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Abstract—The integration of power electronics enabled devices
and the high penetration of renewable energy drastically increase
the complexity of power system operation and control. Power
systems are still vulnerable to large-scale blackouts caused by
extreme natural events or man-made attacks. With the recent
development in artificial intelligence technique, machine learning
has shown a processing ability in computational, perceptual and
cognitive intelligence. It is an urgent challenge to integrate the
advanced machine learning technology and large amount of real-
time data from wide area measurement systems and intelligent
electronic devices, in order to effectively enhance power system
resilience and ensure the reliable and secure operation of power
systems. Therefore, this paper aims to systematically review the
existing application of machine learning methods on power sys-
tem resilience enhancement, to expand the interest of researchers
and scholars in this topic, and to jointly promote the application
of artificial intelligence in the field of power systems.

Index Terms—Deep Learning, Machine Learning, Power Sys-
tem Control, Resilience, Restoration

I. INTRODUCTION

HE power system provides the foundation for the normal

operation of transportation, communication, water sup-
ply, and other basic production facilities. As the uncertainties
in power systems have drastically increased [1f] due to renew-
able energy and demand response, power system operation
and planning have become more complex and vulnerable to
extreme weather and natural disasters. Thus, enhancing power
system resilience has become more prominent.

Significant efforts have been devoted to enable power grid
modernization with the enhanced resilience. Most approaches
in the literature are based on physical modeling and analysis,
which has became challenging to handle the increased system
complexity and uncertainty. Artificial Intelligence (AI) has the
capability of self-learning from data with low dependence on
mathematical models of physical systems, which provides an
effective solution to break through the technical challenges.

There are two main driving forces for the application of
Al in power system resilience: 1) the availability of large
datasets from wide area monitoring systems in transmission
system and from sensors and intelligent electronic devices in
distribution system; and 2) the advancement in Al algorithms
and the exponential growth in computational power.

First, the main application of harnessing the influx of data
has been on model validation and state monitoring. These data
provide detailed measurements with geographical information
for system operators to be constantly informed about the health
of power grid. These data also include readings of extreme

weather events, power outages, transient responses, alarms,
which could be useful for resilience enhancement. Moreover,
the synchronous measurement and historical operation data of
power systems contain rich information. In order to improve
the resilience of power systems, it is imperative to analyze
massive data and expose the hidden value in big data, which
requires the implementation of Al technologies.

Secondly, among various Al technologies, such as machine
learning (ML), there have been great breakthroughs in data res-
olution, learning and computing power [2]. Machine learning
methods have been widely applied in power system operation
and planning, such as load and wind speed forecasting, de-
mand response, fault detection, stability assessment, stability
control and restoration [3|]. However, the up-to-date literature
discussing the application of ML techniques in enhancing
power system resilience is limited.

This paper presents a concise and thorough review on the
application of ML in power system resilience enhancement,
including outage prediction, stability assessment, stability con-
trol, and system restoration. The rest of paper is organized
as follows. Section II summarizes different ML models and
algorithms. Sections III to VI provide an overview of various
resilience enhancement problems, different types of data, and
literature review. Sections VII and VIII discuss the outstanding
issues, identify new research trends, and conclude this paper.

II. MACHINE LEARNING MODELS

A ML model transforms its input data into meaningful out-
puts, as a process to learn from exposure to known examples
of inputs and outputs. Considering the recent development in
ML and its application in power systems, three groups of ML
techniques are considered in this paper: traditional machine
learning, deep learning (DL), and reinforcement learning (RL).
Table [l summarizes seven different types of learning with their
corresponding models from the literature.

First, in traditional ML, there are mainly five different
models. 1) Traditional Neural Network: was widely used
until the advent of back-propagation algorithms in the 1980s,
including Multilayer Perceptron (MLP), Artificial Neural Net-
work (ANN), and Extreme Learning Machines (ELM). 2)
Kernel Methods: a class of algorithms for classification, e.g.
Support Vector Machine (SVM), which use the kernel function
to map any two points in the original space to the high-
dimensional space and calculate the distance between them in
the new space, thus simplifying the classification problem. 3)
Tree-Based Methods: usually involve stratifying or segmenting
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the predictor space into multiple regions to classify input
data, including Decision Tree (DT). 4) Probabilistic Modeling:
based on the probability theory, uses mathematical statistics to
build models for solving classification or regression problems,
including Naive Bayes and Logistic Regression. 5) Ensemble
Learning: integrates multiple learning models for better re-
sults, including Adaptive Boosting (AdaBoost) and Random
Forest.

Secondly, DL has made breakthroughs with its excellent
capability of feature extraction. It is a new take on learning
representations from data that puts an emphasis on learning
successive layers of increasingly meaningful representations,
which allows a model to learn all layers of representation
jointly. Major DL models include, Deep Belief Networks
(DBN), Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN), and Long-short Term Memory
(LSTM) Networks.

Thirdly, in RL, an agent receives information about its
environment and learns to choose actions to maximize its
reward. Therefore, the agent can learn self-improvement only
by judging the feedback information generated by its own
experience, with more powerful online self-learning ability
than other ML methods.

Among different applications in power system resilience
enhancement, first two of outage prediction and stability
assessment are classification type of problem, and the last two
of stability control and restoration are decision-making type of
problem. Next, we will review the application of different ML
methods in each of four resilience enhancement problems.

III. POWER OUTAGE PREDICTION AND VULNERABILITY
IDENTIFICATION

A. Problem Identification

The accurate prediction of power outage after disturbances
and vulnerable areas plays an important role in power system
restoration. Due to the uncertainty of various factors such as
weather and vegetation, model-based methods cannot provide

practically accurate results. However, ML methods can better
explore the relationship between various factors related to
power outage. There are several different applications in
outage forecast and vulnerability identification: 1) Feature
extraction for detecting vulnerable areas; 2) Estimation of
outages and their duration based on weather and animals
events; 3) Rapid identification of alarm events based on
historical data; 4) Development of grid hardening model based
on extreme weather events; and 5) Damage prediction and
prevention based on the path and intensity of hurricanes.

B. Data and ML Methods

There are two types of data: spatial and temporal weather
data, and electrical data. 1) Weather data consist of characteris-
tics of extreme events, such as wind speed, path of hurricanes,
lightning strikes, distance of vulnerable areas from electrical
systems to the center of hurricanes, vegetation and animal
behavior. 2) Data associated with the electrical system consist
of historical outage areas, vulnerable system components,
synchrophasor readings, equipment failures, and consumer
social media reports. As these two types of data are correlated,
the major application of ML algorithms is feature extraction.

ML methods used in this application include deep and
ensemble learning, neural network, kernel-based methods, and
probabilistic modeling. Although most research in outage
forecasting use the same type of data with similar problem
formulation, there is a large variety of ML algorithms in the
literature, as referred in Table [I}

C. Literature Review

There are several recent efforts on ML-based power outage
prediction. In [4f], an ensemble learning approach, AdaBoost,
is proposed for estimating weather-caused power outages to
help utilities in outage management and system design. It
shows that the proposed ensemble model can present more
accurate results than regression and neural network models.
Aiming to provide an accurate power outage detection, a
supervised learning model based on temporal and spatial
information is proposed in [5]], and verified using actual tweets
and outage cases. This work can assist utilities to accurately
locate actual outage areas with existing measurement and
communication infrastructures. In [[6f], a 3-dimensional SVM
model is proposed to predict the outage of power system
components caused by extreme events. The inputs for this
model are component state, distance from the center of the
extreme event, and the category of the extreme event. The
comparison shows that the proposed 3-D SVM has better
performance than logistic regression.

Components’ vulnerability is another critical concern for
resilience enhancement. In [7]], a decision boundary to separate
components’ operation status into damaged or normal states
after extreme weather events is obtained via logistic regression.
The key parameters for decision boundary prediction are
hurricane wind speed and the component distance from the
center of hurricane. In [8]], an SVM model is trained to predict
components into damaged or normal condition in response
to a hurricane. The predictions are adopted to determine the
optimal locations of distributed generation units installment
for hardening power system resilience.



Compared to predicting power outage amount after failure,
the prediction of power outage duration is more valuable for
customers. In [9], an RNN model that considers environ-
mental factors, physical factors and engineering knowledge
is proposed to predict the duration of outages during extreme
weather events, with the validation through experiments on a
large collection of outages.

A general framework of ML-based prediction of power
grid vulnerable components is described in [10]. It has been
applied to New York City power gird and demonstrated that
the prediction can be used to assist utilities in preventing grid
failures. An ANN using weather data (hurricane and drought),
load, reserve margin and misoperation rate is proposed in [[11]]
to estimate the vulnerability of concerned areas based on the
conditions of system components, which is tested on Texas
grid. A deep spatial-temporal data-driven model is proposed in
[12] for detecting power system static security margins based
on meteorological and electrical parameters, and tested using
the Guangdong Power grid in China.

IV. STABILITY ASSESSMENT

A. Problem Identification

The stability assessment of power system is to evaluate
transient stability, short term voltage stability, and contingency
screening. The evaluation methods mainly include fault enu-
meration, energy function, and time domain simulation. Dif-
ferent from traditional methods, the Al-based method directly
establishes the mapping between fault data and system stability
categories to assess system stability. In literature, the following
applications have been investigated for stability assessment:
1) Feature extraction to anticipate system states and security
status for multiple contingencies; 2) Uncertainty prediction of
interconnected generators; 3) Acceleration of N-1 contingency
analysis; 4) Identification of stable or unstable operating points
based on systems topology, loading condition and transient
data; 5) Determination of system stability to enhance grid
planning and day-ahead dispatch; 6) Time series classification
for online short-term voltage stability assessment; and 7)
Prediction of post-fault transient stability status.

B. Data and ML Methods

As the stability assessment mostly covers transient re-
sponses, most data are time dependent and extremely dimen-
sional. For example, the transient data before, during and
post fault have been used to predict system stability, enhance
system planning, and address uncertainties. Time series data
are useful to validate models and compare simulations results.
Due to the scale and complexity of power system, it requires
the dimensionality reduction and feature extraction to train
models from time series data for prediction and categorization
with the improved model accuracy. In literature, ML methods
for this application include neural networks, DL, kernel and
tree-based methods, as referred in Table [I}

C. Literature Review

In order to avoid the curse of dimensionality caused by the
increasing scale of modern power grid, a framework of data-
driven Transient Stability Assessment (TSA) is proposed in

[13]. Sixteen variables were chosen as the inputs for SVM to
predict whether the transient stability is stable or unstable.

Recently, several advanced DL models have been applied
on TSA problem. A DL-based system security assessment
method with a novel feature extractor is proposed in [14],
which is validated through multi-case studies on the French
transmission system. The proposed method can be extended
for other applications such as scenario reduction and data
compression. In [15], authors propose a novel framework for
probabilistic coherency prediction of unstable generators, and
operators can adopt different control strategies for different
parts of the network based on the prediction.

In [16]], power flow profiles, including line active and
reactive power flows, bus voltage magnitudes and angles, are
collected as inputs for DBN to assess transient stability. Sim-
ulation results show that the out-performance of SVM-based
method since SVM is sensitive to hyper-parameters. In order
to decrease the computational burden of traditional model-
based N-1 contingency screening, a CNN method is adopted
to calculate AC power flow and operation security assessment
in [17]. The inputs include active/reactive power injection
vector and bus susceptance matrix, and the outputs are bus
voltage magnitude and angle. In [18]], authors developed the
cascaded CNNs to assess the probability of transient stability.
The inputs are rotor angles obtained from various time-domain
simulations. Once the prediction is obtained, the time-domain
simulation (TDS) for N-1 contingencies can be terminated,
which the average simulation time can be shortened.

In order to improve the accuracy of ML-based transient
stability prediction, authors in [19] propose a stacked sparse
autoencoder method. Different from previous approaches, the
inputs are voltage magnitude measurements collected from
the entire fault-on time period. Simulation results based on
the Western States Coordinating Council and Turkish power
systems show a remarkable prediction accuracy and speed. An
offline training and online application framework for TSA has
been proposed in [20]. In the offline process, a core vector
machine is trained based on TDS and applied for TSA based
on PMU data.

In general, balanced classes can benefit a ML method
for regression or classification. However, in power system
operation after faults, there are much more stable cases than
unstable cases, which results in a serious class imbalance
problem that could weaken the prediction accuracy. In order
to mitigate the class skewness, authors in [21]] employ a cost-
sensitive learning idea to impose more bias on unstable cases,
which is verified on the Nordic test system.

V. STABILITY CONTROL

A. Problem Identification

The stability control includes load shedding, generation
control, and emergency management. Compared with previous
two applications, stability control falls into the decision mak-
ing type of problems, which is more applicable for probabilis-
tic modeling and RL. Different applications in stability control
include: 1) Emergency management and optimal control strat-
egy; 2) Adaptive control actions to prevent cascading failures;
3) Automatic generation control schemes; 4) Time series data



transformation for correlation-based feature selection; and 5)
Undervoltage load shedding (UVLS) estimation.

B. Data and ML Methods

The data for stability control consist of system status,
emergency and dynamic data, including operating conditions,
power output, frequency, generator dynamic data such as angle
and speed, voltage and load shedding. These data provide
critical information for decision making, such as the opti-
mization of system’s energy management, control actions, and
economic dispatch. Different ML algorithms, such as DL, RL,
ensemble learning, kernel methods and neural networks, have
been implemented on stability control, as referred in Table
[l Especially, RL algorithms such as Deep Q-Learning and
Multi-agent RL are used to optimize the control decisions and
reduce the negative impact of those decisions on power grid.

C. Literature Review

RL-based stability control can improve the efficiency and
accuracy of traditional model-based methods, which is limited
to different topologies, operating modes and fault types. In
general, RL-based control strategies can be categorized by
three key elements: devices, agents, and observations. The
observations are first implemented on power system and then
transmitted to the agents, who analyze and control the devices
that they are responsible for. In [22]], a framework of RL-based
power system control is proposed.

Several RL methods have been used to solve generator
control problem. A multi-agent RL is integrated with a multi-
objective optimization model to solve the distributed multi-
area generator control problem in [23]. In order to better
balance the power mismatches due to the integration of
large-scale renewable energy sources, a RL-based method
for complementary generation control is designed in [24]]
for interconnected power grids with the high-penetration of
renewable energy sources and electric vehicles. An imitation
learning and a transfer learning process are introduced to
accelerate the learning rate in RL.

Moreover, ML-based methods have been applied for load
shedding to improve system stability. Short-term voltage in-
stability (STVS) has been a challenging problem due to
the increasing penetration of motor loads. The UVLS is an
effective control strategy to protect the system against STVS.
In [25]], the STVS margin and the UVLS amount and location
are estimated by a random subspace-based SVM ensemble.

As power systems become more complex, model-based
methods are limited in scalability and data-driven methods
heavily depend on the data sample. The decrease in the
number and quality of the sample may cause the prediction
accuracy to decrease. Aiming to overcome the shortcomings of
both methods, an integration of model-based and data-driven
method is proposed in [26] for low frequency load shedding
and frequency stability assessment.

Traditional RL methods are limited in performance for
large-scale power system control due to the curse of dimen-
sionality and calculation efficiency. Thus, DRL methods that
integrate the perception of DL and the decision making of
RL have been developed for power system control. In [27], a
DRL method is employed to design the load shedding scheme.

Based on transient voltage measurements, a feature extracted
by CNN is adopted by DRL to achieve UVLS. In [28]], authors
employed DRL for generator dynamic brake and UVLS.

VI. SYSTEM RESTORATION
A. Problem Identification

Similar to stability control, system restoration problems re-
quire the application of decision making algorithms to provide
optimal restoration strategies. Furthermore, prediction type of
algorithms are used to provide consumers with information
about restoration times. In literature, the following topics
in system restoration have been investigated: 1) Estimation
of restoration time; 2) Evaluation of restoration strategies:
prediction of system final configuration and load pickup; and
3) Rapid restoration following catastrophic events.

B. Data and ML Methods

Various data, including smart meter data, generation and
line status, provide information for decision making type
of ML algorithms to obtain an optimal restoration strategy.
Furthermore, in terms of outage prediction, the usage of DL,
neural network and Kernel methods are applied to historical
power outage data due to extreme events.

The application of ML methods in system restoration is
summarized in Table (I} Due to the similar problem formulation
of system restoration and stability control, an integration
of decision-making type of ML methods with optimization
techniques could be beneficial for further advancement of
computational intensive optimization problems.

C. Literature Review

Compared with other three areas of resilience enhancement,
there are only few research work on ML-based power system
restoration. The application is generally limited in a module
during restoration period to overcome the time-consuming
time-domain simulation or complex optimization algorithms.
In [29], a data-driven framework is developed for utilizing
smart meter data to predict the customer-level demand increase
due to cold load pick up. A SVM model is trained for
prediction based on historical outage data.

In order to address the online generator start-up problem
after blackout, authors in [[14] integrate the Monte Carlo tree
search (MCTS) algorithm with the sparse automatic encoder
(SAE) to achieve online decision-making. A large number of
samples can be generated by offline optimization, and SAE can
quickly estimate the maximum power generation capacity of
the unit in a certain state. The estimation can be guided in the
simulation process to improve the MCTS search efficiency. In
[30], a multi-agent based RL method is proposed to optimize
the reliability of a system while considering the trade-off of
load balancing.

VII. CHALLENGES AND OPPORTUNITIES

Although a large number of advanced measurement and ML
technologies have been applied to enhance the resilience of
power grid, the risk of large-scale blackouts still exists. With
more and more stochastic renewable energies connected in
power systems, there are abundant research opportunities in
the area of resiliency enhancement. Suggestions of several



future applications are listed below, which could be either
explored individually or combined in order to achieve a more
resilient power system.

ML input data quality: 1) data-driven scenario generation
can generate useful stochastic data-sets, such as wind and
solar power generation based on history measurements.
This can provide sufficient data to perform a comprehen-
sive evaluation of system resilience considering all pos-
sible scenarios; 2) for ML-based classification problem,
such as stability assessment and vulnerability prediction,
input feature selection and sample generation are critical
to achieve an efficient and accurate model.

Advanced ML algorithms: modern DL methods have
shown powerful performance on image and video pro-
cessing, but with limited application in power system.
It is promising to transfer power system measurements
to images or videos inputs, which could maximize the
capability of advanced DL methods.

Power outage prediction: the prediction of power outage
duration is very beneficial to 1) keep customers informed
with critical updates, and 2) better assist in restoration
planning and resource allocation. The fusion of model-
based and data-driven methods could enable a more
accurate prediction of power outage duration.

System recovery and restoration: there are many opti-
mization problems in the restoration process, including
network reconfiguration and load restoration. It is promis-
ing to combine optimization techniques and RL/DL meth-
ods for online or real-time decision making.
Cyber-physical resilience: considering the interdepen-
dence between power and other critical infrastructure, the
data and inputs from different cyber and physical systems
could be integrated for a resilient cyber-physical system.

VIII. CONCLUSION

The powerful learning ability of ML provides technical
support for online resilience enhancement of power systems
based on real-time data. This paper reviews the research
progress and prominent issues of ML in power system re-
silience applications. The potential of ML-based power system
resilience enhancement is analyzed based on the performance
curve of a system after an event. Furthermore, there is a
numerous amount of topics that require research attention in
order to realize a resilient power system.
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