

SANDIA REPORT
SAND2021-11609
Printed September 2021

Design Considerations for
Distributed Energy Resource
Honeypots and Canaries

Jay Johnson, Louis Jencka, Timothy Ortiz, C. Birk Jones, Adrian Chavez, Brian Wright,
Adam Summers

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

SAND2021-11609

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@osti.gov
 Online ordering: http://www.osti.gov/scitech

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5301 Shawnee Rd
 Alexandria, VA 22312

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.gov
 Online order: https://classic.ntis.gov/help/order-methods/

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/

3

ABSTRACT

There are now over 2.5 million Distributed Energy Resource (DER) installations connected to
the U.S. power system. These installations represent a major portion of American electricity
critical infrastructure and a cyberattack on these assets in aggregate would significantly affect
grid operations. Virtualized Operational Technology (OT) equipment has been shown to
provide practitioners with situational awareness and better understanding of adversary tactics,
techniques, and procedures (TTPs). Deploying synthetic DER devices as honeypots and canaries
would open new avenues of operational defense, threat intelligence gathering, and empower
DER owners and operators with new cyber-defense mechanisms against the growing intensity
and sophistication of cyberattacks on OT systems. Well-designed DER canary field deployments
would deceive adversaries and provide early-warning notifications of adversary presence and
malicious activities on OT networks. In this report, we present progress to design a high-fidelity
DER honeypot/canary prototype in a late-start Laboratory Directed Research and
Development (LDRD) project.

4

ACKNOWLEDGEMENTS

The team would like to thank Vince Urias, Abraham Clements, and William Stout for their valuable
contributions to the project.

5

CONTENTS

1. Introduction ... 8

2. Prior Work ... 10

3. DER Canary and Honeypot Design... 11
3.1. DER Simulator Software ... 12

3.1.1. DER Clock ... 12
3.1.2. DC Simulation ... 13
3.1.3. AC Simulation .. 14
3.1.4. IEEE 1547-Compliant Interfaces ... 16
3.1.5. Non-standardized Communication Interfaces .. 16
3.1.6. Monitoring and Test Environment .. 17

3.2. Intrusion Detection and Alerting ... 19
3.2.1. Behavior-based Intrusion Detection .. 22

3.3. Honeypot and Honeynet Networking ... 24
3.4. Hosting Challenges ... 24
3.5. Threat Sharing ... 24

4. DER Honeypot Demonstrations ... 26
4.1. Stand-Alone DER Honeypot Implementation .. 26
4.2. Cloning an Energy Storage System for a DER Canary Application 29

5. Alternative DER Simulator Applications .. 34
5.1. Training Tools for Cyber Defenders ... 34
5.2. Real-Time Grid Integration Studies ... 34

6. Conclusion ... 35

Appendix A. Example DER Honeypot Output .. 36

Appendix B. SunSpec Model Definitions ... 37
B.1. SunSpec Model 30003 .. 37
B.2. SunSpec Model 30004 .. 38

Appendix C. CYBER Monitoring Software Installation .. 41
C.1. Zeek Installation ... 41
C.2. Snort Installation ... 41
C.3. Filebeat Installation .. 41
C.4. Logstash Installation ... 41
C.5. Logstash Installation ... 42
C.6. Grafana Installation .. 43

LIST OF FIGURES

Figure 1: Different deployment options for the DER Simulator. .. 11
Figure 2: Design of the DER simulation with inputs and communication interfaces. 12
Figure 3: Pre-recorded 1-second solar irradiance profile. .. 13
Figure 4: Photovoltaic current-voltage (I-V) curves with changing irradiance and temperature. 14
Figure 5: AC grid inputs. ... 14
Figure 6: DER measurement visualization dashboard. .. 17
Figure 7: Live dashboard graphs displaying the PQ plane (top left), DC I-V curve (top right), and

the volt-var curve configuration (bottom). .. 18

6

Figure 8: Interface for live configuration of the DER Simulator. .. 18
Figure 9: An example deployment of a bump-in-the-wire IDS monitoring and alerting system in a

DER environment. ... 20
Figure 10: The process in which alerts are identified and presented to system administrators when

anomalies or attacks are detected. ... 20
Figure 11: A Grafana dashboard displaying network activity along with system alerts stored

within the Elasticsearch database. .. 21
Figure 12: Data features used by the Adaptive Resonance Theory algorithm to detect network

anomalies. ... 22
Figure 13: Flow diagram for the online learning process. .. 23
Figure 14: ART results for (a) normal, (b) adversary reconnaissance, and (c) a denial-of-service

attack. No false positives occurred when subjected to the normal data and each of the cyber-
attacks were detected. ... 24

Figure 15: Honeypot Common Model data read using the SunSpec SVP Dashboard. 27
Figure 16: Honeypot DER Capacity Model data. ... 27
Figure 17: Multiple reads of the Honeypot DER AC Measurement Model. .. 28
Figure 18: Honeypot DER AC Controls Model showing the PF function is set to 0.90 with an

underexcited excitation. .. 28
Figure 19: Raspberry Pi 3B+ and 4B computers configured with DER Simulator software. 29
Figure 20: DER ESS (left) vs DER Honeypot (right) for SunSpec Model 702 DER Capacity. 30
Figure 21: DER ESS (left) vs DER Honeypot (right) for SunSpec Model 701 DER AC

Measurement. .. 31
Figure 22: DER ESS (left) vs DER Honeypot (right) for SunSpec Model 703 DER DC

Measurement. .. 31
Figure 23: DER ESS (left) vs DER Honeypot (right) for SunSpec Model 704 DER AC Controls. 32
Figure 24: DER ESS (left) vs DER Honeypot (right) for SunSpec Model 705 DER Volt-Var. 33
Figure 25: Model 30003 in the SunSpec SVP Dashboard. .. 38
Figure 26: Model 30004 in the SunSpec SVP Dashboard. .. 40

7

ACRONYMS AND DEFINITIONS

Acronym Definition

ACL Access Control List

ANSI American National Standards Institute

API Application Programming Interface

CIP Critical Infrastructure Protection

DER Distributed Energy Resource

DERMS Distributed Energy Resource Management System

ELG Elasticsearch, Logstash, and Grafana

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

IEC International Electrotechnical Committee

IEEE Institute of Electrical and Electronics Engineers

IT Information Technology

NERC North American Electric Reliability Corporation

NIST National Institute of Standards and Technology

OEM Original Equipment Manufacturer

OT Operational Technology

PKI Public Key Cryptography

PV Photovoltaic

RTO Regional Transmission Organization

SDO Standards Development Organization

SP Special Publication (from NIST)

TLS Transport Layer Security

TSO Transmission System Operator

8

1. INTRODUCTION

As the US transitions to more distributed, clean, interoperable power systems, it is critical to effectively
defend these generation sources, loads, and storage devices—and associated networks—from
intentional threats. Modern DER devices include one or more communication interfaces that provide
a wide range of control and monitoring points to DER vendors, grid operators, aggregators, and 3rd
parties. These DER interoperable capabilities give grid operators new visibility into power system
operations and control capabilities to better optimize the system. Unfortunately, DER
communications often run over the public internet, except in the cases of large installations where
dedicated utility connections are required or cost-effective. Internet-connected DER equipment
potentially represents a new attack vector for the power system and needs to be protected against
compromise.

In fact, in March 2019, the first disruptive cybersecurity incident on record in the U.S. power industry
was experienced by a renewables developer; sPower lost visibility into 500 MW of wind and solar
assets due to a Denial of Service (DoS) attack on an unpatched Cisco firewall1. Distributed Energy
Resources (DER), Inverter-Based Resources (IBRs), and vendor/aggregator cloud infrastructures are
also vulnerable to attacks2,3.

Deception technologies offer multiple cybersecurity defense functionalities to capture adversary
tactics and techniques to expand our understanding of the threat landscape and DER vulnerabilities.
At a practical level, virtualized DER devices can be configured to provide (a) protection by directing
adversary focus away from critical assets and (b) detection by sending alerts when the adversary
interacts with the artificial equipment. Once the underlying cyber-physical DER emulation capabilities
are created, tools of deception can be stood up and replicated rapidly—or collocated on operator
cloud networks and fielded systems. Virtual DER can be deployed in:

• Honeypots – internet-connected applications to capture adversary actions. When there is a
collection of virtualized devices with internal networking it is sometimes called a honeynet.

• Canaries – virtualized device deployed alongside real DER equipment on an OT network to
alert operators to adversary presence (i.e., fake devices in real systems).

There is currently an absence of well-developed cyber-physical deception elements and virtualization
technologies for OT systems. This 6-month LDRD was designed to help defend US critical
infrastructure by deceiving cyber-adversaries with realistic internet-connected DER environments.
The team investigated what was needed to create a credible DER deception, and what intrusion data
could be collected when deploying these technologies as honeypots and canaries on fielded systems.
The team created a Python-based cyber-physical DER Simulator that included a SunSpec Modbus
communication interface which exposed data points for environmental, power system, and power
electronics behaviors that mirrored physical DER equipment. The DER simulator along with a
network monitoring tool built from the Snort and Zeek Intrusion Detection Systems (IDS) coupled
with an Elasticsearch, Logstash, and Grafana (ELG) stack for alerting was deployed on multiple
Raspberry Pi systems. These small, modular compute systems could be easily installed on utility OT
systems as canaries or connected to the internet to track adversary behaviors in the future.

1 S. Lyngaas, “Utah renewables company was hit by rare cyberattack in March,” CYBERSCOOP, Oct 31, 2019. URL:
https://www.cyberscoop.com/spower-power-grid-cyberattack-foia/
2 W. Westerhof, “Horus Scenario: Exploiting a weak spot in the power grid, URL: https://horusscenario.com/
3 F. Bret-Mounet, "All your solar panels are belong to me", DEF CON 24, 2016.

https://www.cyberscoop.com/spower-power-grid-cyberattack-foia/
https://horusscenario.com/

9

This project determined that it was difficult to fully disguise and deploy authentic DER device
technologies. State-of-the-art device emulation leaves artifacts that can be detected with patience and
thorough analysis. To fool highly-sophisticated adversaries further research is needed on the
significance and observability of such virtualization artifacts to increase realism in the communication
systems, power conversion emulation, and unique environmental factors that dictate DER device
behaviors.

10

2. PRIOR WORK

Currently, there are R&D and commercial honeypot technologies, including Sandia’s R&D 100 award-
winning High-Fidelity Adaptive Deception & Emulation System (HADES)4 and canaries from
companies like Thinkst5 and Fortinet6, but these focus on information technology (IT) environments
containing corporate firewalls, computers, and networks. There are fewer deception technologies
deployed on OT networks and none that represent DER networks and devices, despite the advantages
these could provide network defenders. As an example, a 2014 SANS institute report covering a
German Steel Mill hack recommended adding canaries to the system to help detect network presence7.

In the last couple decades, some research groups and companies have started exploring the efficacy
of OT canaries. Cisco created the SCADA HoneyNet that replayed to Nmap and Xprobe requests
with pre-configured packet responses based on configuration files8. Attivo Networks’ BOTsink9
technology is designed to generate Windows and Linux devices that support ICS/SCADA protocols
like DNP3, Modbus, and IEC 61850. Attivo is currently researching honeypots for distribution
substations and other SCADA systems with PNNL10, though it is unclear how well their physics
engine(s) function or if they consider the risk to aggregates of cloud-connected equipment.
CONPOT11 is an ICS/SCADA honeypot, built on the Honeynet Project12 source code, which
provides a server-side environment a full protocol stacks of some ICS protocols. The problem with
most of these tools is they do not represent the communications interfaces from real devices or
respond to input variables or control setpoints as real equipment would.

What makes our research unique is focusing specifically on DER power devices and closely matching
cyber-physical behaviors. In this work, we created a physical simulation of the DER that also includes
a communication interface that dynamically changes based on a power electronics simulation and
incorporates inputs from users. To our knowledge, a DER honeypot of this detail has never been
created.

4 HADES: High-Fidelity Adaptive Deception & Emulation System, Sandia White paper, SAND2017-3364 M. URL:
https://ip.sandia.gov/techpdfs/HADES.pdf
5 Thinkist Canary, URL: https://canary.tools/
6 “FortiDeceptor Enables a New Breach Protection Approach,” Fortinet White Paper, 2019.
7 RM Lee, MJ Assante, T Conway, “German steel mill cyber attack,” Industrial Control Systems SANS Report, 2014.
8 Pothamsetty, Venkat and Matthew Franz. n.d. SCADA HoneyNet Project: Building Honeypots for Industrial
Networks. URL: http://scadahoneynet.sourceforge.net/.
9 K. Hiltpold, Threat Deception for SCADA Environments, Attivo Networks Confidential presentation, 2021.
10 T. W. Edgar, W. Hofer, M. Feghali, Model Driven Deception for Defense of Operational Technology Environments,
PNNL-30387.
11 L. Rist, et al. 2018. Conpot: ICS/SCADA Honeypot. URL: http://conpot.org
12 The Honeynet Project, URL: https://www.honeynet.org/

https://ip.sandia.gov/techpdfs/HADES.pdf
https://canary.tools/
http://scadahoneynet.sourceforge.net/
http://conpot.org/
https://www.honeynet.org/

11

3. DER CANARY AND HONEYPOT DESIGN

There are several difficult design choices involved when creating DER canaries and honeypots. Some
considerations include how to create the DER simulation, what monitoring and alerting tools to
deploy on the host machine or as bump-in-the-wire devices, how to make the local network look
“lived-in”, and how to host these systems. In many situations it may be more convenient to build the
DER Simulator and monitoring software on virtual machines (VMs) because they can be easily spun
up based on the needs of the OT operator or researcher. This also makes the virtual environment
highly-scalable when using a VM management software such as Sandia’s Minimega tool.13 But in other
cases, especially for canary applications, it may be preferred to have a stand-alone device that can be
turned over to network operators to install on the OT environment. Some example deployment
scenarios are included in Figure 1. In each of these situations, the deployment strategy will need to be
considered carefully by the team implementing the solution.

Figure 1: Different deployment options for the DER Simulator.

This team ultimately decided to create a Python-based DER Simulator that leveraged pySunSpec2 and
other Python packages. The DER Simulator was deployed with Snort and Zeek IDSs along with an
ELG stack for alerting on multiple low-power, single-board Raspberry Pi computers. These self-
contained computers could be deployed as honeypots or handed off to partner organizations to create
canaries. Creating equivalent Linux-based VMs would require little additional effort if the
honeypot/honeynet needed to be deployed in the cloud or at a massive scale. Specific components of
the DER Honeypot design are detailed in the following sections.

13 Minimega, URL: https://minimega.org/

https://minimega.org/

12

3.1. DER Simulator Software

In collaboration with the SunSpec Alliance, the team created a Python-based DER Simulator that
represented DC inputs, power electronics, and communications that are nearly indistinguishable from
physical equipment. An asynchronous I/O python package, asyncio14, was used to execute concurrent
code representing the DC and AC simulations, Modbus server, and other DER Simulator
subprocesses.

As shown in Figure 2, the primary elements of this DER Simulator design were:
(a) A clock object to synchronize the asynchronous DER Python code with local clock time.
(b) An AC power electronics simulation that accounted for efficiencies of the equipment and

grid-support functions.
(c) One or more DC power simulations that represented the photovoltaic system and

maximum power point tracker.
(d) A SunSpec Modbus server with the 700-Series models that represent novel DER

interoperability interfaces and protocol information models.
(e) DER device fingerprinting that allows the device to spoof operating system and additional

networking interfaces.
(f) Network-based intrusion detection system that logged network traffic and generated alerts

based on a set of rules.
Each of these simulator elements are described in the subsections below.

Figure 2: Design of the DER simulation with inputs and communication interfaces.

3.1.1. DER Clock

The clock object was designed to synchronize data from the AC and DC-sides of the power electronics
device and either synchronize to the local operating system time or run the simulations from a fixed
time for debugging purposes. The DER honeypot needed the ability to synchronized with the local
time to:

14 asyncio - Asynchronous I/O, URL: https://docs.python.org/3/library/asyncio.html, accessed Sept 13, 2021.

https://docs.python.org/3/library/asyncio.html

13

• track solar irradiance profiles for the DER equipment, and

• accurately reflect startup and shutdown times for the virtualized photovoltaic equipment.

As an example, if the DER was on and reporting full power production at midnight, this would expose
the PV system honeypot. To solve that issue, the AC and DC simulators used the DER clock as the
time reference for profile data used in the simulation.

3.1.2. DC Simulation

At this point, only photovoltaic DC simulation capabilities were constructed, but the simulation tool
could be expanded to energy storage systems, synchronous generators, electric vehicle charges, and
other DER/IBR equipment in the future with the addition of battery, EV, or other DC models.

The DC simulation was constructed with a maximum power level, maximum power point voltage
(VMPP), and user-selected number of DC ports. Each of the PV DC ports took these inputs and
generated EN 5053015 current-voltage (I-V) curves. The temporal I-V curves were updated based on
the irradiance and temperature using one of three techniques:

1. using a repeating week-long irradiance/temperature profile with 1-second resolution,
2. using a predictive model based on NOAA cloud cover forecasts and the SNL-developed PV

modelling library, pvlib16,17, or
3. communicating to another physical DER on the same network and replicating its DC power.

An example of two days of pre-recorded solar irradiance with 1-second resolution, captured at DETL,
is shown in Figure 3. The I-V curve was generated using irradiance and temperature, as shown in
Figure 4. The curve is created with a user-selected number of points and maximum voltage. For these
simulations, 1000 points were used for the I-V curve and the maximum voltage was set to open circuit
voltage (VOC) for the greatest irradiance and coldest temperatures expected for the simulation.

Figure 3: Pre-recorded 1-second solar irradiance profile.

15 CENELEC - EN 50530, “Overall efficiency of grid connected photovoltaic inverters,” 2010.
16 W.F. Holmgren, C.W. Hansen, M.A. Mikofski. “pvlib python: a python package for modeling solar energy systems.”
Journal of Open Source Software, 3(29), 884, (2018). https://doi.org/10.21105/joss.00884
17 pvlib python, URL: https://pvlib-python.readthedocs.io/en/stable/

https://pvlib-python.readthedocs.io/en/stable/

14

Figure 4: Photovoltaic current-voltage (I-V) curves with changing irradiance and temperature.

3.1.3. AC Simulation

The AC inputs were designed to be generated from a multi-day grid voltage and frequency profile
recorded from Sandia’s Distributed Energy Technologies Laboratory (DETL), like that shown in
Figure 5, or from measurements from other DER equipment or sensors. In canary applications, there
is likely similar DER equipment on the same subnet that could be queried to reproduce the current
grid conditions in the canary. The realism of the DER simulation would be enhanced by reporting the
local grid voltage and any changes to frequency the other grid-connected equipment experienced. In
theory, this could also be done with grid measurement equipment on or near the DER
canary/honeypot as well. For all simulation inputs and calculated values, there is a small amount of
random noise (e.g., ±0.5%) applied to the signal to simulate measurement errors and ensure multiple
DER Simulators do not have the exact same measurements.

Figure 5: AC grid inputs.

15

The electrical behavior of the DER reflects changes in the DER grid-support function parameters and
the local power system attributes. The steady-state functions like volt-var, frequency-droop, and volt-
watt were built into the DER simulation, based on extensive interoperability and power testing at
DETL over the last 5 years18,19,20,21,22. Transient functions like voltage and frequency ride through23
and unintentional islanding protection were not included because these behaviors are not visible by
attackers through the communication network. Transient functions operate during rare grid faults so
these capabilities will not reveal the simulation unless they are configured outside their normal
operating ranges.

The AC side tracks what grid-support functions are enabled at any given time. The reactive power
target for the DER is calculated by working through these reactive power functions:
 1. Constant power factor mode (PF)
 2. Voltage-reactive power mode (VV)
 3. Active power-reactive power mode (WV)
 4. Constant reactive power mode (VarSet)
and determining which, if any, are enabled and calculating the associated reactive power setpoint. That
setpoint is then updated on each of the phases of the DER AC-side simulator.

The active power for the DER is calculated based on status of the following control functions:

1. WMax – A power setting that derates the inverter
2. Frequency-Droop – Changes active power of the DER based on the grid frequency.
3. Volt-Watt - Reduces the power if the voltage is too high
4. WMaxLimPct - Curtailment based on percentage of nameplate capacity
5. WSet - Curtailment based on active power in watts
6. Other Var priority reactive power functions like VV, WV, PF, or VarSet that push the

inverter of the maximum power point to produce the required reactive power

In the cases of some of the reactive power functions like fixed power factor, changes to these settings
on larger DER will have impact on the local voltage. This is currently not included, but a simple power
system model could be used to make changes to the voltage measurements to reflect changes in DER

18 J. Johnson, R. Ablinger, R. Bruendlinger, B. Fox, and J. Flicker, “Interconnection standard grid-support function
evaluations using an automated hardware-in-the-loop testbed,” IEEE Journal of Photovoltaics, 8, 565–571. 2018.
19 N. Ninad, E. Apablaza-Arancibia, et al. Development and evaluation of open-source IEEE 1547.1 test scripts for
improved solar integration. In EU PVSEC 2019: 36th European Photovoltaic Solar Energy Conference and Exhibition,
Marseille, France, 9-13 September 2019, 952–957, 2019.
20 J. Johnson, E. Apablaza-Arancibia, N. Ninad, et al. “International development of a distributed energy resource test
platform for electrical and interoperability certification,” In 2018 IEEE 7th World Conference on Photovoltaic Energy
Conversion (WCPEC), 2492–2497. 2018.
21 J. Johnson, R. Brundlinger, C. Urrego, and R. Alonso, “Collaborative development of automated advanced
interoperability certification test protocols for PV smart grid integration,” In EU PVSEC 2014: European Photovoltaic
Solar Energy Conference and Exhibition, Amsterdam, Netherlands, 2014.
22 N. Ninad, E. Apablaza-Arancibia, M. Bui, J. Johnson, et al. “PV inverter grid support function assessment using open-
source IEEE P1547.1 test package,” In 47th IEEE Photovoltaic Specialists Conference (PVSC), Virtual Meeting, June
15-Aug. 21, 2020.
23 N. Ninad, E. Apablaza-Arancibia, M. Bui, and J. Johnson, “Commercial PV inverter IEEE 1547.1 ride-through
assessments using an automated phil test platform.” Frontiers in Energy Research (submitted) 2020.

16

controls. This would help in convincing the adversary they are affecting the local power grid
realistically and encourage them to keep testing their attacks.

3.1.4. IEEE 1547-Compliant Interfaces

IEEE 1547-201824 mandated that DER devices include one of three standardized interoperability
interfaces: IEEE 2030.5, IEEE 1815, or SunSpec Modbus. DER products are starting to arrive on
the market with these communication interfaces, so the DER Simulator was designed to include these
capabilities as well as legacy Modbus interfaces that exists on many DER devices from Fronius, SMA,
SolarEdge, etc. In the case of the IEEE 1815 (DNP3) and SunSpec Modbus communication
interfaces, the DER will host a DNP3 Outstation interface or Modbus Server. In the case of the IEEE
2030.5 interface, the DER can be created with an IEEE 2030.5 client but there are two complications:

• The DER must be provisioned with a valid public key infrastructure (PKI) credential for that
jurisdiction

• The DER client initiates the connection to the server, so it is not clear how the adversary
would establish a valid IEEE 2030.5 connection.

At this time, only the Modbus server has been created in the DER Simulator. It is instantiated when
the DER Simulator is created and populates the initial nameplate, settings, monitoring, and control
data using either a JSON file25 or python dictionary. The values are updated at a user-selected update
rate. Once connected, client changes to the control parameters adjust the operation of the device
which is then reflected in the power measurements of the AC and DC side. A major software
engineering effort was undertaken to map hundreds of data points in the Modbus server to the
appropriate control/monitoring functionality in the DER Simulator.

3.1.5. Non-standardized Communication Interfaces

Often DER equipment will reach out to DER vendor monitoring cloud environments or servers to
request firmware updates, post solar generation summaries, or report monitoring or prognostics
information. In rare cases, DER devices will include open ports and services, like ssh or telnet, for
remote configuration or debugging. These non-standardized communications interfaces must be
effectively mirrored to create realistic DER simulations and network behaviors.

When the honeypot is scanned, it is also important to include the correct number of traceroute hops,
realistic nmap fingerprints, and the manufacturer MAC addresses, etc. To get the networking to match
real systems, it was proposed to deploy the devices at representative locations with real internet service
provider (ISP) connections to the internet. For residential DER devices, the honeypot would be
connected to the internet via a residential ISP connection. For utility canaries, the DER Simulator
would be connected to the OT network.

24 IEEE Std 1547-2018, “IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with
Associated Electric Power Systems Interfaces," pp.1-138, 6 April 2018, doi: 10.1109/IEEESTD.2018.8332112.
25 For example: https://github.com/jayatsandia/svp_energy_lab/blob/dev3.7/Lib/svpelab/sunspec_device_1547.json

https://github.com/jayatsandia/svp_energy_lab/blob/dev3.7/Lib/svpelab/sunspec_device_1547.json

17

A python script was developed utilizing a popular packet manipulation library, Scapy, to recreate the
nmap fingerprints and MAC addresses of our physical DER devices at DETL. When running, the
script will intercept all incoming traffic over the specified network interface and do a couple things
depending on what traffic is being intercepted. If the script detects an ARP scan, the program will
generate a corresponding response with a spoofed MAC address (i.e., the MAC addresses of the
DETL DER devices). The spoofing script will also detect and respond to standard ICMP requests so
that if an adversary wanted to see what devices were active on the network it would respond back with
a message saying, “I am here”. The final capability of the script is that it can respond to a nmap scan
by revealing any number of ports to be open on the honeypot—thereby, mimicking the chosen
physical devices. This portion of the script can spoof many other ports such as 21 if the DER included
FTP, 22 if the DER included SSH, 23 if the DER used Telnet, 80 or 443 if the DER had a web server,
etc. This functionality will be particularly useful in deploying a DER Simulator that mirrors a specific
physical device. For example, we may want to have a DER device that has the Modbus server
operating on port 502 but also spoofs other ports/services, and the specific versions of these services,
when port scanned. However, it should be noted that these services may need to also include some
basic functionality if the adversary were to attempt to connect to them—an activity for future work.

3.1.6. Monitoring and Test Environment

To display the current and historical behavior of the DER equipment, a web application was created
to run alongside the DER simulator. This web application was developed for visualizing the state of
the simulated DER device, as well as for live configuration of the DER Simulator. This application
has been useful in the development and debugging of the DER Simulator.

The web application is written in TypeScript, and it utilizes open-source libraries d3js and plot.ly for
rendering interactive graphs. The application communicates with the DER Simulator via a simple
protocol over websocket, with which it can read and write SunSpec models. It uses several standard
SunSpec models for reading metrics on the device state, including SunSpec 701 (DER AC
Measurement) and SunSpec 714 (DER DC Measurement). The web application also makes use of
models that are specific to the DER Simulator, which were created to expose internal state and provide
an interface for live configuration of the simulator. These models are detailed in Appendix B.

Figure 6: DER measurement visualization dashboard.

18

The web application’s dashboard, shown in Figure 6, displays metrics from the AC, DC, and storage
interfaces of the DER device. These metrics are all gathered from SunSpec models, which are polled
every second by the web application to provide a live view of the simulator’s state.

Figure 7: Live dashboard graphs displaying the PQ plane (top left), DC I-V curve (top right), and
the volt-var curve configuration (bottom).

Displayed in the dashboard are plots of various power behaviors in Figure 7, including the PQ plane,
the DC current-voltage and current-power curves, and grid-support curves such as Volt-Var. The
dashboard also allows for live control of various parameters of the simulated DER device and its
environment, as shown in Figure 8. These inputs can be a time-indexed data source such as a CSV,
or user-defined constant values. This allows for easy testing/debugging of the simulator, e.g., changing
the grid voltage to confirm that the volt-var function is operating as expected. Simulation properties
including simulator clock time, irradiance, ambient temperature, and grid measurements. The AC grid
model and the DC model are both synchronized with the simulator clock, so interesting time periods
could be replayed simply by adjusting the simulation time.

Figure 8: Interface for live configuration of the DER Simulator.

19

3.2. Intrusion Detection and Alerting

The objective of honeypot deployments is to gather actionable threat information and cataloging
adversary objectives and Tactics, Techniques, and Procedures (TTPs). Example TTPs are included in
the MITRE ATT&CK and ATT&CK for ICS frameworks26. Some of the adversary objectives could
include making money (i.e., deploying ransomware, cryptojacking), hacktivism (i.e., DOS/DDoS,
Modbus reads), national state attacks (i.e., Modbus manipulation, PII theft). The TTPs that enable
those actions could include many things such as brute forcing weak/default username and passwords,
zero-day software exploits, command injection, etc. The TTPs that enable those attacks includes
exploiting stolen passwords, zero-day software exploits, and remote code injection, etc. To capture
the latest adversary’s TTPs, the honeypots can be equipped with continuous monitoring tools at both
system- and network-level. Those tools generate raw data such as system/authentication/firewall logs,
and network packet flows. To alert on suspicious interactions with the honeypot, these monitoring
data will be coalesced with time-stamped Security Information and Event Management (SIEM) or
network analysis tool like Splunk27, OSSEC28, Snort29, or MALCOLM30 for automated attack
preemption driven by detection tools and supporting attack responses by human analysts. The main
challenge is to identify real attacks from the background noise of mostly automated and naïve attack
attempts by bots.

Alerts can be configured on the system for integrity violations (e.g., injecting backdoor into a system
kernel module) or data breach (e.g., accessing a private secure shell key). A future host-based intrusion
detection system could periodically create snapshots of the honeypot states, so all malicious payloads
delivered into the honeypot are preserved for forensic investigation.

In the case of this demonstration, a network-based intrusion detection system (NIDS) was deployed
on the same system as the DER Simulator to track network data. There are many different types of
NIDS tools that are open-source or commercially available31. These tools fall broadly into two
categories of anomaly detection:

• Signature-based NIDS tools detect malware using deep packet inspection. Depending on the
sector that the IDS is being applied, the signatures will be tailored to detect threats specific to
those systems.

• Behavior-based techniques detect known and unknown patterns through inference using
statistical learning or classification techniques like supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning methods.

The network monitoring was implemented as a bump-in-the-wire solution to analyze all traffic
communicated between systems32. As shown in Figure 9, the bump-in-the-wire security system can be

26 MITRE, ATT&CK, URL:https://attack.mitre.org/
27 Splunk, URL: https://www.splunk.com/
28 OSSEC, URL: https://www.ossec.net/
29 Snort, URL: https://www.snort.org/
30 MALCOLM, URL: https://github.com/idaholab/Malcolm
31 C. Lai, A. Chavez, C. B. Jones, N. Jacobs, S. Hossain-McKenzie, J. Johnson, A. Summers, “Review of Intrusion
Detection Methods and Tools,” Sandia Technical Report, SAND2021-1737, February 2021.
32 S. Hossain-McKenzie, A. Chavez, N. Jacobs, C.B. Jones, A. Summers, & B. Wright, “Proactive Intrusion Detection
and Mitigation System: Case Study on Packet Replay Attacks in Distributed Energy Resource Systems” 2021 IEEE
Power and Energy Conference at Illinois (PECI), April 2021.

https://attack.mitre.org/
https://www.splunk.com/
https://www.ossec.net/
https://www.snort.org/
https://github.com/idaholab/Malcolm

20

configured between individual systems or networks communicating with one another. The Snort IDS
was installed along with a collection of OT protocol rules33 for Modbus and DNP3 on the bump-in-
the-wire device of the DER Simulator itself. In addition to monitoring the OT protocols, Snort has
been configured to monitor all other network traffic passing through as well. Snort comes pre-
populated with signatures for many IT focused protocols and attacks that are also used within OT
environments, such as ICMP, Telnet, Denial-of-Service (DoS), network scans, etc.

Figure 9: An example deployment of a bump-in-the-wire IDS monitoring and alerting system in
a DER environment.

Additional monitoring and cybersecurity tools have also installed on the bump-in-the wire system as
shown in Figure 10. Zeek has also been installed to capture network statistics specific to each protocol
observed on the bump-in-the-wire device. Any alerts or logs generated are immediately ingested by
Filebeat34 which monitors user-defined log files. Once Filebeat reads and parses each log file
configured by the end user, the results are sent to Logstash35 which listens on a network port for alerts
or events that can then be sent to an Elasticsearch 36database. To visualize the data within the
Elasticsearch database, Grafana was deployed to generate graphs summarizing network statistics along
with tables showing live-event logs to provide situational awareness for security administrators.

Figure 10: The process in which alerts are identified and presented to system administrators

when anomalies or attacks are detected.

This framework allows for a variety of data sources to be introduced to detect cyber-physical events.
For this implementation, Snort, Zeek, and system logs are used as inputs, but additional or future tools

33 Digital Bond Quickdraw Snort IDS rules: https://github.com/digitalbond/Quickdraw-Snort
34 Filebeat, URL: https://www.elastic.co/beats/filebeat
35 Logstash, URL: https://www.elastic.co/logstash/
36 Elasticsearch, URL: https://www.elastic.co

https://www.elastic.co/beats/filebeat
https://www.elastic.co/logstash/
https://www.elastic.co/

21

can also be introduced into the framework. The data stored within the elasticsearch database provides
a centralized location to consolidate the logs files for an administrator or for additional
processing/analytics, i.e. machine learning analysis. Grafana was selected for this implementation,
although Kibana or other visualization tools could have been selected. Grafana was chosen only
because it was readily available for our implementation which was built on a low-power, low-cost
Raspberry Pi. Figure 11 shows the Grafana dashboard implemented on a bump-in-the-wire device.
The top graphic displays network data over a configurable interval (the last 5 minutes is shown in the
diagram). The spike in network activity near the middle of the graph shows the increase in volume of
traffic that results from a nmap Christmas tree scan – a network scan with all flags turned on. The
bottom table of the dashboard shows the raw alerts and the source where those alerts were generated.
In Figure 11, the “NMAP scan XMAS” is detected and logged by snort as a high priority alert.
Additionally, logs from Zeek and syslog are also displayed.

The installation process for each of the software tools developed for our bump-in-the-wire solution
is documented in Appendix C. A Raspberry Pi model 4B with 2GB SDRAM was used for our
deployment with a single ethernet interface. Although the entire ELG stack along with the IDS
systems were installed on a single Raspberry Pi, the Grafana dashboard and the Elasticsearch database
could be stored on another system with more memory and/or storage resources if needed.

Figure 11: A Grafana dashboard displaying network activity along with system alerts stored within
the Elasticsearch database.

22

3.2.1. Behavior-based Intrusion Detection

Unsupervised artificial neural network (ANN) algorithms are a useful tool for detecting cyber-attacks
directed at PV inverters37. Successful implementation of ANN for intrusion detection depends on the
availability of training data. Cyber network data is difficult to acquire and changes in network behavior
is very common. To address these issues, the team developed and tested an online learning approach
where training and testing occurs simultaneously.

This intrusion detection methodology assumes that the adversary cyber traffic travels through or is
directed at the device hosting the network sensor. The behavior-based NIDS device is most likely to
be installed on the DER Simulator computer although it could be a bump-in-the-wire device in the
communication path to the DER honeypot/canary. The NIDS includes a Zeek network security
monitor38 that logs all the connections associated with the DER device. Data features from these logs
are used as inputs into the ANN algorithm.

In this case, the Adaptive Resonance Theory (ART) ANN39 performed the learning and anomaly
detection of the network data. Implementation of the algorithm begins by normalizing the data
between zero and one. Then, a complement coding of the normalized data occurs prior to the category
choice calculation that finds the templates (or ART memory) that best match with the input vector.
The input and best match are then evaluated to see if they pass the vigilance test. If it passes, the
template is updated based on the new input.

The initialization of the online learning involved a review of one day of data. This review included the
confirmation of the best input features using a confusion matrix (Figure 12) of the different correlation
coefficients for response bytes, origin bytes, connection rate, and connection time. Figure 12 shows
that there is a significant correlation between origin bytes and the connection time and therefore can
be left out of the ART training and testing. This meant that only the three features: (1) connection
rate, (2) connection time, and (3) response bytes were used for the online learning and anomaly
detection.

Figure 12: Data features used by the Adaptive Resonance Theory algorithm to detect network
anomalies.

37 C. B. Jones, A. Chavez, R. Darbali-Zamora, S. Hossain-McKenzie, “Implementation of Intrusion Detection Methods
for Distributed Photovoltaic Inverters at the Grid-Edge”, IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference, 2020
38 “The Zeek Network Security Monitor”, URL: https://zeek.org
39 G.A. Carpenter, S. Grossberg, and D.B. Rosen, “Fuzzy ART: Fast stable learning and categorization of analog
patterns by an adaptive resonance system”, Neural Networks, vol 4, no. 6, Jan. 1991

23

The online learning follows the process outlined in the flow chart depicted in Figure 13. It begins at
time equal to zero with the first monitored data from the Zeek sensor to the ART training which
creates an initial ART template. After the initial training and for all t > 0, the sensor data is passed to
both the ART testing and a statistical computation. This approach is different from our prior work
with a user-defined threshold limit40. If the new input resonates with existing templates, then it is sent
to the training algorithm to update the existing templates. If it does not resonate, the data is compared
with the mean and standard deviation. If it falls outside of the limits, it is flagged as a potential issue.
If not, the input is sent to the ART training to start a new template in the ART memory.

Figure 13: Flow diagram for the online learning process.

This process was tested on actual network traffic with adversary activity directed at a PV inverter.
Three main scenarios were tested that included normal actions (i.e. Modbus, TCP/IP, SSH, etc.),
adversary reconnaissance, and a denial-of-service (DOS) attack. The ART anomaly results are shown
in Figure 14 for three scenarios. Figure 14(a) shows the ART hyper-boxes, which represent the multi-
dimensional templates that surround the normal data. This figure shows that three templates were
created. The first template was based on the initial data presented to the algorithm and the next two
were formed when new data did not resonate with the original template but passed the statistical
review. The algorithm then considered network traffic generated by an adversary who performed
actions to learn what devices were connected to the network and attempted to deny any services by
flooding the PV inverter with messages. Figure 14(b) and (c) show that reconnaissance and DOS
network activity fell well outside templates and the statistical limits and were therefore considered
abnormal behavior.

40 C.B. Jones, A. Chavez, S. Hossain-McKenzie, N. Jacobs, Adam Summers, and B. Wright, “Unsupervised Online
Anomaly Detection to Identify Cyber-Attacks on Internet Connected Photovoltaic System Inverters”, IEEE Power &
Energy Conference at Illinois (PECI), 2021

24

Figure 14: ART results for (a) normal, (b) adversary reconnaissance, and (c) a denial-of-service
attack. No false positives occurred when subjected to the normal data and each of the cyber-

attacks were detected.

3.3. Honeypot and Honeynet Networking

In the future, using Emulytics tools like minimega, representative home networks could be generated
that contain several realistic components of a flat home network firewalled from the public internet.
To make this environment look realistic and “lived-in,” a system consisting of existing VM images
that represent a windows computer, smart lightbulbs, router, and/or network storage devices could
be deployed in the network with the DER. The router could be configured with a vulnerable firmware
version41 so hackers could access the equipment on the network.

3.4. Hosting Challenges

There are many legal, technical, and security issues associated with the decoy deployment locations.
Placing the honeypots on hosted cloud platforms like Amazon Web Services (AWS) or Google Cloud
is not ideal because their public IP spaces are public and known to sophisticated adversaries.
Deploying the systems on corporate networks runs into similar problems, plus complicated issues
arise if the systems are compromised and used for DoS or other attacks on national or international
targets. Having traffic originating from a corporation puts the organization in a difficult space. There
are also legal ramifications if compromised systems were used for other nefarious activities (hosting
pornographic material, etc.) and ISPs may disconnect internet access if complaints are submitted or
activity outside of the terms of use is detected. These issues were not fully resolved within the course
of this project.

3.5. Threat Sharing

Malicious control of DER/Internet of Things (IoT) fleets can substantially impact the national
security by affecting the electric grid, transportation sector, and other critical infrastructure. It is
essential to capture adversary movements to minimize risks presented by these devices. One way to
help is to establish good information sharing mechanisms as data is captured by the honeypots. Threat
intelligence could be gathered for critical power system infrastructures from the honeypot analysis and
directly shared with DHS, DOE IN/CESER/OE, FBI, utilities, and other government agencies based
on the type of information that is gathered. Creating computationally-efficient DER honeypot fleets
would allow researchers to discover new DER vulnerabilities and track adversary TTPs. It is

41 “Unpatched vulnerability identified in 79 Netgear router models”, URL: https://www.zdnet.com/article/unpatched-
vulnerability-identified-in-79-netgear-router-models/

(a) Normal (b) Adversary reconnaissance (c) Denial-of-Service Attack

https://www.zdnet.com/article/unpatched-vulnerability-identified-in-79-netgear-router-models/
https://www.zdnet.com/article/unpatched-vulnerability-identified-in-79-netgear-router-models/

25

anticipated this would be an effective countermeasure for mid- and high-tier adversaries targeting
DER critical infrastructure.

26

4. DER HONEYPOT DEMONSTRATIONS

Two use cases are explored through the course of this project. In the first, a 10-kW solar PV inverter
with two DC ports was simulated as a standalone DER honeypot. In the second use case, an energy
storage DER device was cloned and emulated to create a canary that matched the configuration of
another device on the network. The details of each of these applications is presented in the following
section.

4.1. Stand-Alone DER Honeypot Implementation

The DER honeypot initialization and operational output is shown in Appendix A. The typical startup
sequence includes the following:

1. Read the JSON model of the DER SunSpec Modbus map and create the TCP and websocket
server.

2. Link the AC and DC points from the server to actions in the DER simulation.
3. Start the DC simulation.
4. Start the AC simulation.
5. Enter main loop:

a. Update simulation clock
b. Update DC state.
c. Update AC state.
d. Asynchronously read requests from websockets and write responses.
e. Asynchronously read requests from Modbus TCP sockets and write responses.
f. Asynchronously respond to Modbus reads/writes.

Once in the main loop, the clock is updated, AC and DC measurements are read from the CSV files
at a user-selected rate, and any reads or writes to the Modbus server and websockets are handled.
These updates were executed using the asynchronous subprocesses.

At this time, active power curtailment functions and reactive power setpoint functions have been
validated and function as expected. Autonomous functions such as volt-watt, volt-var, frequency-
droop, etc. were not fully tested; although it should be noted that these functions would be more
difficult for honeypot detection because DER behavior only changes based on external parameters
(grid voltage, grid frequency, DER power, etc.). In the current version of the DER Simulator, timing
parameters are present, but the timers were not fully implemented.

A screenshot of the SunSpec Common Model is shown in Figure 15, Capacity in Figure 16, and DER
AC Measurements in Figure 17. Each of the DER AC Measurements reads produces new values based
on the AC and DC simulations. Two reads of this model are shown in Figure 17. It can be seen there
is around -3 kVar of reactive power from the DER device. This is because this device has been
configured with a 0.9 underexcited power factor (PF) using the DER AC Controls in Figure 18. When
Modbus writes to that grid support function are completed the DER Simulator is updated with the
new value and the power simulation changes appropriately.

27

Figure 15: Honeypot Common Model data read using the SunSpec SVP Dashboard.

Figure 16: Honeypot DER Capacity Model data.

28

Figure 17: Multiple reads of the Honeypot DER AC Measurement Model.

…

Figure 18: Honeypot DER AC Controls Model showing the PF function is set to 0.90 with an
underexcited excitation.

29

4.2. Cloning an Energy Storage System for a DER Canary Application

The DER Simulator was configured with SunSpec Modbus configuration representing a 7.7 kW
prototype energy storage DER device at DETL. This was done by generating a JSON file of the
SunSpec Modbus map with the SunSpec SVP Dashboard and then loading this file into the DER
Simulator. The canary was deployed on one of the Raspberry Pi 4B computers with 32 GB of drive
space shown in Figure 19 and then run in parallel with the physical device to compare the two devices.

Figure 19: Raspberry Pi 3B+ and 4B computers configured with DER Simulator software.

The SVP Dashboard was connected to the physical DER device and the honeypot clone on the
Raspberry Pi. A comparison of the DER Capacity Data is shown in Figure 20. As shown in the
Figure, there were no changes to the writable settings in the physical ESS since the Modbus snapshot
was taken, so there are no differences between the physical and honeypot/canary systems. Over time,
if settings are changed in the physical device or the honeypot, this data will not match. That is expected
of two physical devices, so long as changes to those settings are mirrored in the measurements and
behavior of the equipment.

30

Figure 20: DER ESS (left) vs DER Honeypot (right) for SunSpec Model 702 DER Capacity.

After a period of time, the AC and DC measurements of the DER ESS and DER honeypot were not
identical, as shown in Figure 21 and Figure 22. For instance, the Operating State and Inverter State
changed for the physical DER device changed. The power system simulation using the pre-recorded
grid voltage and frequency time profiles changed the grid measurements on the DER simulator and
they no longer matched the ESS device. Deviations in frequency from other grid-connected
equipment would be suspicious, although the frequency normally operates within such a tight
envelope it might go unnoticed. Differences in voltages between DER equipment at the same site
would be a big red flag. For instance, if DER canary device(s) were added to an OT network with
multiple physical DER and the voltages were significantly different, this would be a clear sign that
some equipment was not reading grid voltage correctly or the devices were not authentic and the
adversary may not interact with the canaries. An alternative approach would be to read the voltage
and frequency from the real devices every 1-2 seconds. This would be a good way to mirror the grid
state on the DER canary so long as the adversary was unable to detect these communications. Similar
approaches could be used to align DER operating temperatures—which would similarly expose the
DER simulation.

There are other small corrections needed to improve the DER emulations. For instance, the DC
Energy Injected and DC Energy Absorbed are coded to start at a large, random value but, in this case,
the DER canary should start at the value provided in the JSON Modbus map and count based on the
DC operations.

31

Figure 21: DER ESS (left) vs DER Honeypot (right) for SunSpec Model 701 DER AC Measurement.

Figure 22: DER ESS (left) vs DER Honeypot (right) for SunSpec Model 703 DER DC Measurement.

It is not a good approach to clone DER device maps in their entirety at regular intervals because the
DER devices are independent and contain their own states, parameters, and control modes. The
power factor, power curtailment, active power, reactive power parameters from SunSpec Model 704
DER AC Controls is shown in Figure 23. The parameters for the voltage-reactive power (volt-var)
function are shown in Figure 24. As grid operators or adversaries interact with the DER equipment
or canaries, these devices should behave as though they are operational equipment to provide network

32

defenders and incident responders more time to analyze adversary actions. As soon as the adversary
knows they have been detected, they may remove critical evidence of their activities, accelerate their
attack schedule, deploy more powerful tools at their disposal, or exfiltrate as much data as they can.
A convincing honeypot will gain time for the incident response team, so that they may quickly and
strategically remove their access to the OT network and wipe adversarial tools and backdoors into the
network.

Differences in volt-var or other settings between the physical devices and canaries may appear strange
to an adversary, but this would be representative of the behavior of real devices. However, grid
operators are likely to have uniform settings for the autonomous grid-support functions for a given
region, circuit, or facility. If there were scheduled or commanded control settings issued to all the
DER equipment on a site, it would be possible to also make this change to the DER canary, though
this traffic would need to be filtered appropriately from the intrusion detection algorithms. This is
one of the operational considerations that would need to be decided by the grid operator team.

Figure 23: DER ESS (left) vs DER Honeypot (right) for SunSpec Model 704 DER AC Controls.

33

Figure 24: DER ESS (left) vs DER Honeypot (right) for SunSpec Model 705 DER Volt-Var.

34

5. ALTERNATIVE DER SIMULATOR APPLICATIONS

The DER Simulator is useful for applications in addition to being deployed as DER canaries or
honeypots. Two potential applications are briefly described below.

5.1. Training Tools for Cyber Defenders

High-fidelity training environments known as cyber ranges could be quickly spun up for DER network
operators, owners, utilities, and incident responders to train in red team/blue team scenarios using
DER Simulators as the backbone for cyberwar games. Training defense challenge courses for
electricity subsector owners and operators would enhance their preparedness against a cyber incident
impacting DER systems with a hands-on, simulated, demonstration of a cyberattack. This would train
participants to respond to DER cyber-attacks in the future, clean up internal communication lines,
and establish better communication channels to external agencies to support overall grid reliability
and resiliency. For DER vendors, operators, and owners, scenarios could be designed to highlight
potential cyberattack vectors and what operational technology defenses they should consider in the
future. These elements could be deployed in well-developed training programs such as the annual
DOE CyberForce Competition42, annual DoD Cyber Flag cyber training exercise43, INL’s CyberStrike
workshops44, and other real-time cyber defense scenarios.

5.2. Real-Time Grid Integration Studies

DER devices include multiple adjustable power control functions, so grid operators have a difficult
decision of selecting the best operating modes and settings for the DER. While using physical DER
hardware to explore adjustable power control functions has been explored previously using a power
hardware-in-the-loop environment and on distribution systems, this requires working with live power
equipment45,46. Alternatively, using the DER Simulator with a real-time, distribution simulation could
incorporate real communication protocols and networking behaviors at low voltages for DER grid-
integration co-simulation or hardware-in-the loop (HIL) studies. This would provide valuable insight
into new DER software deployments without the need for integrating power equipment into the
simulations. Typically, the way to close the simulation loop is to regularly feed DER devices grid
voltage and frequency from the power simulation and then inject the DER active and reactive power
back into the power simulation. The current DER Simulator has these input and outputs through the
Modbus interface. Future work is recommended to investigate if the simulator provides sufficient
fidelity to perform real-time grid integration studies.

42 Department of Energy's CyberForce Program, URL: https://cyberforcecompetition.com/, accessed 9/15/21.
43 USCYBERCOM Public Affairs, “Media Advisory: Cyber Flag 21-2 winner announcement” URL:
https://www.cybercom.mil/Media/News/Article/2671401/media-advisory-cyber-flag-21-2-winner-announcement/,
accessed 9/15/21.
44 INL, “CyberStrike Training: Practical Training for Energy Sector Owners and Operators,” White Paper,
https://inl.gov/wp-content/uploads/2021/07/21-50064_CyberstrikeFlyer.pdf, accessed 9/15/21.
45 Summers, A.; Johnson, J.; Darbali-Zamora, R.; Hansen, C.; Anandan, J.; Showalter, C. A Comparison of DER Voltage
Regulation Technologies Using Real-Time Simulations. Energies 2020, 13, 3562. https://doi.org/10.3390/en13143562
46 Darbali-Zamora, R.; Johnson, J.; Summers, A.; Jones, C.B.; Hansen, C.; Showalter, C. State Estimation-Based
Distributed Energy Resource Optimization for Distribution Voltage Regulation in Telemetry-Sparse Environments
Using a Real-Time Digital Twin. Energies 2021, 14, 774. https://doi.org/10.3390/en14030774

https://cyberforcecompetition.com/
https://www.cybercom.mil/Media/News/Article/2671401/media-advisory-cyber-flag-21-2-winner-announcement/
https://inl.gov/wp-content/uploads/2021/07/21-50064_CyberstrikeFlyer.pdf
https://doi.org/10.3390/en13143562
https://doi.org/10.3390/en14030774

35

6. CONCLUSION

This LDRD project investigated the technical challenges associated with creating DER honeypots and
canaries. The objective of the work was to minimize the number of artifacts that exist in the virtualized
environment in order to increase the likelihood that sophisticated adversaries would interact with the
devices and expose their objectives, tactics, techniques, and procedures. The project created multiple
DER emulators with local intrusion detection systems. The virtualized devices were deployed in the
Distributed Energy Technologies Laboratory (DETL) alongside a cloned physical DER energy storage
system and directly compared. While the initial SunSpec Modbus point maps were a perfect duplicate,
the physical device and simulated DER drifted apart as the AC and DC DER simulations executed.
In the future, these outstanding emulation artifacts will need to be removed to create realistic canaries
and DER honeypots. This project also deployed Snort and Zeek IDSs along with an ELG stack for
alerting as a network monitoring technology on the honeypot to store network data and warn
stakeholders of anomalous or malicious traffic.

36

APPENDIX A. EXAMPLE DER HONEYPOT OUTPUT

2021-09-15 13:17:50.187216 D Running with arguments: Filename “” port 502
2021-09-15 13:17:50.187216 I Using the native der_config python dict, not a JSON file...
2021-09-15 13:17:50.188215 I Adding DER - sid = 1 addr = 40000
2021-09-15 13:17:50.214201 I Adding model 1
2021-09-15 13:17:50.214201 I Adding model 701
2021-09-15 13:17:50.214201 I Adding model 702
2021-09-15 13:17:50.214201 I Adding model 703
2021-09-15 13:17:50.214201 I Adding model 704
2021-09-15 13:17:50.214201 I Adding model 705
2021-09-15 13:17:50.215201 I Adding model 706
2021-09-15 13:17:50.215201 I Adding model 707
2021-09-15 13:17:50.215201 I Adding model 708
2021-09-15 13:17:50.215201 I Adding model 709
2021-09-15 13:17:50.215201 I Adding model 710
2021-09-15 13:17:50.216200 I Adding model 711
2021-09-15 13:17:50.216200 I Adding model 712
2021-09-15 13:17:50.216200 I Adding model 713
2021-09-15 13:17:50.216200 I Adding model 714
2021-09-15 13:17:50.216200 I Adding model 30003
2021-09-15 13:17:50.218199 I Adding model 30004
2021-09-15 13:17:50.338134 I DC Side: Time = 35400, Irradiance = 416.00, DCA = 10.53, DCW = 4928.89, DCWhInj = 34612.26
2021-09-15 13:17:50.811913 I AC Side: Frequency-Droop Controls configured with [{'DbOf': 0.03, 'DbUf': 0.03, 'KOf': 0.4, 'KUf': 0.4, 'RspTms': 6.0},
{'DbOf': 0.031, 'DbUf': 0.031, 'KOf': 0.41000000000000003, 'KUf': 0.41000000000000003, 'RspTms': 0.2}]
2021-09-15 13:17:50.812912 I AC Side: Volt-Var model configured with the following curves: [{'ActPt': 4, 'DeptRef': 1, 'Pri': 1, 'VRef': 100.0, 'VRefAuto':
100.0, 'VRefAutoEna': 0, 'VRefAutoTms': 500, 'RspTms': 0.6000000000000001, 'V_Pts': [92.0, 96.7, 103.0, 107.0], 'Var_Pts': [30.0, 0.0, 0.0, -30.0]},
{'ActPt': 4, 'DeptRef': 1, 'Pri': 1, 'VRef': 100.0, 'VRefAuto': 100.0, 'VRefAutoEna': 1, 'VRefAutoTms': 1000, 'RspTms': 0.2, 'V_Pts': [93.0, 95.7, 102.0,
106.0], 'Var_Pts': [30.0, 0.0, 0.0, -40.0]}, {'ActPt': 4, 'DeptRef': 1, 'Pri': 2, 'VRef': 100.0, 'VRefAuto': 100.0, 'VRefAutoEna': 0, 'VRefAutoTms': 500,
'RspTms': 0.4, 'V_Pts': [94.0, 95.7, 105.0, 108.0], 'Var_Pts': [20.0, 0.0, 0.0, -20.0]}]
2021-09-15 13:17:50.816910 I DC Side: Time = 35401, Irradiance = 414.00, DCA = 10.48, DCW = 4904.22, DCWhInj = 34612.91
2021-09-15 13:17:50.817910 I AC Side: PFs = 0.9998, 0.9998, 0.9998. PF = 0.98
2021-09-15 13:17:50.817910 I AC Side: Modbus Update: 4830.7 W, 20.0 var, 4831.5 VA, 41.10 A, PF = 0.980
2021-09-15 13:17:50.819909 D Creating DC Sim with <dersimx.der_dc.DERSimDC object at 0x0000024AF56772E8>
2021-09-15 13:17:50.820908 I Starting DC simulation
2021-09-15 13:17:50.820908 D Creating AC Sim with <dersimx.der_ac.DERSimAC object at 0x0000024AF3BDE7F0>
2021-09-15 13:17:50.824906 I DC Side: Time = 35401, Irradiance = 414.00, DCA = 10.48, DCW = 4904.22, DCWhInj = 34612.92
2021-09-15 13:17:50.824906 I Starting AC simulation
2021-09-15 13:17:50.824906 I AC Side: Var priority target (-2105.98 Var) moving power to 9775.73 W.
2021-09-15 13:17:50.824906 I AC Side: curtailment via VV, WV, VarSet or PF.
2021-09-15 13:17:50.829903 I AC Side: curtailment may push DC side off MPP. Power set to 9776.488345913534 W.
2021-09-15 13:17:50.829903 I AC Side: var target set to -2105.97.
2021-09-15 13:17:50.830903 I AC Side: PFs = 0.9161, 0.9161, 0.9161. PF = 0.9998337114748067
2021-09-15 13:17:50.830903 I AC Side: Modbus Update: 4830.7 W, -2106.0 var, 5272.9 VA, 41.10 A, PF = 1.000
2021-09-15 13:17:50.831902 I Starting websocket on localhost:8503
2021-09-15 13:17:50.832902 I Simulator starting on 0.0.0.0:502
2021-09-15 13:17:51.829980 I DC Side: Time = 35402, Irradiance = 413.00, DCA = 10.46, DCW = 4891.88, DCWhInj = 34614.29
2021-09-15 13:17:52.334219 I AC Side: Var priority target (-2298.38 Var) moving power to 9732.29 W.
2021-09-15 13:17:52.334219 I AC Side: curtailment via VV, WV, VarSet or PF.
2021-09-15 13:17:52.338217 I AC Side: curtailment may push DC side off MPP. Power set to 9733.031979355026 W.
2021-09-15 13:17:52.338217 I AC Side: var target set to -2298.36.
2021-09-15 13:17:52.339216 I AC Side: PFs = 0.9025, 0.9025, 0.9025. PF = 0.9161363776453582
2021-09-15 13:17:52.340216 I AC Side: Modbus Update: 4818.5 W, -2298.4 var, 5339.2 VA, 41.10 A, PF = 0.916
2021-09-15 13:17:52.835970 I DC Side: Time = 35403, Irradiance = 412.00, DCA = 10.43, DCW = 4879.54, DCWhInj = 34615.65
2021-09-15 13:17:53.841001 I DC Side: Time = 35404, Irradiance = 411.00, DCA = 10.40, DCW = 4867.21, DCWhInj = 34617.01
2021-09-15 13:17:53.843000 I AC Side: Var priority target (-2327.31 Var) moving power to 9725.41 W.
2021-09-15 13:17:53.844000 I AC Side: curtailment via VV, WV, VarSet or PF.
2021-09-15 13:17:53.847997 I AC Side: curtailment may push DC side off MPP. Power set to 9726.342599249158 W.
2021-09-15 13:17:53.847997 I AC Side: var target set to -2327.30.
2021-09-15 13:17:53.848997 I AC Side: PFs = 0.8993, 0.8993, 0.8993. PF = 0.9024724938321005
2021-09-15 13:17:53.848997 I AC Side: Modbus Update: 4794.2 W, -2327.3 var, 5330.8 VA, 41.10 A, PF = 0.902
2021-09-15 13:17:54.849007 I DC Side: Time = 35405, Irradiance = 410.00, DCA = 10.38, DCW = 4854.87, DCWhInj = 34618.37
2021-09-15 13:17:55.352246 I AC Side: Var priority target (-2323.63 Var) moving power to 9726.29 W.
2021-09-15 13:17:55.352246 I AC Side: curtailment via VV, WV, VarSet or PF.
2021-09-15 13:17:55.357244 I AC Side: curtailment may push DC side off MPP. Power set to 9726.699735831442 W.
2021-09-15 13:17:55.357244 I AC Side: var target set to -2323.63.
2021-09-15 13:17:55.358243 I AC Side: PFs = 0.899, 0.899, 0.899. PF = 0.8993437814969738
2021-09-15 13:17:55.358243 I AC Side: Modbus Update: 4782.0 W, -2323.6 var, 5319.0 VA, 41.10 A, PF = 0.899
2021-09-15 13:17:55.854020 I DC Side: Time = 35406, Irradiance = 408.00, DCA = 10.32, DCW = 4830.19, DCWhInj = 34619.72

37

APPENDIX B. SUNSPEC MODEL DEFINITIONS

Custom SunSpec Modbus models were created to transfer data between the DER simulator and the
websocket visualization tool. The first model, 30003, included the I-V and P-V curves for the DC PV
simulation, the model and a screenshot of the SVP Dashboard of this model are shown in Appendix
B.1. The second model, 30004, included writable parameters (time, grid voltage, grid frequency, etc.)
to change the DER Simulator operating conditions, as shown in Appendix B.2. A screenshot of this
model in the SVP Dashboard is in Figure 26.

B.1. SunSpec Model 30003

{
 "group": {
 "name": "DerSimIv",
 "label": "DER Simulation IV curve.",
 "desc": "Various internal data for the DER Simulation.",
 "points": [
 {
 "desc": "Model identifier",
 "label": "Model ID",
 "mandatory": "M",
 "name": "ID",
 "size": 1,
 "static": "S",
 "type": "uint16",
 "value": 30003
 },
 {
 "desc": "Model length.",
 "label": "Model Length",
 "mandatory": "M",
 "name": "L",
 "size": 1,
 "static": "S",
 "type": "uint16"
 },
 {
 "desc": "Number of points in the IV curve.",
 "label": "IV length",
 "name": "IvLen",
 "size": 1,
 "static": "D",
 "type": "count"
 }
],
 "type": "group",
 "groups": [
 {
 "comments": [
 "IV Curve Points"
],
 "count": "IvLen",
 "name": "Iv",
 "points": [
 {
 "label": "Power",
 "desc": "Power (Watts)",
 "name": "P",
 "size": 2,
 "type": "float32"
 },
 {
 "label": "Current",
 "desc": "Current (Amperes)",
 "name": "I",
 "size": 2,
 "type": "float32"
 },

38

 {
 "label": "Voltage",
 "desc": "Voltage (Volts)",
 "name": "V",
 "size": 2,
 "type": "float32"
 }
],
 "type": "group"
 }
]
 },
 "id": 30003
}

Figure 25: Model 30003 in the SunSpec SVP Dashboard.

B.2. SunSpec Model 30004

{
 "group": {
 "name": "DerSimControls",
 "label": "DER Simulation Controls.",
 "desc": "Configuration parameters for the DER device simulator.",

39

 "points": [
 {
 "desc": "Model identifier",
 "label": "Model ID",
 "mandatory": "M",
 "name": "ID",
 "size": 1,
 "static": "S",
 "type": "uint16",
 "value": 30004
 },
 {
 "desc": "Model length.",
 "label": "Model Length",
 "mandatory": "M",
 "name": "L",
 "size": 1,
 "static": "S",
 "type": "uint16"
 },
 {
 "label": "Time offset",
 "desc": "Time offset into the simulation, of the format 'HH:MM:SS'",
 "name": "Time",
 "type": "string",
 "size": 10
 },
 {
 "name": "Temperature",
 "desc": "Ambient outdoor temperature (Celsius)",
 "type": "float32",
 "size": 2
 },
 {
 "name": "GridModelSource",
 "desc": "The data source for the grid model. One of: 'csv', 'const'",
 "type": "string",
 "size": 32
 },
 {
 "name": "IrradianceModelSource",
 "desc": "The data source for the irradiance model. One of: 'csv', 'const'",
 "type": "string",
 "size": 32
 },
 {
 "name": "Irradiance",
 "desc": "The irradiance on the DER device (W/m^2), for the 'const' irradiance model",
 "type": "float32",
 "size": 2
 },
 {
 "name": "GridVoltageA",
 "desc": "Voltage (W) of the first phase, for the 'const' grid model",
 "type": "float32",
 "size": 2
 },
 {
 "name": "GridVoltageB",
 "desc": "Voltage (W) of the second phase, for the 'const' grid model",
 "type": "float32",
 "size": 2
 },
 {
 "name": "GridVoltageC",
 "desc": "Voltage (W) of the third phase, for the 'const' grid model",
 "type": "float32",
 "size": 2
 },
 {
 "name": "GridFrequency",
 "desc": "Grid frequency, for the 'const' grid model",

40

 "type": "float32",
 "size": 2
 }
],
 "type": "group"
 },
 "id": 30004
}

Figure 26: Model 30004 in the SunSpec SVP Dashboard.

41

APPENDIX C. CYBER MONITORING SOFTWARE INSTALLATION

C.1. Zeek Installation

$ sudo apt-get install build-essential flex bison

$ wget https://www.tcpdump.org/release/libpcap-1.9.1.tar.gz

$ tar xzvf libpcap-1.9.1.tar.gz

$ cd libpcap-1.9.1/

$./configure

$ make

$ sudo make install

$ cd ..

$ sudo apt-get install bro broctl

Edit the /etc/bro/network.cfg to reflect the appropriate networks to monitor and then issue the following

command to start Zeek.

$ make

C.2. Snort Installation

$ sudo apt-get install snort

When prompted, enter the correct network that will be monitored by Snort. Once complete, issue the following

commands to install the OT specific Snort signature rules for Modbus and DNP3.

$ sudo apt-get install git

$ sudo git clone https://github.com/digitalbond/Quickdraw-Snort.git

$ cp *.rules Quickdraw-Snort/

$ cp Quickdraw-Snort/* /etc/snort/rules/

Once complete, the next step will be to modify /etc/snort/snort.conf to include an entry for the

modbus.rules and dnp3.rules files and then restart snort with the following command:

$ sudo /etc/init.d/snort restart

C.3. Filebeat Installation

$ sudo apt-get install git -y

$ git clone https://github.com/josh-thurston/easyBEATS.git

$ sudo chmod 755 easyBEATS

$ cd easyBEATS/

FIRST NEED TO EDIT EASYBEATS TO SET HOME VARIABLE TO PARENT DIRECTORY OF easyBEATS/

$ bash easyBEATS

$ cd /etc/filebeat/modules.d

$ mv system.yml.disabled system.yml

EDIT /etc/filebeat/filebeat.yml to point to correct IP Address for logstash as an output (localhost port
5044) and comment out all other outputs. Do the same for /etc/metricbeat/metricbeat.yml

$ sudo systemctl restart filebeat.service

C.4. Logstash Installation

$ apt-get install apt-transport-https jruby make -y

$ apt-get install texinfo build-essential ant git -y

$ update-alternative --config java

42

choose java 8

compile arm-linux jffi library

$ git clone https://github.com/jnr/jffi

$ cd jffi/

$ ant jar

download and install logstash

$ wget https://artifacts.elastic.co/downloads/logstash/logstash-7.3.2.deb

$ dpkg -i --force-all logstash-7.3.2.deb

replace libjffi

$ mv /usr/share/logstash/vendor/jruby/lib/jni/arm-Linux/libjffi-1.2.so

/usr/share/logstash/vendor/jruby/lib/jni/arm-Linux/libjffi-1.2.so.old

$ cp ../jffi/build/jni/libjffi-1.2.so /usr/share/logstash/vendor/jruby/lib/jni/arm-

Linux/libjffi-1.2.so

wget

https://gist.githubusercontent.com/alexalouit/a857a6de10dfdaf7485f7c0cccadb98c/raw/06a

2409df3eba5054d7266a8227b991a87837407/fix.sh

$ wget

https://gist.githubusercontent.com/gwsales/5a27e6282063f902014d851247c5f448/raw/9a1721

8b5938b61eb70ba5806d4edac3dcc6dc80/fix.sh

sh fix.sh

$ echo "--add-opens java.base/java.io=ALL-UNNAMED\n--add-

opens=java.base/java.security=ALL-UNNAMED\n--add-opens

java.base/java.security.cert=ALL-UNNAMED\n--add-opens java.base/java.util=ALL-

UNNAMED\n--add-opens java.base/java.util.zip=ALL-UNNAMED\n--add-opens

java.base/java.util.regex=ALL-UNNAMED\n--add-opens java.base/sun.nio.ch=ALL-UNNAMED\n-

-add-opens java.base/java.io=ALL-UNNAMED\n--add-opens java.base/java.lang=ALL-

UNNAMED\n--add-opens java.base/java.lang.reflect=ALL-UNNAMED\n--add-opens

java.base/java.net=ALL-UNNAMED\n--add-opens java.base/javax.crypto=ALL-UNNAMED" >>

/etc/logstash/jvm.options

EDIT SAMPLE LOGSTASH CONFIG WITH CORRECT IP

$ cp /etc/logstash/logstash-sample.conf /etc/logstash/conf.d/

$ systemctl enable logstash

$ systemctl start logstash

C.5. Logstash Installation

$ wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -

$ sudo apt-get install apt-transport-https

$ echo "deb https://artifacts.elastic.co/packages/7.x/apt stable main" | sudo tee -a

/etc/apt/sources.list.d/elastic-7.x.list

$ cd ~

$ wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.3.2-no-

jdk-amd64.deb

***Note: You may see some download errors here

$ export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-armhf

modify /var/lib/dpkg/status elasticsearch entry and remove libc6 dependency

edit /etc/elasticsearcg/jvm.options to include 512m of memory

$ sudo dpkg -i --force-all --ignore-depends=lib6 elasticsearch-7.3.2-no-jdk-amd64.deb

Change the permissions for the /etc/elasticsearch folder for easier access

$ sudo chmod g+w /etc/elasticsearch

$ sudo chmod 755 -R /etc/elasticsearch

$ sudo chown -R elasticsearch:elasticsearch /etc/elasticsearch

open /var/lib/dpkg/status and remove the Elasticsearch dependency of “libc6” on the “Depends:” line of

the “Package: elasticsearch” section while keeping all other dependencies.

43

Edit the /etc/default/elasticsearch file and add or uncomment the following line:
$ JAVA_HOME= /usr/lib/jvm/java-11-openjdk-armhf

Edit /etc/elasticsearch/elasticsearch.yml with the following variables set:

cluster.name: any_unique_name

node.name: any_unique_node_name

network.host: bump_in_the_wire_IP_Address

http.port: 9200

xpack.ml.enabled: false

node.master: true

node.data: true

node.ingest: true

discovery.type: single-node

bootstrap.system_call_filter: false

Finally, restart the elasticsearch, logstash, filebeat, and metricbeat services.
$ sudo systemctl restart elasticsearch

$ sudo systemctl restart logstash

$ sudo systemctl restart filebeat

$ sudo systemctl restart metricbeat

Depending on memory resources available, the /etc/logstash/jvm.options and
/etc/elasticsearch/jvm.options file may need to be edited so that both elasticsearch and logstash can run at
the same time. Reducing -Xms=1g and -Xmx=1g to -Xms=512m and -Xmx=512m settings should fix any issues errors
that appear when restarting the services if the system has run out of memory.

C.6. Grafana Installation

$ wget -q -O - https://packages.grafana.com/gpg.key | sudo apt-key add -

$ echo "deb https://packages.grafana.com/oss/deb stable main" | sudo tee -a

/etc/apt/sources.list.d/grafana.list

$ sudo apt-get update

$ sudo apt-get install -y grafana

$ sudo /bin/systemctl enable grafana-server

$ sudo /bin/systemctl start grafana-server

44

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

Charles Hanley 08810 cjhanle@sandia.gov

Summer Ferreira 08812 srferre@sandia.gov

Brian Gaines 09366 bgaines@sandia.gov

Jay Johnson 08812 jjohns2@sandia.gov

Technical Library 01977 sanddocs@sandia.gov

Email—External

Name Company Email Address Company Name

Jeremiah Miller jeremiah.miller@ee.doe.gov U.S. Department of Energy

Guohui Yuan guohui.yuan@ee.doe.gov U.S. Department of Energy

mailto:cjhanle@sandia.gov
mailto:srferre@sandia.gov
mailto:bgaines@sandia.gov
mailto:jjohns2@sandia.gov
mailto:jeremiah.miller@ee.doe.gov
mailto:guohui.yuan@ee.doe.gov

45

This page left blank

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

