small amount

Less residual stress after the brazing procedure increases strength of brazed joint

Predicted residual stress in the ceramic can be minimized by optimizing the thermal profile for
specific braze materials

n
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