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ABSTRACT

In this project, our goal was to develop methods that would allow us to make accurate
predictions about individual differences in human cognition. Understanding such differences is
important for maximizing human and human-system performance. There is a large body of
research on individual differences in the academic literature. Unfortunately, it is often difficult
to connect this literature to applied problems, where we must predict how specific people will
perform or process information. In an effort to bridge this gap, we set out to answer the
question: can we train a model to make predictions about which people understand which
languages? We chose language processing as our domain of interest because of the well-
characterized differences in neural processing that occur when people are presented with
linguistic stimuli that they do or do not understand. Although our original plan to conduct
several electroencephalography (EEG) studies was disrupted by the COVID-19 pandemic, we
were able to collect data from one EEG study and a series of behavioral experiments in which
data were collected online. The results of this project indicate that machine learning tools can
make reasonably accurate predictions about an individual’s proficiency in different languages,
using EEG data or behavioral data alone.



ACKNOWLEDGEMENTS

The authors would like to acknowledge Mike Trumbo and Alisa Rogers for assistance with data
collection. We would also like to acknowledge our Academic Alliance collaborators in Dr. Kara
Federmeier’s lab at the University of Illinois at Urbana-Champaign. Special thanks to Dr.
Federmeier and to Lin Khern Chia for their helpful input and productive collaboration on this
project.

This work was supported by the Laboratory Directed Research and Development (LDRD) Program
at Sandia National Laboratories. Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of Sandia, LL.C, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525. This paper describes objective technical
results and analysis. Any subjective views or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of Energy or the United States Government.



CONTENTS

1. INErOAUCHON cooeivieictct s 9
2. Word Length Judgment EXPeriment ......cccccviiiiiiiiiiiiiicieesessssesssssesssssessssssssnes 11
2.1, BacK@round ..ot 11
2.2 MEROAS et 12
2210 MAterialS...ooviiiiiiiciiii e 12
2220 PLOCEAULE .ottt ettt 13
2.3. Behavioral RESUILs. ..o 13
2.4. A Model of Bilingual Language ProfiCIENCY .......cccvicuruiecirinicieirieieiicieisieiensecienseeesseceeseenes 15
241, Data PIeproCessing ...ttt 16
2.4.2. Feature Engineering and Selection........occcviiiiiiiciniiiiiiiiiicncccncecn, 16
2.4.3. Model Validation ......ccviiuiiiiiiiiiiiiiiiiiiicise e 16
2.4.4. Results Using Priming Bffect Size......cccooiiiiiniiiiiiiiiiiiiiicccccnnccces 17
2.4.5. Results Using Response Times (RTS) ...cccceeeuiiiininininiiiciiiiicccceeisccines 18
2.5, DISCUSSION ..ttt 20
3. Word Length Judgment Task With Classic Semantic Priming Design........ccocvviivviiinicniiicnnn. 23
30 MEthOdS ..o 23
3101 PartiCIPAntS ...ttt 23
3.1.2. Materials and PLrOCEAULC......cccvuiuerriiciriicicicteeeee et 23
B.20 RESUIES o 23
3.3, DISCUSSION .ttt 24
4. Picture Prming Task ..o 25
A1 MEtROAS. et 25
41,10 PartiCIPANTS ot 25
4120 MAtELIalS ..ot 25
4130 PLOCEAULE .. 25
4.2 RESULLS .ot 26
4.3, MOdElNg RESUILS......cvoviieiiiiciiiciiiciect et 27
A4, DISCUSSION ..ttt bbb 28
5. Multilingual Stroop TaskS........ccccoiiiiiiiiic s 29
5.1. Background.......cciiiiiiiii s 29
5.1.1. Bilingualism and the Stroop effect ... 29

5.1.2. 'The Bilingual Advantage? Bilingual vs monolingual performance on the Stroop
BASK s 30
5.2. Three Color Stroop EXPeriMent ... 31
5.2, 10 MeEthOdS ..o s 31
5.2.1.1. PartiCIPANES ...cucviiiiiiiciciciieiiniiicicsi et 31
5.2.1.2. MAterials ....ouvuiuiiiiiiiiciiici s 31
5.2.1.3. PrOCEAULEC ...vviiiiicccicicieiercceie ettt 31
5220 RESUIS oot 32
5.2.3. MOdelINg RESULLS .....cuviieiiiiiiciiccircece e eaens 33
5.2.4.  DISCUSSION ..ttt bbb 34
5.3. Nine Color Stroop EXPeriment.......coiiiiiiiiiiiiiiiessse s 34
5.3.10 MEthOdS ..ot s 34
5.3.1.1. PartiCIPAnLS ...cucveiiiiiiiiciciiiiiiicicic i 34



5.3.1. 20 IMALEIIALS weeveeeeeeeee ettt ettt eete et e et e e eateseteesveesanesantesaneessneessseesseesnsessnnens 35

5.3.1.3. ProOCEAULC ....cuiuiiiiiiiicicieiciccee bbb 35

5.3.20 RESUILS i 36

5.3.3. Modeling RESULLS .....c.cuviuiiiiiiciiiciiiccc s 37

5.3.4.  DISCUSSION ...ttt 37

5.4. Stroop Experiment with Non-Roman Characters..........ccevriiiiiiniininccccnen, 37

6. Electroencephalography (EEG) Study ......couiiiiiiiiiiiniiiiiiicnnicccenecee e 39
0.1, Background. ... 39
0.2 MEthOMS ...t 40
0.2.1. PartiCIPANTS...cucuciciiiiiiiciciiii s 40

0.2.2. MAEIIalS....uieiiiiiiiiiici 40

0.2.3. WOTd PalfS ..ot 42

0.2.4.  ReESPONSE WOLS.ouiuiiiiiiiiiiiiiiiiicii e 43

0.2.5. PrOCEAUIE ...t 44

6.2.6. EEG Recording and Data Analysis........ccccovviiiiiinninniiiicciinncccceeee 45

0.3, RESUILS vt 45
0.3.1. SUIVEY RESPONSES ...ciuiuiiiiiiiiiii s 45

6.3.1.1. English ProfiCIency ..o 46

6.3.1.2. Spanish ProfiCiency ... 46

0.3.1.3. French ProfiCiency ... 46

0.3.1.4. German ProfiCICNCY ..coviiiieecieiiiririnieccieieieieteeise ettt sesees 46

6.3.2. Traditional ERP ANALYSES .....couiuiiiiiiiiiiiiriicieiceeetece et 47

6.3.3.  ERP Modeling ReSULLS ......cccceuviriiiiiiiiiiiiiiiccciccce e 50

7. General DISCUSSION ...ttt bbb 52
APPEIAIX Al oottt 59



This page left blank



ACRONYMS AND DEFINITIONS
Click here, then press delete to remove guidance.

Required. Spell out on first use in document and only include acronyms if used more than once.
Only capitalize proper nouns.

Abbreviation Definition
AMT Amazon Mechanical Turk
EEG Electroencephalography
ERP Event-related Potential
ML Machine Learning
ms milliseconds




1. INTRODUCTION

Electroencephalography (EEG) records the electrical activity of the brain with millisecond-level
resolution. It can be time-locked to events of interest, such as the onset of a stimulus in a person’s
environment, providing detailed information about how that stimulus was processed by the brain.
These signals, called event-related potentials (ERPs), are well-characterized and are highly consistent
across individuals. ERPs can reveal which languages a person understands, which could be useful in
several applied contexts and for the general advancement of research on neurolinguistics and
bilingualism. However, it is not clear whether an ERP-based language assessment method is feasible.
The initial goal of this project was to assess the feasibility and limitations of such an approach.

However, the original goals of this project were severely disrupted by the COVID-19 pandemic. Just
as our initial ERP study was ready to go, the pandemic shut down all in-person human subjects
research. Our team pivoted to a new approach: collecting behavioral data online using Amazon
Mechanical Turk. This required a completely new approach to the problem. EEG experiments do
not require any overt responses from participants. We can simply analyze the participants’ brain
activity as they read or listen to linguistic stimuli. However, to collect behavioral data online, we
needed to develop tasks where participants produced overt behavioral responses for every trial.
Furthermore, we needed to develop language tasks that could be completed by participants even if
they did not understand the language in question. Because of these constraints, a substantial
proportion of our project was devoted to developing, testing, and modifying behavioral tasks for
remote data collection. We identified some tasks that produced useful behavioral data and other
tasks that did not. Each task and the results are outlined in the sections that follow.

After collecting multiple datasets using different behavioral tasks, we applied machine learning (ML)
techniques to the datasets in order to develop models of performance for monolingual and bilingual
individuals. These models were trained using response time data from our online tasks, then used to
predict which participants fell into each category. For some of our tasks, the models were able to
make fairly good predictions, matching the participants’ self-reported proficiency 70% of the time or
more. The modeling approach also allowed us to examine different features that contributed to the
model’s predictions. This led to some interesting insights into items that were especially good at
differentiating between the two groups as well as cases where the model struggled. A particularly
interesting finding was that the model often struggled with individuals who were bilingual but had
learned their second language later in life. This suggests that even simple response time measures
may be sensitive to effects of the age of language acquisition.

For other datasets, the ML approach did not work as well, indicating that not all of our tasks were
successful in producing stable results that reflect differences in language comprehension. By
comparing different tasks, we were able to assess how well the results of each task reflected
participants’ self-reported language proficiency. This provides useful information for future task
development for research on bilingualism, language proficiency, or other individual differences.

During the summer of 2021, our team was able to collect data for one of the EEG experiments that
was originally planned for this project. The results of this experiment suggest that our original
hypothesis, that ERPs can be used to characterize individual differences in language processing, was
supported. Our findings show that further research in this area is warranted and could lead to useful
advances in both cognitive science research and applications.
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2. WORD LENGTH JUDGMENT EXPERIMENT"

21. Background

Studies of bilingual language processing have raised interesting questions about the nature of
linguistic and semantic representations in semantic memory. Many open questions remain regarding
the organization of multiple languages within the processing system, particularly the extent to which
two languages share underlying conceptual representations and automatically activate one another
during processing. Much of this research has relied on the use of priming paradigms to probe the
size and nature of cross-language priming effects, as a way to understand whether the bilingual
processing system shares representations across languages, or whether concepts may be represented
separately. Two competing models of bilingual language comprehension, the Bilingual Interactive
Activation (BIA+) model (Dijkstra & van Heuven, 2002) and the Revised Hierarchical Model
(RHM; Kroll & Stewart, 1994; Kroll, van Hell, Tokowicz, & Green, 2010), have been proposed to
help account for varying priming effects observed across studies.

One of the most common tasks used to probe the nature of bilingual language processing is cross-
language translation priming. Masked repetition priming effects are well-established within a
speaket’s native language (Forster & Davis, 1984), particularly in the lexical decision task. By
comparing the size of within- and across-language translation priming, researchers can begin to
understand how effectively words in one language facilitate the same concept in their second
language. Cross-language non-cognate translation priming effects have also been observed in cases
where priming from a word in one language facilitates responses to that word’s translation in
another language (e.g., Grainger & Frenck-Mestre, 1998). Translation priming effects tend to be
bigger under certain circumstances: for example, in more proficient bilinguals, with longer prime
durations, and with priming from L1 primes to L2 targets (rather than L2 primes to L1 targets), (see
Schoonbaert, Duyck, Brysbaert, & Hartsuiker, 2009 for review).

Research in this field has traditionally relied on recruiting groups of individuals with known language
backgrounds and testing how priming effects manifest in these pre-established language proficiency
groups. However, this existing paradigm is not without challenges. An individual’s language
background is hard to effectively quantity, and individuals can vary widely in their second language
proficiency even within relatively well-matched groups (for review, see van Hell & Tanner, 2012).
Because the size or presence of priming effects depends heavily on correctly characterizing
participants’ language background, it seems that efforts to establish a more individualized approach
to data analysis could help the field identify more consistent findings, in turn advancing our
understanding of the bilingual language processing system.

The present study seeks to establish a novel approach to bilingual language comprehension research
that capitalizes on individual differences rather than averaging over them. We are interested in trying
to characterize an individual’s language background, without knowing it in advance, based on their
behavioral responses in a cross-language priming task. Specifically, we utilize supervised machine
learning techniques to identify patterns in response time data that may differentiate individuals who
are proficient in the target language from those who are not. This approach represents a departure
from traditional paradigms and leverages cross-disciplinary data analysis techniques to provide a
potential new avenue for the study of bilingual language processing.

! 'This section was published in the proceedings of the Cognitive Science Society Annual Meeting 2021.

11



In order to collect behavioral responses to words in a language an individual may not know, we
employed a word-length judgment task rather than lexical decision or semantic categorization. This
task has been successfully used to elicit N400 priming in a bilingual population in which L1 and .2
words were intermixed (Martin, Dering, Thomas, & Thierry, 2009), indicating that the task could still
allow for contact with the word’s semantics. Additionally, as in Martin et al. (2009), we intermixed
trials from the two languages rather than using the more typical blocked design. This choice was
made to make it less predictable at the trial level whether the upcoming word would be in a language
the participant knew, thus further encouraging participants to access each word’s semantics. We
predicted that we would see within-language repetition priming effects for the languages in which
the participant was proficient. We also predicted that proficient bilinguals would show translation
priming effects, whereas participants who were not proficient in the second language would not
show these effects. Furthermore, exploratory machine learning analyses will allow us to test whether
other aspects of the behavioral data could reliably predict an individual’s language proficiency.

2.2. Methods

This study and all other studies that were a part of this project were reviewed and approved by the

Human Studies Board at Sandia National Laboratories. A total of 95 participants were recruited via
Amazon Mechanical Turk (AMT). To qualify for the task, the participants had to have an approval
rate >95% for prior tasks completed on AMT. A subset of 40 participants also met AMT’s criteria

for fluency in Spanish. Participants were paid $3-4 for their time.

2.2.1. Materials

The materials consisted of 30 Spanish nouns and their translations in English. The words were
selected so that there were no special characters (accents, etc.) and no cognates or false cognates. We
took care to select Spanish words that monolingual English speakers would be unlikely to encounter
in their daily lives. Using information from the CLEARPOND database (Marian, Bartolotti, Chabal
& Shook, 2012), the word lists were matched on length, frequency, and orthographic neighborhood
size, as shown in Table 1. The orthographic neighborhood size across languages was minimized.

Table 1: Matched Properties of the Two Word Lists

English Spanish

Avg. Length 5.37 5.47

Avg. Frequency 106.93 99.04

Avg. English Orthographic Neighborhood Size 6.77 0.77
Avg. Spanish Orthographic Neighborhood Size 2.27 543

The words were paired in eight types of pairings: English-English repetitions, Spanish-Spanish
repetitions, English-Spanish translations, Spanish-English translations, English-English unrelated,
Spanish-Spanish unrelated, English-Spanish unrelated, and Spanish-English unrelated. There were a
total of 240 pairs, with each word appearing in every possible pair type, four times as a prime and
four times as a target. The word pairs were divided into four blocks of 60 pairs each. Each target
word appeared twice in each block, once as part of a related pair and once as part of an unrelated
pair. The pairs were placed in the pseudorandom order so that the two pairs that contained the same
target word appeared in different halves of the block. The pseudorandom order was constrained so
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that there were never more than four translation/repetition or unrelated pairs in a row, and never
more than two pairs of the same type (e.g., Spanish-English translation) in a row.

2.2.2. Procedure

After reading and acknowledging the consent form, participants completed a short language
proficiency questionnaire with questions that were similar to those in the L.anguage Experience and
Proficiency Questionnaire (Marian, Blumenfeld & Kaushanskaya, 2007). They were asked to list up
to four languages that they know, first in order of dominance and then in order of acquisition. They
were asked what percentage of the time they are currently exposed to English and Spanish, and how
much total time they have spent living or traveling in countries where Spanish or English is the
dominant language. Finally, they were asked to rate their level of proficiency in English and Spanish
on an 11-point scale ranging from “None” to “Perfect,” the age at which they began to acquire each
language (infant, child, teen, adult, or never), and which factors contributed to them learning that
language. The response options included interacting with family, interacting with friends, formal
language classes, reading, language tapes/learning apps/self-instruction, watching TV or movies,
listening to the radio, and travel.

After completing the questionnaire, participants were shown the task instructions and an example.
They were told that they would see words in English and Spanish, and that the words would
sometimes be repeated or followed by the same word in the other language. They were told to press
the “B” key on the keyboard if the word had 5 letters or fewer and the “N” key if the word had 6
letters or more. They were instructed to respond as quickly as possible without making too many
mistakes. Finally, the participants were told that there were four blocks of words with breaks in
between, and that each block would take about two minutes to complete. When they were ready to
begin, they clicked on a button labeled “Start Experiment.” The first six words that the participants
saw were practice words and were not included in the analysis. The participants responded to every
item, whether it was a prime or a target.

2.3. Behavioral Results

A total of 13 participants were excluded from the analysis, either because they did not complete the
entire task, they did not provide consistent responses to the questionnaire, or because their pattern
of responses indicated that they were responding randomly rather than following the task
instructions. Of the remaining 82 participants, 40 were from the group that met AMT’s criteria for
fluency in Spanish and 42 were from the group with no specific language qualification requirements.

In the group that met AMT’s criteria for fluency in Spanish, one participant rated his/her
proficiency in reading Spanish at 7 (“Good”), and all of the other participants rated their proficiency
at 8 (“Very Good”) or higher on the 0-10 scale. Thirty-three of the participants in this group
reported that Spanish was their dominant language and the first language they acquired. Three
participants reported that English was their dominant language and the first language they acquired.
Two participants reported that Spanish was the first language they acquired, but English was their
dominant language. Two participants reported that English was the first language they acquired, but
Spanish was their dominant language. All of the participants in this group reported that they had
lived for at least one year in an area where Spanish is the predominant language (range 1-57 years,
mean = 28.8 years). They had spent an average of nine years living in areas where English was the
predominant language (range = 0-54 years). Thirty-three of the participants reported that they had
spent more time living in predominantly Spanish-speaking areas than in predominantly English-
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speaking areas, and 17 reported that they had never lived in an area where English was the
predominant language.

In the group of participants that was recruited without the use of AMT’s Spanish fluency
qualification, all of the participants reported that English was their dominant language, and all but
one of the participants reported that English was the first language they acquired (one person
reported that their first language was Mandarin). There were 21 participants who reported that they
did not know any Spanish at all. Another 15 participants reported that they had learned some
Spanish as a teen or adult, primarily through formal language classes or self-instruction, but they
rated their Spanish proficiency at 3 (“Fair”) or below. Three participants reported that they began
learning Spanish as teenagers and gave themselves intermediate fluency ratings (5-7). Finally, three
participants rated their Spanish proficiency as 8 or higher. One of these participants reported that
they started learning Spanish in infancy, one in childhood, and one as a teen. The participants
reported that they had spent an average of 37.7 years living in predominately English-speaking areas
(range 25-70 years) and an average of 3 years living or traveling in predominantly Spanish-speaking
areas (range 0-23 years).

For our analyses, we grouped all of the participants who rated their Spanish proficiency as 8 or
higher into the “proficient” group, regardless of whether or not they had AMT’s qualification for
Spanish proficiency. There were a total of 42 participants in this group, 39 from the batch that
required the AMT Spanish qualification and three from the batch that did not. All of the participants
who rated their Spanish proficiency at 7 or lower (40 participants) were placed in the “non-
proficient” group. One of these participants was from the batch that required the AMT Spanish
qualification and the 39 were from the batch that did not.

We began with a traditional analysis of the priming effects for each experimental condition. The
participants’ average response times were calculated for each condition. Only correct trials were
included in the analysis. Trials with response times (RT's) of less than 200 milliseconds were
excluded, as were trials with RTs that were more than three standard deviations higher than that
participant’s mean response time (unless those trials had RT's that were less than 6 seconds). A total
of 111 trials out of 19,680 were excluded due to having unusually short or long response times. For
each participant, the priming effect for each condition (English-English, Spanish-Spanish, English-
Spanish, Spanish-English) was calculated by subtracting the average RT for the targets in the
repetition or translation pairs from the average RT for the targets in the unrelated pairs. Figure 1
shows the average size of the priming effects across participants.

A 2 (Spanish Proficiency) x 4 (Priming Condition) ANOVA showed that there was a significant
effect of proficiency group (F(1,240) = 16.77, p < .001), a significant effect of condition (F(3,240) =
90.04, p <.001), and a significant interaction between the two (F(3, 240) = 5.11, p < .01). The
participants in the proficient Spanish group had a significantly larger priming effect than the other
group for both the English-English (#(67) = 3.50, p < .001) and the Spanish-Spanish condition (#67)
= 3.59, p < .001). For the two cross-language conditions, neither group showed a priming effect and
the two groups did not differ significantly from one another (all 5 < 1.12, all ps > .13).
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Figure 1. The average magnitude of the priming effects. Error bars show the standard error of the
mean

24. A Model of Bilingual Language Proficiency

The priming effects (PEs) showed that there was a significant difference between participant groups
in the English-English and Spanish-Spanish priming conditions. A potential application of this result
may be to learn a function that maps the priming effects of known participants to their
corresponding proficiency labels so that we can use the priming effects from new participants to
predict their proficiency.

More generally, classification is a standard supervised machine learning (ML) task that follows a #rain
and predict paradigm. During the training phase, labeled data is used to build a model (i.e., a learned
function) that maps an input (typically numerical feature vectors) to an output (labels). During the

predict phase, the model is used to infer the labels of new data (James, Witten, Hastie, & Tibshirani,
2013).

An advantage of this approach is that ML algorithms can usually handle very high dimensional data
(e.g., the individual PEs or RTs) compared with standard statistical analyses of behavior, which look
at averages (e.g., average PE or RT for a particular condition). A disadvantage of this approach is
that ML algorithms are often considered “black boxes”, providing very little interpretability as to
how the model arrives at its prediction.

A linear Support Vector Machine (SVM), on the other hand, is a simple but successful ML algorithm
that yields insights as to how the individual features (e.g., PEs and RTSs) contribute to the predicted
output (Boser, Guyon, & Vapnik, 1992; Cristianini & Shawe-Taylor, 2000). In its simplest form, the
objective of an SVM is to find a hyperplane that separates the labeled data into the two distinct
classes (extensions for multiclass problems exist), while also maximizing the distance between the
hyperplane and the nearest point from either group (hard-margin). The coordinates of the vector
orthogonal to the hyperplane form the weights (coefficients) of the model. From the weights, it is
possible to do two things. First, we can determine feature importance according to the relative
magnitude of the weights. Second, new data items can be labeled depending on which side of the
hyperplane they fall (computed by taking the dot product with the orthogonal vector).
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For our application, we use the Linear Support Vector Classification (LinearSVC) class available in
Python’s Scikit-learn 0.23.1 with default parameters. Scikit-learn 0.23.1 is used throughout our ML
workflow for data preprocessing, feature engineering, and model validation (Pedregosa et al., 2011).

2.4.1. Data Preprocessing

Using the same criteria as in the prior section, participants were assigned proficiency labels based on
g P > P P gned p y

their survey responses. Specifically, 42 participants were labeled as “proficient” in Spanish and 40
participants were labeled as “non-proficient” (English proficiency is assumed).

Each participant was associated with a list of 240 RTs for each of the 240 target words in the
experiment. Across all participants, the mean RT for the target words was 825 ms and the standard
deviation was 231 ms. Target words with a mean RT that was more than three standard deviations
above this mean were removed from the dataset for all participants. Only one target word was
excluded based on this criterion, leaving us with 239 RTs for each participant. Then, to account for
different baseline RT's for different participants, each participant’s RTs were normalized from 0 to 1.

We note that this approach for preprocessing the data for input into the SVM differs from the
approach for cleaning the data for the behavioral analysis. In the behavioral analysis, each
participant’s data is cleaned by removing individual trials with incorrect responses and/or unusually
short/long responses. Thus, each participant is left with a different set of RT's and PEs after cleaning
the data. However, for input into the SVM, each participant must be represented by the sawe set of
features, necessitating a different approach to removing anomalous data.

2.4.2. Feature Engineering and Selection

From the 239 normalized RTs, we construct feature vectors that are used as input into the SVM as
follows. The first feature set simply represents the 239 normalized RTSs. The second feature set
represents the PEs. Each English target word appears in two PEs (English-English and Spanish-
English); similarly, each Spanish target word appears in two PEs (Spanish-Spanish and English-
Spanish). Therefore, for the 60 target words in this study, we have 120 PEs. Because one target
word was excluded, we are left with 119 PEs.

Given a set of features, a standard next step in a machine learning workflow is to perform some type
of feature selection technique to reduce the number of features, i.e. reduce the dimensionality.
Reducing the number of features, particularly when the number of features exceeds the number of
samples, can improve the accuracy of the model.

Univariate feature selection is one of the simplest techniques to reduce the number of features and
works by selecting the best set of features based on univariate statistical tests such as a chi-squared
test or an ANOVA. We will use an ANOVA to compute the p-value between the label and features
to select the m best features according to the lowest p-values.

2.4.3. Model Validation

In a deployed setting, we would apply our SVM model that has been trained on the 82 participants
of known proficiency to make predictions on new participants of unknown proficiency. However,
without validating the model first, it is not possible to know how good the new predictions are.
Therefore, a cross-validation test is usually performed first, in which part of the labeled data is
withheld during training and used to test (validate) the performance of the model during prediction.
Many methods exist to split the data into train/test sets. Perhaps most common is the £-fold cross
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validator, which splits the data into £ consecutive folds. Each fold is then used once as the test
(validation) set, while the remaining £ — 1 sets form the training set. We use £ = 5 and perform 10
runs of each of the cross-validation experiments.

Finally, the model (i.e. 7 best features) with the highest mean balanced accuracy score is selected. The
balanced accuracy is defined as the average accuracy obtained on each class (non-proficient,
proficient) and is used in place of accuracy when there is a class imbalance (Brodersen, Ong,
Stephan & Buhmann, 2010).

2.4.4. Results Using Priming Effect Size

We begin with prediction results using the PEs as the features. Errot! Reference source not
found. shows the mean and standard deviation (SD) of the balanced accuracy as a function of the
best PE features used to train the SVM. We achieve the highest accuracy of 0.68 (SD = 0.11) with
= 98 features. For comparison, an accuracy of 0.62 (SD = 0.10) is achieved using the average PEs as
features.
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Figure 2. Mean and standard deviation of the balanced accuracy as a function of the m best
priming effect (PE) features used to train the SVM. Best performance (mean accuracy = 0.68) is
achieved at m = 98.

In Table 2, we also show the mean and the standard deviation (parentheses) of the confusion matrix
for the best-performing model using 7 = 98 features. The confusion matrix shows the class-level
prediction accuracy. From these results, we can see that the model predicts the non-proficient
participants with slightly higher class accuracy than the proficient participants.

We would also like to understand how the different PEs contributed to the proficiency prediction of
the SVM. Figure 3 plots the mean values for the two metrics for significance for each of the 119 PE
features. The SVM weights correspond to weights affer feature selection. If a feature is not chosen it
is given a weight of 0. In general, the features with the highest SVM weights also have small p-values.
This result supports the intuition that features with lower p-values should also contribute more
predictive power (higher weights) to the SVM model. Interestingly, three of the top four most
predictive features (by either metric) correspond to the words CUELLO, LLUIVA, and PILLOW.
17



All three of these words are six letters long and contain the digraph ‘ll,” which was considered to be a
distinct letter in the Spanish alphabet prior to 2010 (Real Academia Espafiola, 2010). In our word
length task, participants were asked to press one button for words that were five letters or shorter
and another for words that were six letters or longer. Given this task and the relatively recent
removal of II’ from the Spanish alphabet, these three words may have been tricky for the proficient
Spanish speakers. It is notable that the model identified these three stimuli as the ones that were
most effective for differentiating between the two groups of participants.

Table 2. Mean and standard deviation (parentheses) of the confusion matrix for the best
performing PE model.

Predicted Group
Spanish Non-
Proficient proficient
Spanish 0.61 0.39
Actual Proficient (0.16) (0.16)

Group Non-proficient (8'?2) (8.?61)
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Figure 3. Priming effect (PE) feature significance. Features with low p-values (significant
according to the univariate statistical test) and high coefficients (significant according to the
model) are the most predictive.

2.4.5. Results Using Response Times (RTs)

Next, we repeat our analysis using response times (RT's) as features for the SVM. Figure 4 and Table
3 show the prediction performance the SVM classifier using RTs as features. Overall, we achieve
better performance using RTs, compared with using PEs, as features. We achieve the highest
balanced accuracy of 0.75 (SD = 0.09) with 7 = 175 features. For comparison, a balanced accuracy
of 0.66 (SD = 0.11) is achieved using the average RT's as features.
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Figure 4. Mean and standard deviation of the balanced accuracy as a function of the m best

response time (RT) features used to train the SVM. Best performance (mean accuracy = 0.75) is
achieved at m = 175.

Table 3. Mean and standard deviation (parentheses) of the confusion matrix for the best
performing model.

Predicted Group
Spanish Non-
Proficient proficient
Spanish 0.74 0.26
Actual Proficient (0.15) (0.15)

Group Non-proficient (8%3) (8?;)

As with the PEs, we would like to understand how the individual features contribute to the ability of
the SVM to predict participant proficiency. Figure 5. Response time (RT) feature significance.
Features with low p-values (significant according to the univariate statistical test) and high
coefficients (significant according to the model) are the most predictive.

5 plots the p-value and the mean SVM weight for each of the 239 RT features. Once again, in
general, RT features with higher SVM weights have smaller p-values, indicating that features with
lower p-values tend to contribute more predictive power (higher weights) to the SVM model.
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Figure 5. Response time (RT) feature significance. Features with low p-values (significant
according to the univariate statistical test) and high coefficients (significant according to the
model) are the most predictive.

We also examined which participants were misclassified in the highest-performing version of the
model. Interestingly, there were six proficient Spanish speakers who reported that they started
learning English before learning Spanish and that English was their dominant language. Four of
those participants were consistently misclassified by the model, which placed them in the non-
proficient group 90-100% of the time. Another participant in this group was misclassified 30% of
the time. Only one participant in this category was always classified as being proficient in Spanish,
and that was also the only participant who reported that they learned both English and Spanish
beginning in infancy. The others in this subset began learning Spanish later in childhood or as
teenagers. Although some of these participants may have simply overstated their Spanish
proficiency, this pattern suggests that age of acquisition could be a key factor in the RT effects that
are identified by the model.

2.5. Discussion

This study employed a repetition and translation priming paradigm to test the efficacy of using
machine learning techniques to characterize an individual’s language proficiency based on priming
data. Our analyses showed within-language repetition effects for both languages, with priming
effects that were larger for proficient Spanish speakers. However, we observed no priming effects
for translations, suggesting that our effects were driven by the wordform and/or response priming,
rather than semantic priming. On the surface, these findings may provide weak support for the
RHM model (Kroll & Stewart, 1994) because we do not see facilitation between translation
equivalents even for people who are proficient in both languages. However, our experimental
paradigm and non-semantic task may have encouraged shallow processing. Unlike a classic priming
paradigm, where participants see a prime and then respond to a subsequent target, the participants in
our task responded to every word with no differentiation between primes and targets. Due to this
design and the intermixing of within-language and cross-language pairs, the participants may have
been less likely to make predictions about which word would come next, which could reduce the
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effect of semantic priming. In future research, we plan to test blocked designs where all of the
targets in each block are in the same language and a more traditional priming paradigm in which
participants passively read the primes and respond only to the targets. We predict that those changes
to the experiment structure will produce larger semantic priming effects for proficient bilingual
participants reading translated pairs.

Our machine learning analyses showed that a model trained on reaction time data and priming data
can predict whether an individual participant is proficient in Spanish with high accuracy.
Interestingly, for this dataset, predictions based on priming effects were slightly less successful than
predictions based on the RT's alone (68% versus 75% prediction accuracy). Even though the
experimental task may have encouraged shallow processing, the participants who acquired Spanish
beginning in infancy displayed patterns of response times that differentiated them from the other
participants. The model also revealed specific words that were more predictive of proficiency than
others, indicating that this approach could also be fruitful for item analyses.

This study has several limitations. Most importantly, we based the proficiency labels on the self-
reports on anonymous online participants. The majority of the participants (39 of 42) who reported
high proficiency in Spanish also had a Spanish fluency qualification from Amazon Mechanical Turk,
which provides some external verification of their proficiency. However, it is not clear what criteria
are used to assign that qualification. In future research, it would be useful to assess the model’s
performance against measures of language proficiency that are more objective than self-reporting.

The word length judgment task that we used also has limitations. We were constrained to using a
task that all participants could complete whether they understood Spanish or not. In future work, we
aim to develop new tasks that can be completed without knowledge of the target language but that
encourage semantic processing.

Opverall, this study demonstrates that machine learning techniques can support a more individualized
approach to data analysis in studies of bilingualism or other individual differences. Rather than
simply averaging data from all of the participants within each group and comparing the two groups,
the ML approach allows us to develop a predictive model to classify participants based on their
language proficiency, as instantiated in the data they produced. This can be used to identify groups
of participants with different proficiency levels, rather than assigning participants to groups in
advance, or to explore differences among participants with similar levels of proficiency. Finally,
machine learning can be used to identify the specific stimuli that are most predictive of participant
proficiency. All of these factors enable new approaches to the study of bilingualism.
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3. WORD LENGTH JUDGMENT TASK WITH CLASSIC SEMANTIC
PRIMING DESIGN

In this experiment, we modified our original word length task in an effort to achieve larger cross-
language semantic priming effects. We altered the task so that it was more similar to traditional
semantic priming experiments, in which participants passively read a prime word and then respond
to a related or unrelated target word. We predicted that when participants viewed the primes, they
might make predictions about what word was coming next, potentially leading to larger semantic
priming effects.

3.1. Methods

3.1.1.  Participants

Twenty-one people participated in this study on Amazon Mechanical Turk. The task was posted in
two different batches, one which required participants to have Mechanical Turk’s Spanish fluency
qualification and at least a 95% approval rate for prior tasks completed on Mechanical Turk. To
participate in the other batch, the participants were required to be located in the United States and
to have completed at least 1000 prior HITs on Mechanical Turk with an approval rate of at least
95%. The participants were paid $3.50-84 for their time.

Two of the participants were excluded from the analysis because they responded randomly rather
than following the task instructions. The final set of participants included nine from the batch that
required Mechanical Turk’s Spanish fluency qualification and ten from the batch that did not.

3.1.2. Materials and Procedure

The materials used in this experiment were identical to those used in the work length task. The key
difference was that the participants only responded to the target words instead of responding to
both words in the pair. The prime word appeared on the screen for one second in lowercase black
font. Then the target word appeared in uppercase red font. The participants were instructed to press
the “B” key on the keyboard if the target word was 5 letters or fewer and the “N” key if the target
word was six letters or longer.

As in the prior study, the participants also completed a short survey about their language
background before beginning the word length judgement task.

3.2. Results

In the group that met AMT’s criteria for fluency in Spanish, one participant rated his/her
proficiency in reading Spanish as “good” and all of the other participants rated their proficiency at
“very good” or higher (8+ when converted to a 0-10 scale. All of the participants in this group also
rated their English proficiency as being “good” or better. Six of the participants in this group
reported that Spanish was their dominant language and the first language they acquired. Two
participants reported that English was their dominant language and the first language they acquired,
and one participant reported that Romanian was their dominant/first language. Six of the
participants had lived for at least 15 years in an area where Spanish is the predominant language
(range 15-47 years, mean = 19.7 years). Seven participants had lived in an area where English is the
predominant language (range 3-34 years, mean = 14.78 years).
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In the group of participants that was recruited without the use of AMT’s Spanish fluency
qualification, all of the participants reported that English was their dominant language, and all but
one of the participants reported that English was the first language they acquired (one person
reported that their first language was Mandarin). There were 8 participants who reported that they
did not know any Spanish at all and two participants who reported minimal knowledge of Spanish,
rating their proficiency as “low” or “very low” (1 or 2 on the 0-10 scale). All of the participants in
this group reported having lived in a predominantly English speaking country for at least 10 years
(range = 10-58, mean = 43.6 years). None of the participants had lived in a predominantly Spanish
speaking country.

A 2 (Spanish Proficiency) x 4 (Priming Condition) ANOVA showed that there were no significant
effects of proficiency group or condition. The participants in the non-proficient group showed
priming effects that were near zero in all conditions. The participants in the Spanish proficient group
showed negative priming effects in the same language conditions and modest positive priming
effects in the cross-language conditions. The results are shown in Figure 6.
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Figure 6. The average magnitude of the priming effects. Error bars show the standard error of the
mean
Looking at the individual participants, there was only one Spanish-proficient participant who
showed a positive priming effect in all four conditions, as would be expected for a bilingual Spanish-
English speaker if our task effectively induced semantic priming. In the non-proficient group, where
we would expect to see a priming effect in the English-English repetition condition, only six of the
ten participants showed a positive priming effect.

3.3. Discussion

The results indicate that this task did not produce a reliable priming effect for either the proficient
Spanish speakers or the monolingual English speakers. We predicted that using a more traditional
priming task design where the participants passively viewed the primes and responded only to the
targets would increase semantic processing of the words and lead to a larger priming effect than we
observed in our initial study. However, this prediction was not supported. It seems that this task
design did not encourage semantic processing of the words, and may have led the participants to
ignore the prime words altogether, producing little to no semantic priming,.
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4, PICTURE PRIMING TASK

In another attempt to elicit semantic priming in a multilingual task where not all participants
understood the linguistic stimuli, we developed a picture priming task. In this task, participants saw a
prime word in English or Spanish followed by a picture. They were asked to press one key if the
picture showed a living thing (animal, insect, etc.) and another if the picture showed a nonliving
thing (furniture, household items, etc.).

4.1. Methods

4.1.1.  Participants

A total of 62 participants completed the task on Amazon Mechanical Turk (AMT). Twenty-two
participants completed a version of the task that required AMT’s Spanish fluency qualification. Forty
participants completed a version of the task that did not require this qualification. Some of the
participants in this group may have had the qualification, but it was not required for participation.
All participants were required to have an approval rate greater than 95% for prior tasks completed
on AMT. The participants were paid $2 for their time.

4.1.2. Materials

The pictures used in this experiment were drawn from the MultiPic set of drawings, which have
been normed in multiple languages, including English and Spanish (Dufiabeitia, Crepaldi, Meyer,
New, Plaitsikas, Smolka & Brysbaert (2018). Images of 20 living and 20 nonliving things were
selected for use in this study. All of the images selected were consistently given the same names by
participants in the norming study, both in English and Spanish. Each image was paired with its name
in English and its name in Spanish, as well as an unrelated word from the opposite category (living
or nonliving) in both English and Spanish. The result was a list of 160 word-picture pairs.

Within the stimulus list, each prime word appeared twice, once with the picture that matched that
word and once with an unrelated picture from the opposite category. Each picture appeared a total
of four times, preceded by the corresponding word in English, the corresponding word in Spanish,
an opposite-category word in English, and an opposite-category word in Spanish. The word-picture
pairs were placed in a pseudorandom order such that no more than two items from the same
condition (match or mismatch) appeared in a row, nor more than four items with the same answer
(living or nonliving) appeared in a row, and no more than four items with prime words in the same
language appeared in a row.

4.1.3. Procedure

At the beginning of the experiment, the participants completed the same language history
questionnaire that was used in our prior experiments. Then they read the task instructions. They
were told that on each trial they would see a word in English or Spanish that would stay on the
screen for 1 second and that the word would be followed by a picture. The word and picture would
match about half of the time, and their job was to press the “B” key on the keyboard if the picture
showed a living thing and the “N” key if it showed a nonliving thing. They were told to try to
respond as quickly as possible without making too many mistakes, and were asked to keep one
finger resting on each key to facilitate speedy responses.
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After reading the instructions, participants proceeded to the task. The first three trials were practice
trials and were followed immediately by the 160 real trials. There was a self-paced break halfway
through the real trials.

Each trial began with a blank screen that was presented for 150 ms, followed by the prime word,
which was presented in lowercase black font. The word was presented for 1 second and was
followed by a blank screen for 150 ms. Then the picture was presented, scaled to be 300 pixels wide.
The picture remained on the screen until the participant pressed the “B” or “N” key, at which point
the next trial began.

The words were presented in 20-point Arial font and appeared slightly above where the target
pictures appeared on the screen. An example of one trial is shown in Figure 7. A reminder of which
key corresponded to the “living” and “nonliving” response appeared above the stimuli at all times
during the experiment in grey 12-point Arial font

pavo

Figure 7. An example trial. The blank screens appeared for 150 ms each, the prime word appeared
for 1 second, and the picture remained on the screen until the participant responded.

4.2, Results

The participants who completed the version of the task that required AMT’s Spanish fluency
qualification all rated their proficiency in reading Spanish as being “very good” or higher. The
participants in this group also reported having similarly high levels of proficiency in reading English.
These participants reported that they had lived in predominantly Spanish-speaking countries for an
average of 30.9 years (range = 5-55) and in predominantly English-speaking countries for an average
of 6.2 years (range = 0-35).

For the group who completed the task that did not require AMT’s Spanish fluency qualification, all
but two reported that their proficiency in reading English was “excellent” or “perfect.” The two
participants who reported low proficiency in English were excluded from further analysis.

The participants in this group reported that they had spent an average of 28.2 years living in
predominantly English-speaking countries (range = 0-77) and an average of 4.6 years living in
predominantly Spanish-speaking countries (range = 0-49). There were nine participants who
reported that they had never learned any Spanish at all. Another 17 participants rated their Spanish
proficiency as being “fair” or lower. Seven participants gave themselves intermediate proficiency
ratings (“slightly less than adequate,” “adequate,” “slightly more than adequate” or “good”). Finally,
five of the participants rated their Spanish proficiency as being “very good” or higher. Four of those
participants also reported having lived in a Spanish-speaking country for 8 or more years. Those
participants were labeled as proficient Spanish speakers for the analysis.
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All trials with response times of less than 200 ms were excluded from the analysis, as were trials with
response times longer than 5466 ms, which was three standard deviations above the group’s mean
response time. A total of 83 trials were rejected based on these criteria, out of 9760 total trials. A

total of 21 participants had at least one trial rejected, with the number of trials rejected ranging from
1-12.

In the response time analysis, there were 26 participants in the Spanish Proficient group and 33
participants in the Not Proficient group. The mean response times for each group for the match and
mismatch priming conditions are shown in Figure 8. Only trials where the participants responded
correctly were included in this analysis.
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Figure 8. The mean response times for match and mismatch primes in each language condition
for each group of participants.

A mixed 2x2x2 ANOVA with proficiency group, prime language, and priming condition as the
factors showed that there was a significant three-way interaction between the three factors (F(1,171)
= 22.006, p < 0.001). Paired t-tests comparing the match and mismatch priming conditions for each
language within each group showed that the Spanish Proficient group had a significant priming
effect for the Spanish primes (425) = 5.73, p < 0.001) but not for the English primes (125) = 0.51).
Conversely the Non-Proficient group had a significant priming effect for the English primes ((32) =
3.38, p < 0.001) but not for the Spanish primes (#32) = 0.91).

4.3. Modeling Results

The response time data for all trials and the priming effects were modeled for this experiment using
the same procedure that was used in the prior experiments. A random subset of the Non-Proficient
participants were used in the modeling to make the sizes of the two groups of participants equal.
When modeling the response time data, the model simply used each participant’s response time for
every trial. When modeling the priming effects, the model used the magnitude of the priming effect
for each target picture in each language. This was done by subtracting the response times to each
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picture in the English Match condition from the response time in the English Mismatch condition,
and then doing the same for the Spanish conditions. This produced two priming effect measures for
each image, one for English and one for Spanish.

When using the response time data, the mean accuracy of the model was 68% correct (SD = 19%).
The model performed about equally well at correctly categorizing the participants in the Spanish
Proficient group (68% correct) and the Non-Proficient group (72% correct).

When using the priming effects rather than the response times for each trial, the model’s accuracy
dropped to an average of 48% correct (SD = 18%). There was a drop in accuracy for the Non-
Proficient group, with the model only categorizing 61% of those participants correctly. There was an
even larger drop in performance for the Spanish Proficient group, with the model only categorizing
35% of those participants correctly.

44. Discussion

The picture priming task successfully induced semantic priming in our participants, unlike the word
length judgement tasks used in the prior experiments. The model performed reasonably well when
making predictions based on the response times for all trials. However, the model’s performance
was somewhat lower in this task than it was in the first word length judgment task. It seems that the
presence of a semantic priming effect did not improve the model’s performance.

It is interesting to note that across all of the experiments, the model performed better when using
response times for every trial rather than priming effects across conditions. In the prior experiments,
where no robust priming effects were observed at the group level, we might expect the model to
perform poorly when given only the priming effects. However, in the picture priming task, we
observed significant priming effects at the group level and the model still performed poorly when
using the priming data. It is possible that this superior performance for response times is due to the
model having more data points to work with when every trial is considered separately. However, it is
notable that this pattern was so consistent across experiments, and that it persisted even when there
was a significant priming effect. This suggests that the model is picking up on something other than
semantic priming effects in the patterns of response times that is predictive of language proficiency.
Further research is needed to determine what factors other than semantic priming impact the
model’s performance.
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5. MULTILINGUAL STROOP TASKS

5.1. Background

Given that semantic priming did not seem to improve the model’s ability to predict which
participants were proficient in different languages, we sought to test another well-established
finding: semantic interference. To do this, we developed a series of multilingual Stroop tasks. Since
its development in 1935, The Stroop task has been extensively used in a variety of domains to
investigate selective attention, processing speed, and executive function (Stroop, 1935). In the classic
color/word task, participants name the printed color of the word in either the congruent ink color
(ex: GREEN printed word in green ink) or incongruent ink color (ex: GREEN printed word in red
ink). In the majority of studies, incongruent trials elicit significantly longer reaction times, theorized
to be due to cognitive interference of the competing information. This phenomenon is called the
Stroop effect (for review see MacLeod, 1991). This is another task that participants can perform
without being proficient in all of the languages in which the stimuli are presented. In the field of
bilingualism research, the Stroop task has been used to study cognitive control, interference of
words between and within languages, automaticity of access across different languages, and the
possibility of a “bilingual advantage” in executive function (for review see van den Noott et. al.,
2019).

5.1.1.  Bilingualism and the Stroop effect

In the bilingual Stroop task, color words can be presented in both the participants first language (L1)
and second language (I.2). This adds another dimension to the Stroop effect with the addition of
between-language interference and within-language interference effects. Previous research has
shown both interference types are affected differently depending on different factors with a pattern
emerging of larger within-language Stroop effects (McLeod, 1991). Stroop interference is larger in
response to words presented in the participants first language than other language words. This has
been named the “within-language Stroop superiority effect” (Goldfarb & Tzelgov, 2007). These
effects are modulated by factors such as age of acquisition (AoA) of L2 (Hernandez & Li, 2007,
Sabourin, Vinerte, & Mayo, 2015), language proficiency of L2 (Zied et.al., 2004, Migiste, 1984), as
well as orthographic similarity between 1.1 and .2 (Chen & Ho,1986; Lee & Chan, 2000; Sumiya &
Healy, 2004).

Some studies have shown the earlier a language is learned, the less interference in incongruent trials
and the less difference in Stroop performance between L1 and L2 (Hernandez & Li, 2007, Tau et.
al., 2011). Yow and Li (2015) found a positive relationship between AoA and interference costs. The
earlier a person acquires L2, the better they performed on the Stroop task. Within early language
learners, simultaneous learners and eatly sequential learners (1 — 6 years old) did not differ in Stroop
performance when presented with one language, however, when their two languages were mixed,
early learners exhibited facilitation of I.1 and a larger interference effect for 2. This was not found
for simultaneous learners (Sabourin & Vinerte, 2014).

More proficient bilinguals appear to better at inhibiting interference during the Stroop task than
those that are less proficient (Zied, et. al 2004, Magiste, 1984, 1985, Chen and Ho, 1986,
Okuniewska, 2007, Sutton, 2007, Tse and Altarriba, 2012, Singh & Mishra, 2012, Woumans et. al.,
2015). Unbalanced bilinguals, those who are dominant in L.1 and weaker in L2, exhibit larger Stroop
effects in their first language than their second language, and experience greater interference from
distractor was written in their dominate language. Balanced bilinguals (individuals who are equally
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proficient in both languages), on the other hand, do not show these differing effects for their
different languages and have comparable interference for I.1 and L.2 (Magiste, 1984, 1985; Chen and
Ho, 1986). As L2 proficiency increases, overall reaction time on L2 Stroop trials decreases. The
amount to which reaction times decreased in incongruent trials compared to congruent trials able
differed with L2 proficiency (T'se & Altarriba, 2012).

Orthographic similarities/dissimilarities between languages may also impact bilingual Stroop
performance. Researchers have found high between-language interference in highly proficient
bilinguals when languages are similar (e.g., German-Swedish or German-English) while small
between-language interference was found when languages are different orthographically (e.g.,
English-Greek or English-Chinese; Brauer, 1998, Magiste, 1992). This effect, or lack thereof, has
also been found for Japan-English bilinguals, with Japanese also having smaller within-language
interference when compared to English (Fang et. al., 1981). Conversely, Sumiya & Healy (2004) did
find significant between-language interference despite the orthographic dissimilarity between
Japanese and English, however, the between-language Stroop effect was larger with phonologically
similar terms.

5.1.2.  The Bilingual Advantage? Bilingual vs monolingual performance on the
Stroop task

A large area of the research in bilingualism investigates the “bilingual advantage” in cognitive control
and overall executive function (Bialystok et. al., 2003). Previous research has found that bilinguals
outperform monolinguals on a variety of cognitive control tasking including the Stroop task
(Bialystok,1999; Bialystok, Craik, & Luk, 2008; Costa, Hernandez & Sebastian-Galles, 2008). In the
Stroop task, Bialystok and colleagues (2008) found that across age groups, bilinguals had greater
interference suppression than monolinguals during the task. This effect was largest for older adults.
This ability is postulated to arise from bilingual’s ability to manage multiple languages a once.

There is also limited electrophysiological evidence to support differences, and perhaps advantages, in
bilingualism when compared to monolingualism. A later N400 peak latency, possibly specific to L2,
has been found for bilinguals during the Stroop task (Badzakova-Trajkov et. al., 2009; Coderre &
Van Heuven, 2014a). N400 and LLPC amplitude differences have also been found for congruent and
incongruent trials in bilinguals but not in monolinguals (Heidlmayr et. al., 2015). Bilinguals also
exhibit smaller N2 and Ninc during the Stroop task than monolinguals, an indication of suppression
of interfering information (Coderre & van Heuven, 2013, Kousaie & Phillips, 2012a). Coderre and
Van Heuven (2014b) also found a more negative amplitudes for L1 and no difference for .2 when
compared to bilinguals. Other studies have not found this difference between L1 and L2 neural
indices (Badzakova-Trajkov et. al., 2009; Heidlmayr, Hemforth, Moutier, & Isel, 2015).

More recently, the bilingual advantage has been called into question. More and more research in the
tield had found mixed or null results in support of the bilingual advantage (Paap & Greenberg, 2013,
Kousaie & Phillips, 2012b, Coderra, Heuven & Conklin, 2013). Reviews in the area have revealed
publication biases and small sample sizes to be possible underlying variables to attribute to this
effect (Paap, Johnson, & Sawi, 2015, Bruin, Treccani, & Sala, 2015). Some studies have even found
bilinguals perform worse on the Stroop task. Okada, He, and Gonzales (2019) found that young
adult bilinguals had significantly slower reaction times during the taboo Stroop task than
monolinguals. Other research has found that the variables that effect bilingual performance on the
Stroop described eatlier (AoA, proficiency, orthographic similarities between language) also play a
role in comparing bilinguals to monolinguals (Yow and Li, 2015; Coderre & van Heuven, 2014).
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While there is some evidence of a bilingual advantage, it could be reliant on these individual
differences and be more task specific rather than the overall general advantages in executive
functioning that have been theorized (van den Noort et. al., 2019).

Due to the long history of using the Stroop task to study bilingualism, we hypothesized that it might
be effective for making predictions about language proficiency. In our prior experiments, our word
length judgment tasks and picture priming task showed that our model performed better when using
response time data for every trial rather than priming data calculated for the same stimuli in different
conditions. With the Stroop tasks, our goal was to determine whether this pattern held in a task
designed to induce interference rather than priming. We hypothesized that participants would be
slower to respond to incongruent trials in languages that they understand, but would be unaffected
by incongruent trials in languages that they do not understand. Furthermore, we predicted that both
the response times for every trial and the Stroop interference effects could be modeled to make
predictions about which participants understood which languages.

We tested two versions of the Stroop task. The first used only three colors: red, green and blue. The
color words were presented in English, Spanish, French and German. However, some people may
be familiar with the basic color words in one or more of those languages, even if they are not
proficient in the language in general. Because of this, we also developed a nine color version of the
Stroop task to determine whether a broader set of color names would lead to more predictive
results.

5.2. Three Color Stroop Experiment
5.2.1. Methods

5.2.1.1. Participants

A total of 67 participants completed the experiment on Amazon Mechanical Turk. All participants
were required to have an approval rating greater than 90% for prior tasks completed on AMT.
Thirty-two of the participants had AMT’s Spanish fluency qualification, four had the French fluency
qualification, and one had the German fluency qualification. Another 30 participants completed a
version of the task that did not require any specific language fluency qualifications (although some
of the participants in this group may have had those qualifications).

5.2.1.2. Materials

The materials for this task consisted of three color words that were presented in English (red, green,
blue), Spanish (rojo, verde, azul), French (rouge, vert, bleu), and German (rot, griin, blau). There was
also a control condition, predicted to have no interference effect, in which participants saw only the
letters “xxxx.” The control condition was presented nine times in the experimental list, three times
in each of the three possible font colors (red, green and blue). Each of the other words appeared six
times in the list, three times in the congruent condition and three times in the incongruent
condition. In the congruent condition, the word was shown in a font color that matched its meaning
(i.e., red). In the incongruent condition, the word was shown in one of the non-matching font
colors (i.e., red or red). The list contained a total of 81 items.
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5.2.1.3. Procedure

After acknowledging the consent form, the participants completed an abbreviated version of the
language history survey that was used in the other tasks. The survey asked them to list the languages
they know in order of dominance, the languages they know in order of acquisition, the percentage of
time they are currently exposed to English, Spanish, French and German (on average), and to rate
their level of proficiency in reading English, Spanish, French and German on the same scale that
was used in the prior experiments.

Next they read the instructions screen, which told them to press the button corresponding to the
color of the font, not the meaning of the word. They were instructed to answer as quickly as
possible. When they were ready, the participants clicked a button on the screen to begin the task.
Unbeknownst to the participants, the first six trials were practice trials that were not included in the
analysis. They gave participants a chance to become familiar with the task and the layout of the three
response buttons. On each trial, the color word was shown in 20-point bold Arial font, centered
above three response buttons which were labeled “red,” “green” and “blue.” Figure 9 shows an
example of how the trials looked to the participants.

red

| red | | green | | blue |

Figure 9. An example of a trial in the three color Stroop task.

The word stayed on the screen until the participant clicked on one of the buttons. Then it was
replaced by the next word in the list. The six practice trials were followed immediately by the 81 real
trials, which were presented in a different random order for each participant.

5.2.2. Results

One participant was removed from the analysis because they reported low proficiency in English.
Among the remaining participants, one person rated their proficiency in reading English as being
“good” and all of the other participants rated their proficiency as “very good” or better. There were
26 participants who rated their Spanish proficiency as “very good” or better. This included all of the
participants who had AMT’s Spanish fluency qualification, plus four participants who completed the
version of the task that did not require any specific language fluency qualifications. There were five
participants who rated their proficiency in French as being “very good” or higher, including all of
the participants who had AMT’s French fluency qualification and one participant who had the
Spanish fluency qualification. Only one participant, the participant who had AMT’s German fluency
qualification, rated themselves as being proficient in German.
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Prior to analysis, all trials with response times of less than 200 ms were removed, as were trials with
response times longer than 16601 ms, which was three standard deviations above the group mean
response time. A total of 13 trials from five participants were rejected.

The response time results for all trials on which participants responded correctly are shown in
Figure 10. For the Spanish Proficient group, paired t-tests showed that there was a Stroop effect,
with significantly shorter response times for congruous than for incongruous trials, for the English
word condition (A25) = 3.53, p < 0.001) but not for the Spanish (125) = 1.29, p = 0.10), French
(#(25) = 1.71, p = 0.05), or German (425) = 0.81) conditions. For the Non-Proficient group, there
was a significant Stroop effect for the English (429) = 3.34, p < 0.01), Spanish (#29) = 2.31, p <
0.02) and German (129) = 2.10, p < 0.03) conditions, but not for the French condition (#29) =
0.19).
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Figure 10. Average response times for each condition for the Spanish Proficient and Non-
Proficient Groups.

When we looked only at the participants who were fluent in French, we observed a large Stroop
effect for the French stimuli for those participants (mean Stoop effect size = 217.5 ms for these five
participants). Similarly, our lone German participant showed a Stroop effect for the German stimuli
(404.8 ms). Thus, it was surprising that the proficient Spanish speakers did not show a significant
Stroop effect in Spanish. Individual participants in this group showed a large Stroop effect, but a
handful of participants had a very small effect or a negative effect.

It was also surprising that the group of participants who were not proficient in Spanish showed
significant Stroop effects for Spanish and German. The size of the Stroop effect was smaller on
average for those languages, but the difference between congruent and incongruent conditions was
still significant.
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5.2.3. Modeling Results

The participants’ response times for each trial were used to predict whether or not they were
proficient in Spanish, using the method described in Experiment 1. Since there were so few
participants who were proficient in French or German, we did not attempt to model those
languages. Participants who had the French or German fluency criterion, or who reported fluency in
French or German, were simply labeled for the modeling based on their responses to the questions
about English and Spanish proficiency. This gave us a group of 31 participants who were proficient
in English. To match that sample size, a group of 31 people who were proficient in both English
and Spanish were randomly selected from among the 35 such participants in our dataset.

The model’s performance was close to chance in its predictions about which participants were
proficient in both English and Spanish. When using the response times for every trial, the model had
a mean accuracy of 52% (SD = 10%). When using averages across conditions (congruent versus
incongruent trials), the model performed somewhat better, with a mean accuracy of 57% correct
(SD = 13%). In both versions of the model, it correctly categorized 57-58% of the participants who
were not proficient in Spanish. The version that used the response times for each trial was quite
poor at identifying the participants who were proficient in both languages, correctly identifying them
only 49% of the time. The version that used averages across conditions performed better for the
bilingual participants, reaching 60% accuracy. However, the model’s performance was still quite
modest in both cases.

5.2.4. Discussion

The results from the three color Stroop task were somewhat surprising. The Spanish Proficient
group did not show a significant Stroop effect for Spanish stimuli, while the participants in the Non-
Proficient group did. Unsurprisingly, given these results, the model did not perform well when
attempting to predict whether or not individual participants were proficient in Spanish.

It is possible that the unexpected results from this task were caused by the online implementation.
The participants had to move the mouse to click on a button, which is very different from the
traditional implementation of the Stroop task where people say the color of the font out loud. It is
also possible that many of our participants were familiar with the color words in Spanish, French,
and/or German, even if they were not proficient in those languages. The words for “red,” “green”
and “blue” are quite similar across these languages, with the exception of “azul” in Spanish. The
similarities between the languages or the participants’ familiarity with these specific color words
could have had an impact on the results as well.

Due to the COVID-19 pandemic, we could not implement a version of this task in which
participants spoke the color names out loud, so we were unable to address the first potential issue.
However, in an attempt to address the second issue, we developed a nine color version of the
Stroop task. We suspected that fewer people would be familiar with less common color words in
Spanish, French, and German. In addition, many of these color words were not visually or auditorily
similar to their English equivalents. We hypothesized that using a larger set of color words might
produce better data for modeling purposes.
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5.3. Nine Color Stroop Experiment
5.3.1. Methods

5.3.1.1. Participants

A total of 45 participants completed the experiment on AMT. All participants were required to have
an approval rating greater than 90% for prior tasks completed on AMT. Twelve of the participants
had AMT’s Spanish fluency qualification, two had the French fluency qualification, and one had the
German fluency qualification. Another 30 participants completed a version of the task that did not
require any specific language fluency qualifications (although some of the participants in this group
may have had those qualifications).

5.3.1.2. Materials

The materials for this task consisted of nine color words that were presented in English (red, yellow,
green, blue, purple, pink, brown, white, gray), Spanish (rojo, amarillo, verde, azul, morado, rosado,
marrén, blanco, gris), and German (rot, gelb, griin, blau, lila, rosa, braun, weif3, grau). There was also
a control condition, predicted to have no interference effect, in which participants saw only the
letters “xxxx.”

In this version of the task, French was not used as one of the languages because we had few
responses from participants with the French fluency qualification in other experiments. To keep the
task a reasonable length, we chose to eliminate one of the languages. We made the assumption that
few participants would be fluent in German, allowing it to serve as a second control condition with
real words as stimuli.

The “xxxx” items were presented 18 times in the experimental list, twice in each of the nine possible
font colors. Each of the other words appeared four times in the list, twice in the congruent
condition and twice in the incongruent condition. In the congruent condition, the word was shown
in a font color that matched its meaning. In the incongruent condition, the word was shown in one
of the non-matching font colors. The list contained a total of 126 items.

5.3.1.3. Procedure

The procedure used for this experiment was identical to the procedure for the three color Stroop
task, except that the question about how many years and months the participants had spent living in
predominantly English, Spanish, French, and German speaking countries was added back in to the
language history questionnaire.
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marron verde

red yellow | | green red yellow | | green
blue purple pink blue purple pink
gray brown | | white gray brown | | white

Figure 11. Examples of a congruent trial (left) and an incongruent trial (right), both using Spanish
words, in the nine color Stroop task.

5.3.2. Results

Two participants were removed from the data analysis because they did not provide valid responses
to the language survey. In the group that had AMT’s Spanish fluency qualification, all of the
participants reported a high level of proficiency in both Spanish and English. The participants in this
group had lived an average of 29 years in predominately Spanish-speaking countries (range = 1-49
years) and an average of 12 years in predominately English-speaking countries (range = 0-40 years).

The participants who had AMT’s French or German fluency qualification all reported high
proficiency in English, but not in Spanish, so they were grouped with the non-proficient Spanish
speakers for the analysis. Among the non-proficient Spanish speakers, only one person reported
having a “good” level of proficiency in Spanish. That same person reported having lived in a
Spanish-speaking country for two years. None of the other participants in this group reported
spending any time living in a Spanish-speaking country. They had spent an average of 34.6 years
living in English-speaking countries (range = 0-59).

Prior to analysis, all trials with response times of less than 200 ms were removed, as were trials with
response times longer than 9435 ms, which was three standard deviations above the group mean
response time. A total of 16 trials from five participants were rejected.

The response time results for all trials on which participants responded correctly are shown in
Figure 12. For the Spanish Proficient group, paired t-tests showed that there was a Stroop effect,
with significantly shorter response times for congruous than for incongruous trials, for the English
condition (#(11) = 2.88, p < 0.01) but not for the Spanish (A(11) = 0.95) or German (#11) = 0.106)
conditions. For the Non-Proficient group, there was a significant Stroop effect for the English (#30)
= 5.02, p < 0.001) and German (#30) = 4.05, p < 0.001) conditions, but not for the Spanish
condition (#30) = 1.46, p = 0.08).
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Figure 12. Average response times in each condition for the Spanish Proficient and Non-Proficient
Groups.

The Stroop effect was not significant for the proficient Spanish speakers in this study, mirroring the
results of our three color Stroop task. Similarly, the non-proficient speakers showed a significant
Stoop effects in English and German, just like they did in the three color Stroop task. However, in
this case they did not show a significant Stroop effect for Spanish. While there was one proficient
German speaker in that group, the German Stroop effect was still significant even if that
participant’s data were removed, so that person alone was not driving the effect. These results
indicate that the nine color Stroop task was unlikely to be effective in distinguishing people with
proficiency in different languages.

5.3.3. Modeling Results

The data was modeled using the same process that was used for the three color Stroop task. As
expected, the model performed very poorly. When using the response times for every trial, the
model had a mean accuracy of 35% (SD = 19%). When using averages across conditions (congruent
versus incongruent trials), the mean accuracy was 31% correct (SD = 15%).

5.3.4. Discussion

While we had anticipated that using a larger number of color words would allow us to better
discriminate between monolingual and bilingual participants, that did not turn out to be the case.
The model’s performance was substantially worse for the nine color Stroop task than it was for the
three color Stroop task. It is possible that in the nine color task, the additional time needed to locate
the correct response button washed out some of the effects. This suggests that our online
implementation of this task was not successful.
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In both the three color and nine color Stroop tasks, our Spanish Proficient groups showed Stroop
effects for English but not for Spanish. It is possible that this pattern reflects the bilingual advantage
that has been observed in the prior literature, where bilingual participants show reduced interference
effects in their L1. However, even though this finding was consistent across the two experiments,
this pattern was not useful for the purposes of making predictions about individual participants’
language proficiency. Many of the monolingual English speakers also showed a Stroop effect in
English but not Spanish. When looking at the participants as individuals rather than looking at
group level data, seeing a Stroop effect for English but not for Spanish could indicate one of two
things. First, it could indicate that the participant did not understand Spanish and thus did not suffer
from any interference from the Spanish words. Alternatively, it could indicate that the participant
was a proficient bilingual who showed reduced interference in Spanish due to the bilingual
advantage. With two possible explanations for the same pattern of effects, it is not surprising that
the ML approach failed to make good predictions. In the online implementation of this task, any
subtle differences that might have allowed us to distinguish between these two possibilities were
lost.

5.4. Stroop Experiment with Non-Roman Characters

In addition to testing the Stroop effects in English, Spanish, French and German, we also collected
data in a task that incorporated languages that use non-Roman characters. In this version of the task,
the languages used were English, Hindi, Mandarin, and Irish (Gaelic). Hindi and Mandarin were
chosen because of their writing systems and because AMT has fluency qualifications for those
languages. Irish was chosen because the color words look similar to English words, but we assumed
that there would be very few proficient speakers of Irish in the AMT worker community. This gave
us a condition that had Roman characters but words that would be unfamiliar to most of our
participants.

This task mirrored the three color Stroop task in using red, green, and blue as the font colors. The
color words were shown in English (red, green, blue), Irish (dearg, glas, gorm), Mandarin (£ %,

Zrfh, W5 {0) and Hindi (el =Y, '_'ﬁ?ﬂ) The structure of the task was identical to the structure of
the three color Stroop task.

Twenty-eight people participated in the version of the task that did not require any language
proficiency qualifications. Only one participant with AMT’s Mandarin fluency qualification
completed the experiment, but three of the participants in the group that were not required to have
any language fluency qualifications reported that they had a “good” level of proficiency with reading
Mandarin (a 7 on the 0-10 scale). However, those same three participants also reported moderate to
high levels of proficiency in Irish and Hindi, which calls their survey results into question.

There were no participants in the version of the task that required AMT’s Hindi fluency
qualification, and only one participant in the unrestricted version of the task who reported that they
had “perfect” proficiency in reading Hindi. However, in the free response portion of the survey that
came prior to the language proficiency ratings, this participant reported that English was the only
language they knew. So once again, this person’s survey results were suspect.

Unsurprisingly, given the lack of participants with proficiency in Hindi, Mandarin, or Irish, we did
not observe Stroop effects in those languages (all /5 < 1.46, all ps > 0.08). There was a Stroop effect
for the English words, with participants taking an average of 263 ms longer to respond to
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incongruent words than to congruent words (428) = 5.09, p < 0.001). These results are shown in
Figure 13.

Results of Stroop Task with Non-Roman Characters
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Figure 13. Average response times to congruent and incongruent stimuli in each language.

Looking at the only participant who had AMT’s Mandarin fluency qualification, we found that that
person showed a Stroop effect in both English (112 ms) and Mandarin (386 ms). However, they also
showed a Stroop effect in Irish, a language with which they were not familiar (163 ms).

Due to the lack of participants who were fluent in Hindi or Mandarin, we did not model the results
of this study. Overall, this task provided a case study in some of the pitfalls of collecting data online.
In some cases, participants submitted invalid responses to the surveys or pressed buttons randomly
during the tasks. On this and all other tasks, we had to be careful to remove participants whose
responses seemed random or whose survey results were implausible or internally inconsistent.
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6. ELECTROENCEPHALOGRAPHY (EEG) STUDY

6.1. Background

EEG has been used to study the electrical activity of the human brain for nearly 100 years. As
sensor technology and computing power have advanced, EEG recording techniques have provided
increasingly fine-grained insights into how the brain processes information. In the mid 1960s,
researchers developed techniques for time-locking EEG signals to the onset of stimuli, allowing
them to isolate neural signals that were related to the brain’s processing of those stimuli (Sutton,
Braren & Zubin, 1965; Walter et al., 1964). The time-locked EEG signals are called event-related
potentials (ERPs). Since the discovery of ERPs, thousands of studies have focused on characterizing
these signals and their relationships to specific neural processes. ERPs are named according to their
polarity and their timing (in milliseconds) relative to the onset of the stimulus.

In 1980, researchers discovered the N400, an ERP that was elicited by verbal stimuli (Kutas &
Hillyard, 1980). Subsequent decades of research have determined that the N400 reflects semantic
processing (i.e., the processing that takes place when the brain accesses the meaning of a word, or
attempts to access the semantics of any potentially meaningful stimuli). Further research identified
another ERP, the P600, which reflects the brain’s processing of the structure of language. If a
person encounters a grammatical error, their brain produces a P600 as it tries to reanalyze the
structure of the sentence (Osterhout et al., 2008).

These two ERPs related to language processing are extremely well-characterized and they are highly
consistent across individuals. The brain processes language automatically, so the N400 and P600 can
provide detailed information about a person’s knowledge without any overt response required from
the person. For example, the N400 can distinguish the words a person knows from words he or she
does not know (Kutas & Federmeier, 2011). The N400 and P600 have been shown to track
proficiency when a person is learning a second language (McLaughlin et al., 2004), to indicate the
age at which a person acquired a language (Weber & Lavric, 2008), and even to reflect cultural biases
(a P600 is elicited by pronouns that violate cultural gender norms; Oakhill et al., 2005). These
components can also be used to assess a person’s retention of newly-memorized verbal information
(Haass & Matzen, 2011), to understand the disruption to comprehension caused by misspelled
words (Stites, Federmeier, & Christianson, 2016), or to predict a developing reader’s future reading
abilities (Stites & Laszlo, 2017).

The academic research on ERPs has focused on studying groups of people with specific
characteristics and then extrapolating to generalized principles about neural processing. To make use
of this body of literature in more applied settings, we must do the opposite: apply general principles
of neural processing to learn about individual people. Thus, although there is a long and robust
history of research in this area, there are key questions that have not been addressed by the academic
community. In a typical ERP study, researchers recruit participants who meet specific criteria, then
examine how group differences relate to differences in ERP amplitude, timing, and/or scalp
distribution. For example, in the existing studies that link the N400 and P600 to progress in learning
a new language, researchers recruited students who were taking entry-level language classes at their
university and tracked them over the course of a semester. All of the other studies that have
demonstrated that the N400 or P600 were sensitive to differences such as language proficiency knew
how the participants differed ahead of time and lumped them into group-level analyses rather than
assessing each individual separately. In order to apply this research in a new way, we need to address
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the following question: Can ERPs identify which languages an individual understands when the
researcher does not know ahead of time?

To address this question, we designed an ERP study that built upon on existing, well-established
ERP experiment protocols from the academic literature. Participants were shown a list of related
and unrelated word pairs in English, Spanish, French and German. The related word pairs either had
the same word repeated twice, or a word in one language paired with its translation in another
language. In the unrelated pairs, two semantically unrelated words were shown, either in the same
language or in two different languages. For languages that a person understands, we would expect to
see an N400 priming effect where the N400 amplitude is reduced when the participant reads the
second word in a related pair. The N400 priming effect is extremely robust and has been observed
in cross-language experiments (for a review, see Moreno, Rodriguez-Fornells, & Laine, 2008). For
languages that the participant does not understand, their brain would not access the meaning of the
second word in the pair and therefore they would not exhibit an N400 priming effect.

Although this basic semantic priming paradigm has been widely used in the ERP literature, our
experiment differed from the prior research in three important ways. First, we presented the
participants with stimuli from multiple languages (prior studies have used two at most and have
explicitly selected participants who were known to be proficient with both languages). Second, we
intermixed the languages instead of grouping targets from the same language into block. Third, we
made the experiment blind so that the experimenter analyzing the data did not know which
language(s) each participant understands. The data analyst was tasked with predicting which
languages each participant understands based on the ERP data alone, with no other information
about the participant provided. In addition, we attempted to make predictions about language
proficiency using a machine learning model based on the participants’ ERP data. Our goal was to be
able to predict which language(s) each participant understands at a level greater than chance.

6.2. Methods

6.2.1.  Participants

Forty employees of Sandia National Laboratories participated in this experiment. They were
compensated for their time at their usual hourly rate. Of the participants, 21 were female and 19
were male. Their average age was 39.6 years (range = 23-68). There was a range of levels of
education among the participants. One participant reported “less than high school” as their highest
degree obtained. Four participants reported “some college” or a bachelor’s degree. One participant
reported “some graduate school.” Nineteen participants reported having a Master’s degree and 14 of
the participants reported having a Ph.D.

6.2.2. Materials

The materials consisted of 30 English nouns and their translations in Spanish, French, and German.
The translations were reviewed by people who were native or highly proficient speakers of Spanish,
French and German to ensure that the translations were accurate. The words were selected so that
there were no special characters (accents, umlauts, etc.), and no cognates (e.g., family, familia) or
false cognates (e.g., soap, sopa) across the four languages. Since the participants in the experiment
live in Albuquerque, New Mexico, where many place and street names are Spanish words, we took
care to select Spanish words for our experiment that monolingual English speakers would be
unlikely to encounter during their daily lives in Albuquerque. The stimuli are shown in Table 3.
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Table 3. The stimuli for the EEG experiment.

English Words | Spanish Words | French Words | German Words
BOOK LIBRO LIVRE BUCH
CHAIR SILLA CHAISE SESSEL
CITY CIUDAD VILLE STADT
CLOUD NUBE NUAGE WOLKE
DAUGHTER HIJA FILLE TOCHTER
FACE CARA VISAGE GESICHT
FLOUR HARINA FARINE MEHL
FOOD COMIDA NOURRITURE | ESSEN
GARLIC AJO AIL KNOBLAUCH
GROUND SUELO SOL BODEN
HAPPINESS FELICIDAD BONHEUR FREUDE
KNIFE CUCHILLO COUTEAU MESSER
LAUGHTER RISA RIRE LACHEN
LAWYER ABOGADO AVOCAT ANWALT
LEAF HOJA FEUILLE BLATT
MOUTH BOCA BOUCHE MUND
NECK CUELLO Ccou GENICK
NEIGHBOR VECINO VOISIN NACHBAR
NEPHEW SOBRINO NEVEU NEFFE
PILLOW ALMOHADA OREILLER KISSEN
PLACE LUGAR ENDROIT ORT
POCKET BOLSILLO POCHE TASCHE
RAIN LLUVIA PLUIE REGEN
ROOM SALA CHAMBRE ZIMMER
SHOE ZAPATO CHAUSSURE SCHUH
SKIN PIEL PEAU HAUT
WALL PARED MUR MAUER
WATCH RELOJ MONTRE UHR
WOOD MADERA BOIS HOLZ
YESTERDAY AYER HIER GESTERN

The word lists were matching on length, frequency, and orthographic neighborhood size. This
information was acquired from the CLEARPOND database (Marian, Bartolotti, Chabal & Shook,
2012). The average length, frequency (per million), and orthographic neighborhood size for each
language is shown in Table 4. We tried to minimize cross-language orthographic neighborhood size,
which is less than four for all of the language pairings.
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Table 4. The psycholinguistic properties of the stimuli in each language.

Language Avg Avg Avg English Avg Spanish Avg French Avg German
Length | Frequency | Orthographic | Orthographic | Orthographic | Orthographic
Neighborhood | Neighborhood | Neighborhood | Neighborhood
Size Size Size Size
English 5.37 106.93 6.77 0.77 2.30 1.77
Spanish 5.47 99.04 2.27 5.43 1.43 1.47
French 5.57 101.39 3.87 1.27 6.80 2.67
German 5.40 94.39 2.10 0.40 0.90 5.40
6.2.3. Word Pairs

Each English word was paired with itself and with its translation in the other three languages. Each
of the words in Spanish, French and German was also paired with itself. For the sake of conciseness,
we refer to these pairings collectively as the “translation pairs,” even though a subset of the pairs are
actually repetitions of the same word in the same language. Every word was also paired with
unrelated pairs in the same language and in English. We refer to these pairings as the “unrelated
pairs.” The order of the languages in the pairings occurred in both possible orders, with English
words appearing as the first word in the pair for half of the pairs and as the second word in the pair
for the other half. Working through all of the possible pairings, this produced 20 conditions, as
shown in Table 5.

Table 5. All possible pairings within and across languages.

Translation Pairs

Unrelated Pairs

English-English Repetition

English-English Unrelated

English-Spanish Translation

English-Spanish Unrelated

English-French Translation

English-French Unrelated

English-German Translation

English-German Unrelated

Spanish-Spanish Repetition

Spanish-Spanish Unrelated

Spanish-English Translation

Spanish-English Unrelated

French-French Repetition

French-French Unrelated

French-English Translation

French-English Unrelated

German-German Repetition

German-German Unrelated

German-English Translation

German-English Unrelated

All of the words were rotated through all of the possible pairings. When creating the unrelated pairs,
we took care to avoid pairings that had a semantic relationship, such as “neck” and “mouth.” In the
end, there were 600 word pairs with every word appearing in every possible condition. The word
pairs were divided into 10 counterbalanced blocks containing 60 pairs each. Each block contained
three pairs corresponding to each of the pair types shown in Figure 3. The first word of the pair was
in English for 24 of the pairs and in Spanish, French and German for 12 pairs each. The same was
true for the second word in each pair. Within each block, each English word and/or its vatious
possible translations appeared four times, twice in a translation pair (as the first and second word in
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the pair), once in an unrelated pair as the first word in the pair, and once in an unrelated pair as the
second (target) word in the pair.

The pairs were placed in a pseudorandom order so that the two pairs containing each target word
appeared in different halves of the block. This was counterbalanced so that any given word was the
target word in a translation pair in the first half of five of the blocks and in the second half of the
other five blocks, and vice versa for the same word serving as a target in unrelated pairs.
Additionally, word pairs with the same target word never appeared in the same position in different
blocks (i.e., if a target word was in the second pair in one block, it would not be in the second pair in
any other blocks). Finally, the pseudorandom order was constrained so that there were never more
than three translation or unrelated pairs in a row, and never more than two pairs from the same
category (e.g., Spanish-English translation) in a row.

The counterbalancing was done so that the structure of the cross-language unrelated pairs could not
be predicted from the related pairs in a given block. For example, each block had three English-
English repetition pairs, and each of the target words in those pairs appeared with a different
language when it was the target of an unrelated pair. One was preceded by an unrelated Spanish
word, one by an unrelated French word, and one by an unrelated German word. There was no way
for the participants to predict which English target word would be paired with which language. This
also ensured that every Spanish, French and German target word was preceded equally often by a
word in the same language or a word in English, while every English target word was preceded
equally often by words in English, Spanish, French and German.

6.2.4. Response words

The participants were tasked with responding via a button press whenever they saw an animal name
in any language. They were instructed that the words “CAT” and “DOG,” as well as their
translations in Spanish, French, and German, would be interspersed with the other words in the list.
They were trained on the translations of both words in the other languages
(GATO/CHAT/KATZE and PERRO/CHIEN/HUND) to ensute that they would be familiar
with the to-be-responded-to words in every language. Participants were also told that other animal
names might appear in any language and that they should press a button as soon as the recognized
any animal name.

There were five additional animal names that appeared within the word lists:
COW/VACA/VACHE/KUH, HORSE/CABALLO/CHEVAL/PFERD,
SHEEP/OVEJA/MOUTON/SCHAF, DEER/CIERVO/CERF/HIRSCH, and
RABBIT/CONE]JO/LAPIN/HASE. These words were selected using the same criteria as the
stimulus lists. These words had similar average lengths and frequencies across all four languages.
These additional, untrained response words were intended to keep the participants alert and to
provide a behavioral signal of which languages each participant understood. The trained and
untrained response words were dispersed among the pairs in the word lists, with the gaps between
the response words ranging from zero pairs (two response words presented back-to-back) to eight
intervening pairs. On average, one response word appeared for every 3-4 word pairs. The all variants
of the CAT and DOG appeared twice in each block, while two of the untrained response words
appeared in each block.
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Table 6. The psycholinguistic properties of the animal names used for response trials.

Language | Avg Avg Avg English Avg Spanish Avg French Avg German
Length | Frequency | Orthographic | Orthographic | Orthographic | Orthographic
Neighborhood | Neighborhood | Neighborhood | Neighborhood
Size Size Size Size
English 4.60 32.29 13.20 0.80 2.00 2.80
Spanish 5.60 23.39 0.20 4.00 0.00 0.00
French 5.20 33.01 1.00 0.80 3.20 1.40
German | 4.60 19.49 4.00 1.60 2.00 6.60
6.2.5. Procedure

After completing the consent form, participants completed a demographics questionnaire, a
handedness questionnaire, and the Language Experience and Proficiency Questionnaire (LEAP-Q),
Marian et al., 2007). To complete the main task, they were seated in a dimly lit sound booth with
their eyes approximately 60 cm from a computer monitor. The experiment began with a training task
in which the participants were trained on the words for cat and dog in Spanish, French and German.
Then they completed a short practice list that mirrored the structure of the real task. The
participants were instructed to press a button on a game controller any time they saw an animal
name, whether it was one of the words they had just memorized or a different animal name. The
practice list contained 28 nouns, including the words “cat” and “dog” in all four languages. There
were also four other animal names, one in English and three that were cognates of English animal
names (e.g., tigre, elefant). At the end of the practice list, the participants were told how many of the
animal names they successfully identified. They were given the opportunity to repeat the practice list
if they desired. Otherwise, they continued to the main experiment.

During the main experiment, each participant saw one of the experimental lists. The lists were
divided into 10 blocks and the participants were given self-paced breaks between the blocks. The
participants pressed a key on the computer keyboard to initiate each block, to ensure that they did
not initiate the blocks accidentally. All participants responses during the blocks themselves were
made using the game controller, which participants held in their laps. At the beginning of each
block, the words “GET READY” appeared in red font on a black background for three seconds.

Then the trials for that block began.

Each trial began with a fixation cross that was presented on the screen for 1000 ms. This was
followed by a blank screen that was presented for 400 ms, and then the word, which appeared in the
same location as the fixation cross and was presented for 1000 ms. Throughout all of the trials, the
background of the screen was black. The fixation cross and words were presented in the center of
the screen in silver 72-point Consolas font. At the end of each block, participants were told how

many blocks they had completed and how many were remaining. Each block lasted for

approximately five minutes.

The participants were instructed to sit still and to try not to blink when the words were on the
screen. They pressed the response button on the game controller when they recognized an animal
name in any languages. They did not respond to any of the other words.
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6.2.6. EEG Recording and Data Analysis

The ongoing encephalogram (EEG) was recorded from 32 active silver/silver-chloride electrodes
using the ANT Neuro waveguard cap arranged in the 10/20 layout. Electrodes were referenced
online to a ground electrode near Cz and were re-referenced offline to the average of the left and
right mastoids. A bipolar eye channel was created by placing electrodes on the left infraorbital ridge
and above the left eye, referenced to each other, to monitor for blinks. A second bipolar eye channel
was created by placing electrodes on the outer canthus of each eye, referenced to each other, to
monitor for horizontal eye movements. Impedances for scalp electrodes were kept below 25k€2. The
continuous EEG was recorded to hard disk at a sampling rate of 250Hz.

All data processing was completed using the EEGLAB (Delorme & Makeig, 2004) and ERPLAB
(Lopez-Calderon & Luck, 2014) toolboxes for MATLAB. Epochs of EEG data were taken from
100 ms before stimulus onset to 900 ms post-stimulus. Those containing artifacts from signal drift,
eye movements, eye blinks, muscle activity, or other types of noise were rejected off-line before
averaging, using thresholds selected for each participant through visual inspection of the data. A
two-step approach was used for artifact rejection. First, a simple voltage threshold filter was applied
to all scalp channels, with individually-set thresholds for each participant. Second, a moving-window
peak-to-peak filter was applied to one or both of the bipolar eye channels, with a window size of 175
ms and a window step of 10 ms, to catch blinks and other eye-related artifacts. Trial loss averaged
21.5% (Range: 0% - 76.7%). No individuals removed from analyses due to low trial numbers, given
that the comparisons of interest were all within-subject. Artifact-free ERPs were averaged by
stimulus type after subtraction of the 100 ms pre-stimulus baseline. Prior to statistical analyses,
ERPs were digitally filtered with a low-pass filter of 30Hz.

6.3. Results

6.3.1.  Survey Responses

Since we were interested in individual differences in this study rather than group averages, we did
not restrict participation based on handedness. Two of the 40 participants were left handed and 38
were right handed.

In the LEAP-Q, two participants reported that Spanish was their dominant language and 38
participants reported that English was their dominant language. Twenty-nine participants reported
that they acquired English as their first language. One participant reported that French was their first
language, three participants reported that German was their first language, four participants reported
that Spanish was their first language, and three participants reported that another language (not
English, Spanish, French or German) was their first language.

6.3.1.1. English Proficiency

Twenty-nine of the participants reported that they began acquiring English starting in infancy. The
remaining participants reported that they started learning English in childhood, listing the age at
which they began learning English as being between 3 and 13 (mean = 8).

All of the participants reported that their proficiency in speaking, reading, and understanding spoken
English was “very good” or better. When their proficiency ratings were converted to a 0-10 scale,
their average proficiency rating were 9.3 for speaking, 9.5 for understanding spoken language, and
9.5 for reading.
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6.3.1.2. Spanish Proficiency

Twenty of the participants reported some knowledge of Spanish. Four people reported that it was
their first language and that they had acquired Spanish before beginning to learn English. Another
five participants reported that they had acquired both Spanish and English beginning in infancy.
Two participants reported that they began learning Spanish in childhood, and the rest of the
participants began to learn it at age 10 or later.

For the purposes of the modeling work described below, we considered a person to be proficient in
a language if they rated themselves as being “very good” or better at speaking, understanding, or
reading the language in question. For Spanish, there were 10 participants who met this criterion.
When their survey responses were converted to the 0-10 numeric scale, these participants averaged
9.1 for speaking, 9.2 for understanding, and 8.7 for reading proficiency in Spanish.

There were also 10 less proficient participants, who gave themselves average ratings of 2.8 for
speaking Spanish (range = 1-6), 2.6 for understanding spoken Spanish (range = 0-6) and 2.8 for
reading Spanish (range = 1-6).

6.3.1.3. French Proficiency

Thirteen of the participants reported some knowledge of French. Two people reported that it was
their native language one other person reported that they began to learn French at age 2. The rest of
the participants began to learn French at age 10 or later, typically as teenagers.

There were five participants who met our criteria for proficiency in French. These participants had
average proficiency ratings of 8.2 for speaking French (range = 7-9), 8.0 for understanding spoken
French (range = 6-9) and 8.0 for reading French (range = 7-9).

The eight less proficient participants gave themselves average ratings of 2.1 for speaking French
(range = 1-5), 2.3 for understanding spoken French (range = 0-6) and 2.4 for reading French (range
= 0-0).

6.3.1.4. German Proficiency

Three participants reported that German was their first language and that they had started learning it
in infancy. Another six participants reported some knowledge of German. One of those participants
reported that they started learning German at age 4. The rest started learning German at age 10 or
later, typically as teenagers.

Four participants met our criteria for proficiency in German. These participants gave themselves
average ratings of 7.8 for speaking German (range = 7-8), 8.5 for understanding spoken German
(range = 8-9), and 6.8 for reading German (range = 5-8).

The five less proficient participants gave themselves average ratings of 4.0 for speaking German
(range = 1-7), 5.0 for understanding spoken German (range = 2-7) and 3.8 for reading German
(range = 1-7).

6.3.2. Traditional ERP Analyses

The EEG data was cleaned using independent components analysis (ICA) and the artifact rejections
steps described in detail in Appendix A. To calculate the ERPs, bins were created based on every
condition (i.e., English-Spanish translations) and every word as it appeared in every condition. Trials
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in those bins were time-locked to the onset of the stimulus and averaged together to create the

ERPs.

The ERPLAB software was used to plot the grand average ERPs for all of the same-language word
pairs to determine whether our dataset showed traditional N400 repetition effects in each language.
In each case, we compared the same-language repetitions (i.e., English-English repetition) to the
same-language unrelated pairs (i.e., English-English unrelated). The grand average ERPs for
electrode Cz are shown in Figure 14 and the scalp maps for each language, with data averaged from

350-450 ms, are shown in Figure 15.

English-English Repetition ——
English-English Unrelated ——

French-French Repetition ——
French-French Unrelated ——

Spanish-Spanish Repetition ——
Spanish-Spanish Unrelated ——

German-German Repetition ——
German-German Unrelated ——

AT

Figure 14. Grand average ERPs from channel Cz for the same-language repetition and unrelated
pairs in English, Spanish, French and German.
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English-English Repetition Spanish-Spanish Repetition

350-450 ms 350-450 ms

350-450 ms 350-450 ms
English-English Unrelated Spanish-Spanish Unrelated
French-French Repetition German-German Repetition

350-450 ms

o

n

350-450 ms

French-French Unrelated German-German Unrelated

Figure 15. Scalp maps showing the average voltage from 350-450 ms for repeated word pairs and
unrelated word pairs in each language.
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These results illustrate that, on average, we observed N400 repetition effects in all four languages.
Despite taking an unconventional approach of intermixing stimuli from different languages and
intermixing participants with a variety of language backgrounds, these effects show up clearly in the
ERPs for every language.

However, our primary interest lies in looking at individuals and the relationship between their
language proficiency and their patters of ERPs in response to different conditions. As a preliminary
analysis, compared four conditions: English-English repetition, Spanish-English translation, French-
English translation, and German-English translation. For these four bins, the target words were
always the same (the 30 English words in our stimulus set). In addition, the targets were always part
of a semantically related pair. The only difference between the conditions was the language in which
the prime word was presented. We predicted that if participants understood the language in which
the prime words were presented, we would see an N400 repetition effect to the targets in that
condition. If the participant did not understand the language in which the prime words were
presented, we would not expect to see an N400 repetition effect for the target words.

For each participant, we generated scalp maps for these four conditions with the data averaged from
350-450 ms after stimulus onset. As expected, for many participants, a visual comparison of the
scalp maps for these four conditions clearly indicated which languages they understood. Examples
for three participants are shown in Figure 16. The first participant is a monolingual English speaker
and showed an N400 repetition effect only in the English-English repetition condition. The second
participant is proficient in both English and Spanish. They showed N400 repetition effects in
English and Spanish, but not French or German. The third participant is proficient in English and
French. This participant showed N400 repetition effects in English and French, but not Spanish or
German.

This comparison was extremely simple, and the differences were not as visually apparent for all
participants. However, this indicates that with carefully designed stimuli, N400 repetition effects can
be used on the level of individual participants to make predictions about language proficiency.

In future work we will continue to analyze this dataset using a variety of techniques. We will perform
more quantitative analyses of the N400 repetition effects for each participant and assess how many
of our participants produced stable N400 repetition effects that accurately reflect their reported
language proficiency. We will also explore how many trials are required for each participant to
achieve stable effects. Finally, we will apply the ERP decoding technique (cf. Bae & Luck, 2019;
Blankerts, Lemm, Treder, Haufe & Miller, 2011) to this dataset to explore its utility as another
method for assessing language proficiency based on ERPs.
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Figure 16. Examples of scalp maps from three participants with different language backgrounds,
showing the average voltage across the scalp from 350-450 ms.

6.3.3. ERP Modeling Results

As a preliminary pass at modeling the ERP data, we used a simple implementation of a method that
was previously developed for ERP-based biometrics (Armstrong, Ruiz-Blondet, Khalifian, Kurtz, Jin
& Laszlo, 2015). Given the relatively low numbers of French and German speakers in the dataset,
we focused on predicting which participants were proficient in Spanish and which were not, an
approach that mirrored our work with response time data in the behavioral experiments. Using only
one channel (Cz), the maximum absolute value cross-correlation was computed between the
participants averaged ERPs in the following conditions: Spanish-Spanish repetition, Spanish-Spanish
unrelated, Spanish-English translation, Spanish-English unrelated, English-Spanish translation,
English-Spanish unrelated. As a result, each participant had six ranked lists, one for each condition.
Each list had 39 terms, one for each cross-correlation calculation (we removed the comparison of
each participant with themselves).

Next, we computed the average precision for each participant’s list, first assuming that the
participant is not proficient in Spanish, and then assuming that they are proficient in both English
and Spanish. To use terminology from information retrieval studies, an entry on each list was
counted as “relevant” if the participant in question and the participant on that entry of their list have
the same language proficiency. This resulted in a score for each assumption (non-proficient in
Spanish or proficient in Spanish) for each condition (e.g., Spanish-Spanish repetition). For each
condition, we predicted the proficiency of the individual to be the higher of the two average
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precision scores. For each participant, we predicted the proficiency of the individual based on the
majority vote for all conditions.

The result of this simple first-pass analysis was a prediction accuracy of 75% correct. This exceeded
the accuracy of any of the models that were based on behavioral data alone, supporting our
hypothesis that the rich data provided by ERPs is more predictive of language proficiency than
behavioral data alone. In future work, we will continue to develop the model of ERP data, using
more sophisticated modeling techniques, in an effort to further improve the model’s predictive
power.
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7. GENERAL DISCUSSION

Overall, this project demonstrated that there is promise in the idea of using machine learning
methods to assess individual differences between participants. In both behavioral and EEG
experiments, we identified tasks that allowed us to make predictions about individual participants’
proficiency in different languages. Although not all of the tasks we tested were successful and our
prediction accuracy has not yet exceeded 75% correct, we have identified promising avenues for
future research.

We chose to focus on language processing in this project because of the well-characterized ERP
effects related to language processing. When our plans for collection EEG data were postponed due
to the COVID-19 pandemic, we turned to online remote data collection, which necessitated the
development of behavioral tasks that participants could complete without understanding all of the
languages represented in the stimuli. Using word length judgement tasks, we were able to make
reasonably good predictions about which participants were proficient in Spanish and which were
not. Interestingly, semantic priming did not appear to be the driving factor behind the model’s
predictions. Across all of our behavioral experiments, the model performed better when using
response time data from every trial rather than priming effects.

We also explored using Stroop tasks to see if modeling interference effects would allow for more
accurate predictions of language proficiency. However, our online implementations of the Stroop
task on Amazon Mechanical Turk produced data that were too noisy to be useful for modeling
purposes. Furthermore, the proficient Spanish speakers in these tasks did not show Stroop effects
for the Spanish stimuli. It is not clear whether this pattern was due to the implementation of the task
or to the bilingual advantage in resistance to semantic interference effects that has been observed in
some prior studies. In either case, these data were not useful for making predictions about which
participants were proficient in which languages.

Finally, at the end of this project we were able to collect EEG data for the task we had originally
planned to use for this project. Our preliminary analyses show that N400 repetition effects can be
used to make predictions about individual participants’ language proficiency. Initial modeling results
suggest that predictions based on ERPs will be more accurate than predictions based on behavioral
responses alone. In a future project, we will conduct additional analysis of our ERP data from this
experiment and further develop our approach to using machine learning methods to model and
make predictions about individual differences in human cognitive performance. As we continue to
make progress in this area, we aim to bring the large literature on individual differences in cognition
to bear on specific, applied problems. Our continuing work will develop new methods that will
allow us to make these connections, supporting improvements in human performance for specific
individuals in specific settings.
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APPENDIX A.

Identify the correct programs and plug-ins to install to run MATLAB, EEGLAB, and
ERPLAB for data processing

1. MATLAB

a. Request in Nile: https://nile.sandia.gov/services/1370

b. Instructions for installing:

1. https://wiki.sandia.gov/display/CEE9/SRN+-
+MATLAB+and+Simulink+Install+and+ILaunch

2. EEGLAB

a. https://sccn.ucsd.edu/eeglab/downloadtoolbox.php

b. put EEGLAB in your MATLAB path

c. See wiki for help:

1. https://eeglab.org/tutorials /01 Install/Install.html
d. Download ANT extension to correctly load data:
https://sccn.ucsd.edu/eeglab /plugin uploader/plugin list all.ph

3. ERPLAB

a. https://erpinfo.org/erplab

b. put unzipped ERPLAB folder in the EEGLAB ‘plugins’ folder

c. Make sure that you see “EEGLAB: adding "erplab" v8.20 (see >> help

eegplugin_erplab)” when loading EEGLAB to ensure that ERPLAB has been loaded

d. https://github.com/lucklab/erplab/wiki
4. Test data sets to play around with:

a. CORE: https://osf.io/thsqg/files

b. N400 from CORE: https://github.com/lucklab/ERP CORE

5. Download and install binica, which is supposed to be much faster to run than runica because
it is a compiled version of the same script

a.

b.

https://github.com/lucklab/lucklab installBinica

Note: I had a lot of trouble getting this to run. I had to edit the install_binica script
to make sure that my folder containing eeglab was actually in the path

I also had to change an additional line of the icadefs.m script so that all of the .m
files were being searched for in the right folder
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Processing Steps Overview

There are a few steps that need to be done manually, but much of the work can be carried
out in a batch. This is helpful if you want to set the artifact rejection parameters for people
automatically, but then you need to re-run the processing steps to change the bdf, apply a
different filter, etc

The data must be loaded from a cnt file manually.

Then, you can run Script 1 to do initial processing (adding channel locations, rereferencing,
high pass filtering, etc.)

If you ARE doing ICA correction, run scripts 2-4 as described next. If not, skip scripts 2-4
and go right to script 5

o Run scripts 2 & 3 in a row.

o Stop, look at the output of 3, choose which components to reject, and add to the
spreadsheet.

o Run script 4

Run script 5

Perform artifact rejection for each person individually. Start with the baseline thresholds,
change as necessary to catch artifacts, and then add the values that were used to the
appropriate spreadsheets

Run script 6 (artifact rejection), 7 (averaging), 8 (plot individual values)

Update text file of people to include in grand averages, and then run script 9

Update and run script 12, to measure ERP values for statistical analyses

There are 3 different versions of the scripts:

o _lang.m are the baseline scripts, edited from the Luck Lab materials

o _lang fcn.m are the same scripts as above, but executed as functions. This is helpful
if want to run them all together and only want to update the SUB variable
(containing subject numbers) once.

o _lang ica.m are the same as the baseline scripts, but they operate on the ica-
corrected data instead. The main differences are:

® 1. The ICA data is saved in a different folder
= 2. The artifact rejection values should be different; namely, we would only
want to reject blinks that occur during the stimulus presentation period
rather than the whole trial
General EEGLAB / ERPLAB tips:

o All steps can be carried out through the GUIL. However, for reproducibility and
efficiency, we will script our analyses. It is very difficult to move between scripting
and GUI, so it is best to pick one method and stick with it. This is why the start of
each script clears the workspace and restarts EEGLAB frequently — it is really easy
to get the two out of sync .

o If you want to reproduce the steps you carried out in the GUI, you can type eegh
into the command line, and it will produce a history of commands that have been
run. You can *typically* copy/paste these into your script, although sometimes the
set number being referred to is off. Do so with caution.

Processing Steps Detail:
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Manual Steps:

Opening lang data: this is unfortunately a manual process the first time you do it.
1. File —> import data —> using eeglab functions and plugins —> from ANT EEProbe CNT
file

a. 'This will pop up a file explorer window. Navigate to the subject’s folder and click on
the .cnt file

b. I did not choose anything for the interval; this seems to import the entire file just
fine

2. Plot — channel data (scroll)

a. Make sure there is data there. You will likely need to make the scale very large
because the data isn’t filtered (like, 500+). I suggest clicking through the data to
make sure that item codes appear, and that you seem to have ongoing data from all
channels.

3. Save as:

a. #.set (just the subject’s number), in a folder that is also just the subject’s number

b. Click ‘save as’ from EEG lab, and it makes a set file

c. For the sake of the processing script, be sure to save into the subject’s folder (also
just the subject number).

i. Note: you could also save them in the main directory, you will just need to
update the DIR where MATLAB looks for the data in the scripts

d. This is a good time to make sure that the subject’s folder also has a folder called
“graphs” in order to save plots into later

Run script 1 to take care of very basic initial processing (high pass filter, rereference to average
of mastoids, apply channel names, etc)
4. Script 1
a. The channels are labeled with their names but not with their scalp locations. You
need to have the scalp locations paired to make sure that plotting the ICA
components works properly.
b. There are 34 channels
1. there’s just 1 that says HEOG — it is bipolar
ii. There’s also just 1 that says VEOG — it is also bipolar
c. I assume we are using the 32-channel waveguard cap. I wonder if there is a channel
file for that automatically in ERP lab?
1. https://www.ant-neuro.com/products/waveguard/electrode-layouts
i. I found one (in a link below), but it didn’t load correctly. So, I just used the
default suggested electrode layout for the 10-20 system, as Laura suggested.
Because we are not doing source localization, I think this is okay.
o For additional help: https://github.com/lucklab/erplab/wiki/EEG-and-ERP-

Channel-Operations

ICA Prep and Application:

65


https://www.ant-neuro.com/products/waveguard/electrode-layouts
https://github.com/lucklab/erplab/wiki/EEG-and-ERP-Channel-Operations
https://github.com/lucklab/erplab/wiki/EEG-and-ERP-Channel-Operations

5. Script 2:

a.  We will use this to delete segments of EEG that are more than 2000 ms away from a
code (i.e., if the recording was left on during a break and there is a lot of big noise,
this will mess with the creation of ICA components). I will NOT be following the
Luck recommendation of also visually determining “especially noisy”” epochs to
delete. I have commented these sections out. They can be added back in later if
desired.

b. https://github.com/lucklab/erplab/wiki/Continuous-EEG-Preprocessing#delete-
time-segments

c. This article helped me figure out what the different parameter settings mean

6. Script 3:
a. Decompose using ICA
b. Need to install the binica script
1. https://github.com/lucklab /lucklab installBinica
ii. Follow the read-me instructions! I had to make a few of my own edits in
addition to those in the script
1. Path: I had to add eeglab to the path because otherwise the path
command would not work
2. There were 2-3 lines where I had to change the icadefs.m file...all
within the same if/else statement though
c. After this script runs, you need to:
i. Look at the ICA components that were saved into the plot for each person
ii. Update the excel sheet “ICA_Components_N400_lang.xlsx” with the
component(s) to be removed for each person
iii. In the N400 CORE dataset, steve luck has an example of 40 subjects, their
ICA component scalp maps, and which ones they deleted, for reference
7. Script 4: remove ICA components

a. 'This seemed to run without issue

b. Note that if you decide to remove other ICA components, you can just change the
number in the spreadsheet and re-run this script

Pick back up here if you are not doing ICA correction.
8. Script 5

a. Applies the bdf file listed in the script to create bins

b. Imade 2 bdf files: one for the main condition-level bins and one for each word each
time it appeared in a different bin

c. 1did not do any time-locking to the responses OR to the prime words

d. Note that you can make as many bins as you would like! More bins will generally take
longer at this stage and at averaging. You can also re-create the bdf file if you want to
change bins, and re-run this stage forward.

Stop. You will carry out the steps listed in the section using the GUI, add the threshold values to
a spreadsheet, and THEN run the script to process the data.
9. Script 6: artifact rejection
a. This is the most difficult step to do in an automated and repeatable way. The best
solution I can come up with, based on recommendations from Steve Luck’s
materials is:
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. Run all scripts UP TO script 5. Then, run each of the artifact rejection
categories individually. Start by applying the baseline parameters, view the
scroll data to see which trials are marked for rejection for that subject.

. If it looks like that parameter setting does a reasonable job of rejecting trials
it should and not rejecting trials it shouldn’t, and then add those to the excel
file for each subject. THEN, use the parameters set for each subject to delete
the artifacts in an automated way using the script.

iii.  We will not do hand-selection of trials to reject: this is too subjective, time-
consuming, and impossible to describe/repeat. They all must fall within a
filter’s parameters.

I am only using 2 artifact rejection steps to balance the time it takes to go through
every subject’s data so many times and the diminishing returns of running each step.
Steve Luck’s lab suggests having potentially up to 4-5 different steps.

I applied a low pass filter at 30 Hz before artifact rejection. Instructions for that:
EEGLAB —> ERPLAB —> Filter & Frequency tools —> Filters for EEG data ->
Apply. Save the set file to the workspace, then your data during artifact rejection will
look like that data that you are going to be working with later to average, etc.

Pay attention to the scale of the data, and set the same scale for all subjects to
maintain consistency. I work with a scale around 90. The smaller you go, the more
junk you see. The more you zoom out, the better/flatter your data looks. Either way
can be deceptive if you’re not used to one or the other.

It can sometimes be helpful to look through several subjects worth of data before
jumping into artifact rejecting a single participant. This can help get a good idea of
what “good” data looks like, what typical artifacts are, etc.

The two artifact rejection steps I used:

1. Identify CRAP (commonly recorded artifactual potentials) using simple
voltage threshold algorithm

1. How to set in EEGLAB:

a. In EEGLAB window, click: ERPLAB -> Artifact Rejection
in epoched data -> simple voltage threshold

b. Will apply this filter this for all channels except HEOG and
VEOG (available channels — click browse, and then select all
that are not HEOG and VEOG) [1:30]

c. In the selection window, you can see what the parameters are
for marking to reject (default I think it is -200 200)

2. In the window that pops up, epochs that are marked with yellow are
marked to reject based on these thresholds. Your main task is to
scroll through these marks, see if they look reasonable (is it rejecting
most trials that seem like they should be rejected? And not rejecting
trials that look okay?). If so, record these thresholds in the
spreadsheet. do not click/unclick to manually reject or not. The
offending channels will be highlighted in red.

3. Ifit seems like there ate trials that should/not be rejected, close the
window, don’t save the dataset, and re-run with a new threshold to
see how that changes things. If it’s rejecting too much, increase the
numbers so that the filter catches less. If it’s not rejecting enough,
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lower the numbers. Est: move in steps of ~20-30 to see how that
changes things.

4. Note: we will always reject the WHOLE TRIAL, will never drop
single channels.

5. These values get saved into the spreadsheet:
AR_1_Parameters_for_SVT_CRAP_lang.xlsx

a.

Note that in the column Channels, if it says “default”, that
will get changed in script 6 to be channels 1:30. There is just
no good way to include this in excel and have it be read into
matlab correctly.

If you want to set a different default set of channels (i.e., if
you ran with more or fewer electrodes, just change this
parameter in the script! You can make as many as you
want/need).

6. Close the window, and do NOT have ERPLAB save a new set file.
ii. Identify blinks in VEOG using moving window peak-to-peak threshold
1. How to set up in EEGLAB:

a.

b.

oo

In EEGLAB window, click: ERPLAB -> Artifact Rejection
in epoched data -> moving window peak-to-peak threshold
Will apply this filter this for ONLY VEOG (available
channels —select VEOG) [32].
Voltage threshold: 180
1. You can make this bigger or smaller if necessary
Moving window full width: 175
Window step: 10
Test period: -100 900
1. If you are running this step on ICA-corrected data
with blink artifacts removed, you may want to set the
time window to only detect blinks during the stimulus
presentation window. This would help ensure that
trials for which the person did not see the stimulus
are removed.
Note: I did not also do a separate step for eye movements, as
those tended to be picked up by the VEOG as well. For
some people who had super large eye movements, I just
added the HEOG Channel (32) to this step. This is not a
great way to do it! We would rather have those trials detected
in separate steps.

2. Same as above, a scroll window will pop up and show you which
trials were rejected based on this filter. It will not show you which
trials were rejected based on the previously applied filters. If there are
big artifacts, multiple filters will probably catch them. That is okay for
our purposes. The important thing is to look at all trials to make sure
that each filter deletes the trials it should, but does not unnecessarily
delete a lot of extra trials.

3. When you are done, save the values into the spreadsheet
AR_3_Parameters_for_ MW_Blinks_lang.xlsx. Note that for the
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channels, if it says “both” I have created a variable in the script 6 that
changes this to 31 and 32. Again, you can alter this variable if you’d
like. Otherwise, just put the channel number that you used for the
analysis.

10. Script 7: averaging

a.

b.

This step is pretty straightforward—it will create an average for every bin in the
dataset. Trials can belong to multiple bins, so that is not an issue.

It will also create a spreadsheet that desctibes the number of trials accepted/rejected
per bin, and the overall percentage of trials rejected for that individual. This is nice
when reporting the overall values in your methods section. It can also be a good way
to know which people need to be removed from analyses (i.e., if more than 25% of
trials are rejected).

In this script, I have commented out a section to create difference waves. Difference
waves are a great way to compare two conditions directly when all you are interested
in is the difference between conditions/bins rather than the overall morphology of the
waveform. It references a text file that is saved in the workspace to allow the creation
of difference waves.

11. Script 8: plotting

a.

This script is nice because it will create a plot for every person and save it in their
folder. ’'m having a hard time getting MATLAB to actually save the erp plots in a
nice-looking way, but it is a good practice to look at each person’s averages before
you make grand averages to make sure that there aren’t any huge obvious artifacts
that you’ve rejected

It can help at this stage if you’ve made a bin of all trials; that way, you can have one
ERP that contains all of the non-rejected trials to see what they look like

Be sure to make the ‘graphs’ folder before you try to save from the script, otherwise
it will throw you an error.

12. Script 12: measuring ERPs (merp)

a.

The measurements we tend to do our stats on are: mean amplitude from 200-400 ms
at every electrode for each condition for each person—and then we will run
ANOVAs on those.

Use caution when measuring peak amplitude; this can differ dramatically based on
filtering, time window, etc., and is not always most informative.

I created a different merp script for the ML-like analyses, with “allwords” in the title.
It will create 256 output text files (one for every sample), taking a measurement once
every 3.906 ms from -100 to 900 ms, at Cz, for every bin and every person.
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