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ABSTRACT 

This report summarizes the activities performed as part of the Science and Engineering of 
Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) Grand 
Challenge LDRD project.  We provide an overview of the research done in this project, 
including work on cyber emulation, uncertainty quantification, and optimization.  We present 
examples of integrated analyses performed on two case studies:  a network scanning/detection 
study and a malware command and control study.  We highlight the importance of experimental 
workflows and list references of papers and presentations developed under this project.   We 
outline lessons learned and suggestions for future work.    
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ACRONYMS AND DEFINITIONS 

Abbreviation Definition 

ATT&CK 

A framework and knowledge base developed by 
MITRE Corporation for adversary tactics and 
techniques based on real-world observations. 
ATT&CK is used as a foundation for the 
development of specific threat models.   

C2 

Command and control.  Used to refer to 
communications between malware that is installed 
on a compromised network and an Internet-
connected server that is used to issue commands 
to control the malware.  

CRASHOVERRIDE 

A malware framework that attacks RTUs on power 
grid networks; presumed to have been used in the 
2016 cyberattack on the Ukraine power system. 

CSE Computational Science and Engineering 

DC-OPF DC Optimal Power Flow 

Emulytics 
A holistic approach to system emulation and 
analytics:  https://www.sandia.gov/emulytics/ 

EBM Emulation-Based Model 

IDS Intrusion Detection System 

Nmap 
An open-source utility to scan for and find hosts 
and services 

PAO Python Adversarial Optimization 

RTU  Remote Terminal Unit 

SCADA  

Supervisory Control And Data Acquisition system.  
Typically refers to an industrial control system.  In 
our use cases, it is the control system managing 
the power grid network.  

SECURE 

Science and Engineering of Cyber security through 
Uncertainty quantification and Rigorous 
Experimentation 

SNL  Sandia National Laboratories 

Snort An intrusion detection system 

TAMU Texas A&M University 

UQ Uncertainty Quantification 

V&V Verification & Validation 

VM Virtual Machine 
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1. INTRODUCTION 

1.1. Overview and evolution of research  

Securing cyber systems is paramount, but cyber defenders lack evidence-based techniques, which 
employ principled and rigorous measurements and models. The 2016 Federal Cybersecurity R&D 
Strategic Plan [32] states: “Most [cybersecurity] techniques are domain- and context-specific, often not 
validated as mathematically and empirically sound, and rarely consider efficacy and efficiency. Thus, 
the state of the practice consists of heuristic techniques, informal principles and models of presumed 
adversary behavior, and process-oriented metrics.” Such rigorous, principled methods become 
critically important for high-consequence systems that support national security missions. 

Through a lab-wide initiative, Sandia has been investing in research project, SECURE:  Science & 
Engineering of Cyber Security by Uncertainty Quantification and Rigorous Experimentation.  The 
goal of SECURE is to discover and develop techniques for evidence-based cybersecurity, leveraging 
the cyber experimental foundation provided by Emulytics (a scalable, virtualized environment for 
modeling cyber systems) to produce quantitative knowledge concerning a target system, estimate 
cybersecurity risks, and identify defensive strategies. Specifically, we have integrated Emulytics, 
uncertainty quantification and adversarial optimization into workflows, enabling evidence-based risk 
assessment and risk mitigation. 

Our approach is inspired by the success of computational science and engineering (CSE) in our nuclear 
stockpile stewardship programs. Without physical experiments, we assess the readiness of the nuclear 
stockpile by computational experiments.   Can we use similar computational experiments to secure our 
cyber systems?  While this is possible in principle, cyber systems are drastically different than physics-
based systems, requiring novel techniques for rigorous cyber experimentation.   SECURE is built on 
three pillars 1) Emulytics to create detailed, quantitative knowledge concerning a target system; 2) data 
analysis and uncertainty quantification (UQ) techniques that will use information from emulations to 
develop rigorous reduced-order models that capture key features of these systems; and 3) adversarial 
stochastic optimization that will analyze these reduced-order models to optimize cyber defenses, which 
are validated and refined using Emulytics. 

Cybersecurity experimentation on live environments is costly, time consuming, and disruptive (if not 
impossible). Thus, these tests provide sparse knowledge about complex cyber systems, and provide 
limited ability to answer “what if” questions: “What is the best way to defend our network?” “In 
creating defenses, which attacks should concern us as being maximally disruptive to this system?” 
Consequently, enabling technologies for Emulytics in virtualized environments are beginning to 
coalesce to vastly improve our ability to develop, test, and deploy cybersecurity strategies. This 
capability enables an experimental approach to evidence-based cybersecurity, where computational 
experiments provide insight into the dynamics and interactions in a cyber system. In simple systems, 
results of these experiments can directly answer “what if” questions. In complex cyber systems, novel 
statistical methods for UQ are needed to understand complex interactions. Such statistical 
characterizations can then be used to explore alternative defense strategies. 

This report documents the methods, tools, and case studies developed in SECURE and demonstrates 
that cyber experimentation can be the foundation of principled cyber security.  We claim rigorous 
cyber experimentation can be a pillar of science of cyber security to ensure security of high-
consequence cyber systems, just as CSE is now a pillar of science for our nuclear stockpile stewardship. 
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1.2. Research Elements  

A systematic approach to cyber analytics requires efforts from varying disciplines in close 
coordination. We need to understand (a) our predictive capabilities and limitations with emulation, (b) 
how to analyze uncertainty to produce meaningful results for real world systems when there are 
uncertainties concerning the nature of threats, and (c) demonstrate an ability to quantifying confidence 
and value across competing risk management strategies, which lead to our three research elements.   

1.2.1. Research Element 1: Predictive Cyber Emulation 

Developed at Sandia, Emulytics is a state-of-the-art tool set to define cyber-experiment models and 
testbeds at scale for complex, distributed systems. These systems present challenges related to high-
dimensionality, sparseness of data, and expensive forward models. Thus, it is still poorly understood 
how representation fidelity impacts predictive capabilities in real-world cyber systems, especially in 
situations with unknown/unobserved or pervasive threats where only the effects are observable. 
SECURE developed Emulytics methods and mathematical models that scientifically address the 
fidelity of our models and testbeds under deep uncertainty in the threat space. Our in-silico laboratory 
enabled reproducible and replicable results for a variety of testbed states and threats. 

1.2.2. Research Element 2: Uncertainty Quantification 

Our UQ capabilities assess the confidence in computational predictions given a variety of information 
streams, including models, experimental data, boundary conditions, and expert opinion. Cyber systems 
present unique research challenges in terms of model validation due to the presence of discontinuous 
and discrete outputs, the necessity for effective network inference for unknown network structures 
and topologies, and the tractability of high-dimensional structural and model uncertainties. We 
developed a set of capabilities to perform validation and forward propagation of uncertainties—
including configuration parameters and threats—to handle discreteness and discontinuities, dimension 
reduction, and multi-fidelity representations.  

1.2.3.  Research Element 3: Adversarial Optimization 

We developed scalable, general-purpose decision-making capabilities for the risk management of both 
known and unknown cyber threats. The current state-of-the-art in adversarial optimization consists 
of domain specific models and algorithms that generally assume perfect knowledge on the part of the 
adversary, perfect execution of adversarial attacks, simultaneous attack vectors, known outcomes of 
specific attacks, and perfect execution of defender response. The simplest problems are strongly NP-
hard, and there is a current lack of well-established solution procedures even for simplified models. 
We developed a suite of scalable adversarial optimization techniques to address uncertainties such as 
parameter or structural uncertainties in a network.  We identified worst case attackers and attacks that 
are represented as alternatives against which we can devise and evaluate threat mitigation strategies. 
Our main objective was to determine optimal investment and runtime defense strategies for 
interdicting future, possible adversarial threats. We evaluated the performance of proposed optimal 
solutions with emulation. 

1.3. Integration exemplars 

Exemplar problems provide a large R&D project such as SECURE a means to focus research efforts 
onto a useful, visible outcome.  Moreover, it ensures integrations among research elements, which is 
essential and challenging for interdisciplinary efforts, especially when the research elements do not 
have a history of working together. Although there are a number of potential high-consequence cyber 
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systems that SECURE could leverage as an exemplar, the team chose cyber-controlled power systems 
because they are generalizable to a large number of other high consequence systems (including other 
cyber-physical systems, enterprise networks, etc.). The power grid threat scenario considered by 
SECURE starts with an initial infection in a grid operator’s enterprise network, where malware 
establishes a command and control (C2) channel to an Internet server. Next, the malware pivots into 
the grid operator’s control center, where it scans the Supervisory Control and Data Acquisition 
(SCADA) network to identify vulnerable field devices. It then runs the CRASHOVERRIDE malware 
on the field devices, effecting consequences on the power grid (measured in terms of load lost due to 
malware actions). This exemplar drove a number of studies, which are described in detail later in this 
report. 

1.4. Workflows 

A primary product of SECURE is definition of a cyber experimentation workflow that follows the 
principles of a scientific process that relies on computation.  We documented our approach in detail 
in Section 8, and prepared a handbook of cyber experimentation that can guide practitioners through 
the process.  This handbook also outlines the algorithmic challenges behind the process providing a 
useful resource for algorithms developers to enhance the theoretical foundations that support rigorous 
cyber experimentation.    

1.5. Outline of report 

The three thrust areas (Emulytics, Uncertainty Quantification, and Adversarial Optimization) are 
described in Chapters 2-4.  Chapter 5 discusses the overall integrated exemplar with detailed case 
studies on scanning/detection, command and control, and the SCADA network to support the 
exemplar.  The integration of the entire attack chain in a probabilistic approach using a Markov model 
is also discussed in Chapter 5. Chapter 6 discusses the cross-cutting themes of Verification and 
Validation.  Chapter 7 describes the software tools used and/or developed as part of SECURE.  
Chapter 8 presents a recommended cyber experimentation workflow.  Chapter 9 lists project 
accomplishments and Chapter 10 provides a summary of the project and its legacy.  The Appendices 
provide details on the case studies in the exemplar we developed for this research, which is an end-
to-end cyber attack on a SCADA network.  
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2. EMULYTICS THRUST AREA 

The Emulytics team had two roles on the SECURE project; it had a support role and it had a research 
role. In its support role, the SECURE Emulytics team developed exemplar scenarios emulation-based 
models and other models to support the other SECURE teams. In its research role, the Emulytics 
team developed novel R&D in the areas of mathematical modeling of end-to-end threat scenarios and 
cybersecurity scenarios that support the end-to-end analysis. 

2.1. Emulation and Simulation Models 

In its support role, the Emulytics team developed an end-to-end cybersecurity exemplar based on the 
Advanced Persistent Threat 3 (APT-3) scenario1 coupled with the 2016 CRASHOVERRIDE attack 
on the Ukraine power grid. This scenario is depicted in Figure 2-1. Each stage in the exemplar scenario 
provides transition probabilities to an end-to-end Markov model, which is used to determine attacker 
(or defender) success metrics such as probability of successful attack and time to successful attack. 
For some stages (indicated in the figure as blue dots), this information is determined from MITRE 
ATT&CK vendor evaluation data or through other sources (e.g. publications, SME judgment, etc.). 
For other stages (indicated as purple dots) these transition probabilities are determined through 
SECURE modeling, using emulation-based models, mathematical models, and ns-3 discrete event 
simulation models. 

 

Figure 2-1: End-to-end threat scenario based on APT-3 and CRASHOVERRIDE 

 

For the model-informed parts of the threat model the Emulytics team developed minimega and 

SCEPTRE emulation models (see Chapter 7.2 for more detail about minimega and SCEPTRE). 

Minimega was used in the “Command and control” (C2) study to provide a high fidelity, controlled 

environment to assess intrusion detection performance and validate a mathematical model describing 
the stochastic nature of malware C2 detection. Minimega was also used in the “ID vulnerable 

RTUs” study, again to assess intrusion detection performance and validate a mathematical model that 
describes the discovery and detection processes. Finally, SCEPTRE models were developed to couple 
emulation-based models of cyber assets to a synthetic power grid topology depicting a hypothetical 

 
1 https://attack.mitre.org/groups/G0022/ 
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2000-bus model of the Texas power grid. This coupled model was used to assess power grid impacts 
due to CRASHOVERRIDE malware actions. 

More details regarding the C2 and scanning/detection models are found in the Appendix A and 
Appendix B. 

2.2. Markov Models 

The Emulytics team used Markov analysis to assess attacker/defender performance relative to the 
end-to-end scenario, answering questions regarding an attacker’s probability of successfully 
performing a power grid attack, and the time required for an attacker to traverse all of the steps 
required to reach this state. The process starts with translating the end-to-end scenario to a Markov 
state transition diagram, as shown in Figure 2-2.  

 

 

 

Figure 2-2: Translating the end-to-end threat scenario to a Markov state transition diagram 

 

Once the state transition diagram is constructed, the task shifts to populating the model with transition 
probabilities. These transition probabilities can be determined via a number of means: through data 
collected from the MITRE ATT&CK evaluations, through subject matter expert (SME) judgment, or 
through cyber experimentation. In this study, we used cyber experimentation (i.e. emulation-based 
modeling and mathematical modeling) to calculate transition probabilities for both the “Command 
and control” (Markov state 6) and the “ID vulnerable RTUs” (Markov state 8) steps highlighted in 
green in Figure 2-2. These transition probabilities are shown in Table 2-1 and Table 2-2. 

Table 2-1: C2/Markov state 6 transition probabilities (from emulation and mathematical models) 
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Snort condition Timestep 
value 

Detection 
probability 

Next state 
transition 
probability 

Same state 
transition 
probability 

Unstressed 16 s 0.565 0.435 0.0 

Stressed (dropping packets) 16 s 0.372 0.628 0.0 

 

Table 2-2: ID RTUs/Markov state 8 transition probabilities (from emulation and mathematical 
models) 

Attacker 
scanning 
strategy 

Timestep 
value 

Detection 
probability 

Next state 
transition 
probability 

Same state 
transition 
probability 

Fast 30 s 0.69 0.31 0.0 

Slow 61 s 0.70 0.30 0.0 

 

An example of an analysis using the experimental and MITRE ATT&CK transition probabilities is 
shown in Figure 2-3.  

 

Figure 2-3: Markov analysis results showing attacker time to success and success probabilities, 
depending on defender capabilities 

This analysis assumes a set of different defender (blue team) capabilities denoted Bij, depending on 
the specific MITRE ATT&CK tactics employed by the attacker (denoted by subscript i), and the 
defender’s ability to handle increasing levels of ambiguity in attack indications (denoted by subscript 
j, and summarized in Table 2-3). 
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Table 2-3: Defender capabilities 

Defender 
name 

Level of 
ambiguity 

Detection capabilities 

Bi,1 None Indicators of compromise (IOC) 

Bi,2 Medium IOC, specific alerts 

Bi,3 High IOC, specific alerts, general alerts 

 

Figure 2-3 shows the mean time it takes an attacker to transition from state 1 (initial state) to state 9 
(ready to attack state) in the Markov chain on the Y axis, and the steady state probability of the attacker 
residing in state 9 on the X axis. These results are collected into two sets, indicated by the ovals, with 
the yellow oval indicating results if the attacker only needs to discover exactly one RTU to proceed, 
and the red oval indicating results if the attacker needs to discover more than one RTU. In cases where 
the attacker must find more than one RTU in order to continue with its attack, the probability of 
success is lowest and the time to success is longest (as shown in the set surrounded by the red oval). 
This makes intuitive sense, since the criteria are more difficult than in the other set, where the attacker 
only needs to find one RTU. 

 

Within each set there are two arcs: one arc (green and orange points) is for attacker i=1, and the other 
arc (dark red and purple points) is for attacker i=2. Recall that each of these attackers is distinguished 
by the particular MITRE ATT&CK tactics that the attacker employs. As can be seen in Figure 2-3, 
attacker i=1appears to use tactics that do a better job of evading detection than attacker i=2. Details 
regarding the Markov model formulation and the tactics used by both attackers can be found in [34]. 

Within each arc there are two groups. In one group, denoted by triangles and *1 markers, the intrusion 
detection system is stressed by the volume of network data, and is dropping packets as a result. In the 
other group, denoted by squares and *2 markers, the intrusion detection system is able to process 
every packet. As the results show, when the C2 intrusion detection system is stressed and dropping 
packets, the attacker’s time to success decreases and its ready fraction increases, indicating that the 
attacker is more likely to achieve its object more quickly, which makes intuitive sense. 

Within each group points are classified according to defender capability. Orange and purple markers 
represent a defender of Medium capability (Bi,2), and green and dark red markers represent a defender 
of High capability (Bi,3). As Figure 2-3 shows, when the defender’s capability increases from j=2 to 
j=3, the attacker’s time to success increases and its ready fraction decreases, indicating that it becomes 
harder for the attacker to achieve its objectives, which also makes intuitive sense. It should be noted 
that defender j=1 is not shown in this figure because the results are off the scale of the plot at Ready 
Fraction = 1.0, meaning that the attacker is certain to succeed against defender j=1. 

 

2.3. Mathematical Models 

Mathematical models provide useful insights into the dynamics of a cybersecurity scenario, particularly 
during model development. In addition, mathematical models can provide a computationally-efficient 
surrogate for emulation-based modeling, and depending on the analysis question, at sufficient fidelity. 
During the SECURE project two mathematical models were developed: one that evaluated an 
attacker’s ability to communicate to a command and control server on the Internet without detection 
(the C2 step, or step #6 in the Markov model), and another that evaluated an attacker’s ability to 
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identify vulnerable RTUs in a SCADA network without detection (the Identify Vulnerable RTUs step, 
or step #8 in the Markov model). 

The C2 mathematical model was based on a stochastic Poisson arrival model and captured different 
rates for malware C2 traffic (modeled after the Emotet malware) and for benign user background 
traffic. The model considered intrusion detection and considered cases where intrusion detection is 
overwhelmed and unable to process every packet. The model was calibrated using data from an initial 
set of emulation runs and validated against additional runs to assess the mathematical model’s 
predictive value as well as its correlation to emulation (for later use in multi-fidelity studies). The 
validation results, shown in Figure 2-4, show good agreement between the mathematical model results 
and the experimental mean, and the model results fall within the emulation experiments’ 95% 
confidence interval. More detail about the C2 model can be found in [43]. 

 
Figure 2-4: Intrusion detection comparison between C2 mathematical and emulation models 

 

The model for assessing an attacker’s discovery of vulnerable RTUs, and a defender’s ability to detect 
such scanning, was also developed. Unlike the C2 model, the scanning/detection model is a state-
based model that tracks the attacker’s discovery process, as shown in Figure 2-5. Using this discovery 
model (specifically the number of ports discovered vs. time) and a model of the intrusion detection 
system’s alerting algorithm, one can calculate the likelihood of a scan triggering an intrusion detection 
alert. Similar to the C2 model, the scanning/detection model was also validated against emulation 
results, and as shown in Figure 2-6, the mathematical model for node discovery agreed with the 
emulation results relative to the 95% confidence interval. More detail can be found in [44]. 

 



 

21 

 
Figure 2-5: State transition diagram for scanning/detection mathematical model 

 

 
Figure 2-6: Port discovery comparison between mathematical and emulation models 
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2.3.1.  Traffic Generation 

In this study, background traffic was generated with the specific question in mind. This approach, 
tailoring solutions specifically for the experimental goal, can be more effective and efficient. At the 
same time, there is merit in general purpose approaches that can provide a basis to be tailored.  In 
collaboration with Prof. Catalyurek at Georgia Institute of Technology, we investigated temporal 
graph generation.   First. part of the work focused on topology and generating different graphs with 
a specified k-core structure [46]. The second part of the work focused on the temporal structure. 
Specifically, we investigated modeling how frequently the interactions between two entities are 
repeated, changing. Patterns for the frequencies. We proposed how to build a model from a given 
data and generating graphs from a given model. For future work, we plan to extend this work to 
specifically cyber traffic generation [47].   
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3. UNCERTAINTY QUANTIFICATION THRUST AREA 

Uncertainty quantification refers to characterizing input uncertainties and propagating them through 
a model (e.g. a cyber simulation or emulation model) to obtain the resulting uncertainties on the output 
quantities of interest.  Uncertainty analysis can be used to assess the likelihood of typical or extreme 
outputs, determine the mean or median performance, understand the variability in the responses, and 
find probability of failure. A related activity to UQ is sensitivity analysis, which is the identification of 
the most important variables affecting the response.  It involves understanding how model outputs 
vary as the inputs vary. 

In SECURE, we studied three areas supporting UQ.  Dimension reduction identifies the most important 
components of a high-dimensional space, allowing uncertainty analysis to focus only on the important 
components, thus helping tractability.  Discrete polynomials are an example of a surrogate model, which 
serve as a “surrogate” or proxy for the computationally expensive simulation or emulation.  Surrogate 
models are used extensively in UQ and optimization of computational models because they are fast 
to evaluate.  However, the accuracy of the surrogate approximation must be determined.  Multifidelity 
UQ is another area of UQ which attempts to improve efficiency of sampling by incorporating samples 
from both low and high-fidelity models.   

 

3.1. Dimension Reduction  

In monitoring the behavior of physical or emulated computer experiments, the number of certain 
events that occur in a given timeframe can be highly significant. Thus, recording these quantities at 
some frequency (e.g. every second) creates useful time-series data, although that data may be inherently 
stochastic (due to randomness in timings of initializations, small changes in orderings of system calls, 
etc.). The challenge is to understand how much of the inherent randomness observed in time series 
vectors of quantities from cyber experiments can be explained by a few underlying components (i.e. 
reducing the dimensionality of the data while retaining as much of its variability as possible).  

In this work, we examined Principal Component Analysis (PCA) on cyber experiment time-series and 
compared with a discrete version of PCA called XPCA.   We studied XPCA because the Nmap port 
discovery results are discrete values:  1, 2, 3, etc. ports found. We applied PCA and XPCA to several 
datasets involving 1000 replicates of port scanning results.   Our main finding of this work is that PCA 
performs better than XCPA with respect to variance explained but worse with respect to 
reconstruction error on these discrete time series data sets.  This is due to the discrete nature of the 
port discovery time series.  The full results are described in the paper below. 

• “Time Series Dimension Reduction for Surrogate Models of Port Scanning Cyber 
Emulations.” Erin C.S. Acquesta, Laura P. Swiler, and Ali Pinar.  SAND20-10617. 

3.2. Discrete PCE 

Uncertainty quantification is often accomplished via computationally expensive Monte Carlo 
sampling. However, less costly stochastic expansion methods can approximate the functional 
dependence of the simulation response on uncertain model parameters by expansion in a polynomial 
basis.  The polynomials used are tailored to the characterization of the uncertain variables.  Polynomial 
chaos expansion is based on orthogonal polynomials.[10,45]  The goal of PCE is to construct a more 
efficient and accurate estimate of the uncertain response distribution than would be obtained from 
Monte Carlo sampling.   
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In this research, we investigated the use of discrete orthogonal polynomials for constructing 
polynomial chaos expansions to build a response approximation of the results from cyber 
experiments.  One unique feature of the work is the presence of replicates (replicated data points) 
from the cyber emulations.  The references below discuss how samples are chosen in input space and 
presents an analysis of “best practice” approaches for constructing stochastic expansions based on 
data one might obtain from a cyber experiment. 

• Bert J. Debusschere, Gianluca Geraci, John D. Jakeman, Cosmin Safta, and Laura Swiler, 
“Polynomial Chaos Expansions for Discrete Random Variables in Cyber Security 
Emulytics Experiments”, SIAM CSE 2021 presentation, March 1, 2021.  SAND2021-
2270C. 

• Bert J. Debusschere, John Jakeman, Eric Vugrin, Gianluca Geraci, Laura Swiler. 
“Sensitivity Analysis for Cyber Security Scenarios Using Mixed Discrete - Continuous 
Polynomial Approximations.”  Manuscript in preparation.  

  

3.3. Multifidelity UQ  

Often, uncertainty quantification is challenging to perform because of the large number of samples 
that must be run through a cyber model, which can be computationally expensive. However, in multi-
fidelity (MF) uncertainty quantification, many samples from one or more low-fidelity models (such as 
a mathematical model or a network simulator like NS-3) are fused with a few runs of a high-fidelity 
cyber model (e.g. actual software run on real or virtualized hardware) to decrease the estimator 
variance and obtain more reliable statistics. While we may only be able to run a few dozen samples of 
a high-fidelity model, we assume the cost of the low-fidelity model is much cheaper and so we can 
generate many low-fidelity samples for the cost of one high-fidelity model evaluation. The papers [9,8] 
present the theory behind multifidelity UQ.   Additionally, [8] presents several network problems of 
increasing difficulty, and demonstrates that the multifidelity estimator demonstrated increased 
efficiency with respect to Monte Carlo sampling.  

The MF estimator for a mean of response Q can be built starting from the single fidelity MC for the 
high-fidelity model and adding a weighted unbiased term to it: 
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(𝑖)𝑁
𝑖=1 + 𝛼 (

1

𝑁
∑ 𝑄𝑙𝑜𝑤

(𝑖)𝑁
𝑖=1 −

1

𝑟×N
∑ 𝑄𝑙𝑜𝑤

(𝑗)𝑟×𝑁
𝑗=1 )  (3.1) 

𝑄𝑀𝐹̂ = 𝑄ℎ𝑖𝑔ℎ̂ + αΔ𝑙𝑜𝑤̂, 

 

In Equation 3.1, N is the number of high-fidelity runs, and r is the oversampling ratio that allows for 
a maximization of the efficiency of the estimator by defining the optimal number of low-fidelity model 
evaluations as (N+1) x r.  The first term on the right-hand side is just the usual mean estimate from 
the high-fidelity model.  The second term is the low fidelity estimate “corrected” so that it is unbiased.  
Note that the second term has many more samples:  this contributes to the variance reduction of the 

MF estimator.  For a MF estimator with a single low-fidelity model, the coefficient  
is obtained in closed form as function of the correlation and estimated variance of the two models. 
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For the application of MF UQ to the command and control study that is discussed in Chapter 5, we 
started with 40 evaluations of the high-fidelity model, which in this case was a minimega emulation.  

The low-fidelity model in the C2 case was a mathematical model.  For C2, Equation 3.1 becomes 
Equation 3.2:  

 

𝑄𝑀𝐹̂ =
1

40
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1
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∑ 𝑄𝑚𝑎𝑡ℎ

(𝑖)40
𝑖=1 −

1

2171×40
∑ 𝑄𝑚𝑎𝑡ℎ

(𝑗)2171×40
𝑗=1 )  3.2 

𝑄𝑀𝐹̂ = 𝑄𝑚𝑖𝑛𝑖𝑚𝑒𝑔𝑎
̂ +αΔ𝑚𝑎𝑡ℎ̂, 

 

Given the particular cost ratios and correlations of this problem, further described in Appendix A, the 
estimate of the mean number of alerts (Q) as a function of three time point (t=1, 5, and 10 seconds) 
is shown in Table 3-1. Comparison between the single fidelity MC estimator based on minimega 

data only and the MF estimator based on the additional math model evaluations.   Note that two 
estimates of the mean response are provided:  one based on 40 minimega runs and one based on a 

multifidelity estimate that incorporated both the minimega runs and the math model runs as shown 

in Equation 3.2.  In Table 3-1, it is possible to observe how, for larger times, the value of the  
coefficient approaches 1, which corresponds to the case of perfect correlation and ratio one between 
the variances of the two models. 

Table 3-1. Comparison between the single fidelity MC estimator based on minimega data only and 

the MF estimator based on the additional math model evaluations. 

 
 

 

3.4. Multifidelity Estimation with Replicates 

A unique feature of the cyber emulations that we studied under SECURE was their stochastic nature.  
That is, if we ran the emulation model multiple times with the same configuration, we would obtain 
results that were different.  This can be due to timing and ordering of processes that are spawned as 
well as differences in the host or VM state, for example.  This means that the quantity of interest listed 
as Q above needs to be evaluated some number of times (replicas) for each experiment to obtain a 
mean value under the stochastic conditions.   

In this section, we consider the possibility to optimize the number of replicas in a low-fidelity model 
in order to speed-up the multifidelity computations.  We might want to perform fewer replicas of the 
high-fidelity model than the low-fidelity model, for example, because of the higher cost.  This section 
examines the ramifications of these replicas.   

This scenario is based on the C2 example described in the previous section and Appendix A, although 
we here consider that the mathematical model, serving as low-fidelity model, is indeed characterized 
by the distribution of the number of alerts at each time step.  Therefore, for each time location, we 
can query the model to obtain a single prediction/replica. In the limit of infinite number of replicas, 
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the average would correspond to the deterministic mean value predicted by the model, but, in all other 
cases, the predicted value will show a stochastic error with respect to the true system’s response. We 
consider the cost of a replica to be 0.001s, while the runtime for minimega, the high-fidelity, is 

unchanged at 162s. We note here that, as done in the previous scenario, minimega will need the 

average of 10 replicas to get a quantity of interest. 

The effect of the stochastic noise in the low-fidelity is to decrease the correlation between the high- 
and low-fidelity. The true correlation can be recovered only in the limit of infinite replicas, however 
increasing the number of replicas for the low-fidelity increases, linearly, the computational cost. 

We want to address here the following question: given an assigned high-fidelity model and dataset, 
what is the best configuration for the low-fidelity for both the number of UQ parameters and replicas? 
In this context, the best estimator is the one that minimizes the estimator variance with the minimum 
cost. 

As a first result we show the optimal cost ratio between a MF UQ estimator and a single fidelity 
estimator, i.e. minimega simulation only for different time steps. 

 

Figure 3-1. Cost ratio between MF estimator and MC as a function of the low-fidelity number of 
replicas 

 
In Figure 3-1, the cost ratio is reported for all time instances considered in the study, 1, 5 and 10 
seconds, as a function of the number of replicas for the low-fidelity. We observe that the minimum 
cost ratio, which indicates the maximum estimator efficiency, is obtained with a number of replicas 
between 100 and 300 replicas. The most restrictive case occurs for the time instant 1s, which requires 
274 replicas. We will use this number of replicas for the estimators at all time instances. 

We consider and compare several estimators in the numerical experiment. All of them use the 40 
minimega runs, each with 10 replicas, and they differ only for how the low-fidelity correction is 

handled:  
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•  The first MF estimator uses the optimal number of replicas (274) and an oversampling 
ratio of 421. The total cost of the estimator is then equivalent to 43 high-fidelity runs; 

•  The second MF estimator has a total equivalent cost of 43 high-fidelity simulations, by 
design in order to be compared with the previous one, but it uses only 10 replicas for both 
high and low-fidelity. This estimator corresponds to a MF estimator that does not exploit 
the optimization in the low-fidelity replicas. In order the keep total cost constant, the 
oversampling ratio is much larger (11536.8), since for each UQ samples only 10 replicas 
are evaluated, compared to 274 replicas of the previous estimator; 

•  The MC estimator with an equivalent cost of 43 high-fidelity samples is estimated in order 
to provide a fair comparison among estimators; 

•  The MF that we used in the previous section is also reported for comparison, although 
that estimator has a lower equivalent computational cost of 41.  

 

 
Figure 3-2. Confidence intervals for several multifidelity estimators with and without optimization 

of the number of low-fidelity replicas 

 
In Figure 3-2, all the multifidelity estimators, with and without optimization of the number of low-
fidelity replicas, are reported. As expected, the MF estimator with the optimal number of low-fidelity 
replicas, green lines, is the one with the smallest confidence interval, whereas the estimators with 10 
low-fidelity replicas have a similar confidence interval. 

The comparison is even more clear by considering the data reported in Table 3-2. 
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Table 3-2.  MF estimator data for the cases with and without optimization of the low-fidelity 
replicas. 

 
In Table 3-2, the colors of the estimators correspond to the color of the lines in Figure 3-2.  In addition 
to the oversampling factor and the number of low-fidelity replicas, we also report the variance 
reduction, for all the MF estimators, achieved at the different time instances. The best MF estimator, 
which uses the low-fidelity optimization, achieved a variance reduction ranging from 70% to 97%, 
approximately. On the contrary, without low-fidelity replicas optimization, the variance reduction 
achieved ranges from 60% to 95%. We further note here that the optimal performance of the 
estimators is indeed obtained for the time instance of 1s, which also corresponds to the time for which 
the 274 replicas is optimal. Later time steps, would require, in principle, lower number of replicas, 
although we have fixed the number of 274 replicas to reflect the practical constraint behind the 
selection of an optimal allocation for different quantities of interest.    

This study of replicas in multifidelity uncertainty estimation is a unique contribution that has been 
supported by the SECURE project.   
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4. ADVERSARIAL OPTIMIZATION 

Another focus of the SECURE project was the use of adversarial optimization to model the 
interactions between cyber defenders and attackers. Standard optimization models aim to identify a 
solution that maximizes or minimizes a given function, subject to a collection of mathematical 
constraints. For example, consider the DC optimal power flow (DC-OPF) model. This model, which 
approximates AC power flow, identifies how a grid should be operated to eliminate or minimize unmet 
demand. Since electric power grids are governed by the laws of physics and capacities of equipment 
like lines and generators, a collection of constraints must be satisfied by any solution to ensure that it 
is feasible. 

Adversarial optimization extends standard optimization methods by embedding optimization models 
within other optimization models. For example, consider a version of the DC-OPF model which we 
refer to as the "N-k DC-OPF" problem. In this example, we assume that there is a power grid with N 
components and an attacker who can disable k of those components. The attacker aims to find the 
set of components to attack so that unmet demand or load shed on the system is maximized. However, 
once the grid operator observes the attack, they will update how their system is being operated to 
minimize load shed. This problem belongs to class of adversarial optimization problems called bi-level 
programs, since there is an outer optimization problem, an attacker who wants to maximize load shed, 
and an inner optimization problem, a grid operator who wants to mitigate the effect of an attack until 
the affected components can be restored. 

These methods are of particular interest to SECURE because they provide a means of finding worst-
case attacks against a system. In the case of the N-k DC-OFP problem, these methods give a bound 
on the maximum amount of load shed that can be caused for an attack of a given size. Without these 
methods, some type of sampling-based or heuristic search would be required to find bad attacks, but 
it would be difficult to prove that the worst-case attack had been found. The bi-level framework can 
also be extended to consider tri-level level problems. One use of this class of problems is to determine 
how to best protect a system. In the tri-level case, a defender could first determine how a system 
should be protected (the first level). The attacker will then find the worst-case attack against the 
fortified system (the second level) knowing that the grid operator will try to minimize the impact of 
the attack (the third level). 

The adversarial optimization work on SECURE had two main focuses. The first was developing a 
toolkit to express and solve adversarial optimization problems. While there is a large body of published 
literature on adversarial optimization algorithms, there are few general-purpose tools available to write 
and solve these types of problems. In practice, this means that applying these methods typically 
requires custom solutions. To address this, the SECURE team developed the Python Adversarial 
Optimization (PAO) toolkit, which contains both a modeling language for expressing adversarial 
problems and algorithms for solving them (see Section 7.4 for addition details). The second focus was 
on developing adversarial optimization models to address cyber-physical security problems. The 
remainder of this section describes each of the adversarial optimization models developed under 
SECURE. 

4.1. N-k Worst Case Analysis 

The first optimization capability developed under SECURE was the N-k DC-OPF problem described 
above. To begin, we implemented an existing version of this model [30]. A key feature of this model 
is that it does not make any assumptions about how the k components on the system are disabled. 
For example, it could be from either a physical or a cyber-attack. This is useful because this capability 
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can be used to bound the damage that can be caused for a wide variety of threats, without having to 
model the specific threat. Figure 4-1 shows an example of this for the IEEE-118 bus test network. In 
this example, we consider the load shed that is caused by attacking a given number of buses. We 
assume that when a bus is attacked the associated loads, generators, and lines are disabled. We compare 
random attacks generated via one thousand Monte Carlo samples (the box-and-whisker plots) to the 
worst-case attacks found using the N-k model (red dots). Observe that the worst-case attacks can be 
significantly more severe than even the tails of the randomly generated attack distributions. 

 
Figure 4-1. Comparison of load shed for the IEEE-118 bus system for random and worst-case 
attacks. 
 

SECURE utilized the N-k model in the following two research thrusts: 

First, it was coupled with a cyber-physical emulation to better understand the impact of a 
CrashOverride malware attack on a notional electric system. More details on this work can be found 
in the paper below:  

A. Castillo, B. Arguello, G. Cruz and L. Swiler, "Cyber-Physical Emulation and Optimization of 
Worst-Case Cyber Attacks on the Power Grid," 2019 Resilience Week (RWS), 2019, pp. 14-18, doi: 
10.1109/RWS47064.2019.8971996. SAND2019-12468C. 

Second, we explored a simplified version of the model to speed up solution times. While the N-k 
model is a powerful capability for finding worst-case attacks, it can be difficult to solve for large attack 
budgets, even for networks with a few hundred buses. This difficulty further increases with the number 
of buses in the network. To address this challenge, the simplified version of the model removes a 
complicating constraint (Ohm’s law) from the DC-OPF model, reducing it to capacitated network 
flow. Solving the N-k model without this constraint gives a lower bound on the worst-case attack and 
leads to a significant improvement in performance. Analysis and experiments showed that in certain 
regimes, the results from the simplified model are often as good or nearly as good as the original DC-
OPF formulation. The details of this approach can be found in the reference below: 
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E.S. Johnson and S.S. Dey, "A scalable lower bound for the worst-case relay attack problem on the 
transmission grid," in first round of revisions at INFORMS Journal on Computing, available at 
arXiv.2105.02801, SAND2021-10211. 

4.2. Network segmentation 

As an extension of the N-k DC-OPF model, the power grid cyber-physical network segmentation 
model was developed under SECURE to improve grid resiliency to SCADA cyber-attacks. The model 
assumes a three-tier SCADA system where an attacker must start attacks from balancing authorities, 
the first tier. Attacks must then pivot to control centers to reach substations. Once a substation has 
been infiltrated, all grid components at that substation are disabled by the attacker to damage the grid 
and cause loss of power to customers. A network designer can segment networks within each tier a 
pre-determined number of times to restrict possible attack vectors, with anticipation of the worst 
possible attack on the segmented SCADA system. See Figure 4-2 for an example of a cyber-physical 
system before and after network segmentation, considering a worst-case attack where an attacker is 
limited to attacking 5 subnets. 

 

Figure 4-2. Worst-case attack before network segmentation and after network segmentation. 
Segmentation allowances: 1 extra balancing authority segment, 2 extra control center segments, 5 

extra substations segments. Attacker budget: 5 subnets 

 

In this example of optimal network segmentation, we show a baseline SCADA configuration for the 
9-bus WSCC test system along with an optimally segmented network. Before network segmentation, 
there is one balancing authority network, two control center networks, and 9 substation networks.  An 
attacker with five units of attack budget can cause a load shed of 315 MW–the full system load. After 
network segmentation, the balancing authority is segmented into two subnets, each control center is 
segmented into two subnets, and five substations are each segmented into two subnets. This 
configuration only allows an attacker with the same attack budget to shed 215 MW of load. 

Network segmentation under worst-case attacks is performed via a mixed-integer trilevel interdiction 
model. The three players in this model are a network designer, an attacker, and a grid operator who 
runs a DC-OPF model to redispatch the grid after a worst-case attack on the optimally segmented 
SCADA system.  The model was solved using bilevel branch-and-bound, as well as a trilevel cut-
generation approach. Algorithm details and results can be viewed in the following publications 

Before Segmentation After Segmentation

Optimal network 
segmentation saved 90 

MW of load shed after 
worst-case attack
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B Arguello and E.S. Johnson and J.L. Gearhart, "A Trilevel Model for Segmentation of the Power 
Transmission Grid Cyber Network", submitted to IEEE systems, available at arXiv.2108.10958. 
SAND2021-10208O. 

4.3. Optimal Sensor Placement 

The sensor placement optimization model was developed to identify where sensors should be placed 
in a cyber network to maximize the probability that attacks are detected, knowing that an attacker will 
aim to evade detection after the sensors are placed. This model uses attack graphs, derived from the 
threat modeling work described in Section 2.2, as the "game board" where attackers and defenders 
interact. An example of an attack graph is shown in Figure 4-3.  In this example, the boxes represent 
the state that an attacker is in (e.g. root permission on a SCADA workstation) and the arcs represent 
attacks (actions) that are taken to move between states. The example shown below is an attack graph 
for the WECC 9 bus power system. In this example, attacks begin at the remote station (at the top) 
and terminate at one or more of the nine PLCs associated with the nine buses on the power system. 

Each arc has a baseline probability of detecting an attack and a modified detection probability if the 
defender chooses to install (or upgrade) a sensor on that arc. The attacker wants to cause at least some 
amount of load shed. To achieve this, they determine which PLCs to attack and how to attack them, 
in a manner that obtains this load shed with the lowest probability of being detected. Note that attacks 
can take the form of a path if only one PLC is attacked or a tree if multiple PLCs are attacked. The 
defender has a budget for the number of sensors that can be installed. Their goal is to determine how 
to place sensors to maximize the probability that the attack is detected. 

In the example shown below, we assume that the attacker wants to cause at least 125MW of load shed, 
about 40 percent of the total load. Using notional baseline detection probabilities, they can achieve 
this about 72 percent of the time. If seven new sensors can be installed, the evasion probability is 
reduced to 24 percent. The orange hourglass icons show the locations where the optimization model 
chose to place sensors in this example. After the sensors are placed, the attacker identifies the best 
attack that is available to them. This is shown by the arcs highlighted in red in Figure 4-3. In this case 
the attacker can achieve the target load shed by attacking PLC 5. However, doing so requires them to 
pass by two new sensor installations, in addition to the existing detection capabilities. 
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Figure 4-3. Notional attack graph for the WECC 9 bus system. Optimal placement decisions for a 
budget of 7 and a load shed threshold of 1.25MW are shown by orange hourglass icons. The red 

arrows show the path that has the highest probability of evading detection (24 percent). 

 
This model is formulated as a bi-level problem where the defender first installs sensors and the attack 
finds the best available attack. In the case described above where the attackers want to cause a specified 
amount of load shed, there is an implicit third stage for the DC-OPF problem. Unlike the previous 
examples, the attack is not looking to maximize load shed. Instead, they want to ensure that the grid 
operator cannot avoid shedding the specified amount of load. 

4.4. Robust Optimization 

SECURE also developed methods to incorporate robustness into multi-level adversarial optimization 
problems. In their standard form, optimization models use constraints that are parameterized by 
known values. However, in practice uncertainties can exist in the parameters used by the model. When 
distributional information on these parameters is available, approaches like stochastic programming 
can be used to account for decision making under uncertainty. When distributional information is not 
available, robust optimization methods offer an alternative approach for dealing with uncertainty. 
Robust optimization assumes that parameters are not fixed but are instead constrained to take values 
within some uncertainty set. When robust models are solved, the solutions that are generated are 
guaranteed to perform well over all parameter values in the uncertainty set. 

Under SECURE, these approaches were applied in the context of sensor placement on networks, such 
as the attack graphs shown in the previous section. In a cyber setting, the sensor model focuses on 
placing sensors to maximize the probability of detecting an attack. As sensors are placed, the attacker 
may alter their path to minimize the probability that they are detected. One potential issue with this 
model is that the sensors that are placed on the network might not perform as expected or advertised. 
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Given this, the robust version of this model helps ensure that the placement decisions guard against 
some amount of sensor failure or degradation.  
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5. END-TO-END EXEMPLAR  

The SECURE project developed an end-to-end cybersecurity exemplar based on the Advanced 
Persistent Threat 3 (APT-3) scenario2 coupled with the 2016 CRASHOVERRIDE attack on the 
Ukraine power grid. This scenario is depicted in Figure 5-1. For each stage in the exemplar scenario 
that the team evaluated experimentally (depicted as purple dots in the arrow), the SECURE team 
selected a set of attack tactics (e.g. from the MITRE ATT&CK database) that were representative of 
real attack tactics, amenable to experimental implementation, but generalizable to other tactics. For 
other stages, the SECURE team either used experimental data from the MITRE ATT&CK 
evaluations or used data from the literature and/or subject matter judgment. In all cases, data from 
each stage informed transition probabilities for a Markov model in order to assess end-to-end 
performance [see Section 2.2].  

 

 
Figure 5-1: End-to-end threat scenario based on APT-3 and CRASHOVERRIDE 

 

5.1. Case Study:  Command and Control (C2) 

After initial infection, the next attack step in the exemplar scenario is focused on Command and 
Control (C2). In this step, an attacker aims to establish a malicious C2 channel between one or more 
infected hosts and a C2 server. To counter this, the system defender uses an intrusion detection system 
(IDS) to monitor network traffic and detect malicious C2 traffic, as illustrated in Figure 5-2. In this 
example there is both benign (green) and malicious (red) traffic on the network. While there are many 
types of C2 malware and IDS systems that could be considered, we selected Emotet and SNORT, 
respectively, for this case study. 

 
2 https://attack.mitre.org/groups/G0022/ 
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Figure 5-2: Notional C2 exemplar system representation. 

 
The aim of this case study was to use the SECURE experimentation methodology to rigorously 
analyze this system. Specifically, we were interested in understanding the number of alerts (both true 
and false positives) that would be generated by the IDS over time under various conditions and 
settings. To accomplish this, we developed an emulation model and a mathematical model for this 
system. The emulation model provided a high-fidelity representation but was costly to run since it 
requires specialized computing resources and runs in real time. The math model has lower-fidelity but 
can be run significantly faster than the emulation model, using desktop computing resources. Next, 
validation and verification activities were performed on these models to build confidence in the results 
they provide. Finally, analysis was performed using these models to understand which parameters have 
the largest impact on this system. A key focus of the analysis was optimally using both models in 
tandem to efficiently perform the analysis, while ensuring the accuracy of the results. See Appendix A 
for a detailed description of this study. 

 

5.2. Case Study:  Scanning/Detection 

In the APT-3 threat scenario, when an attacker gains a presence on a control center machine (e.g. an 
engineering workstation), the attacker performs reconnaissance on the SCADA network to identify 
vulnerable RTUs that are susceptible to CRASHOVERRIDE attack. In this case, without loss of 
generality, the SECURE team selected Nmap as the network reconnaissance tool because it is simple, 
open source, and generalizable to other scanning tools. Using Nmap, the attacker probes the network 
address space to 1) find active IP addresses, and 2) determine which ports are open on those nodes. 
In most of our scenarios, as shown in Figure 5-3, the attacker resides on a control center workstation 
and runs Nmap to identify 24 RTUs across eight substations. Vulnerable RTUs are modeled as nodes 
with an open Secure Shell (SSH) port and secure nodes are those whose SSH port is closed or those 
who do not respond to Nmap probes. In addition, the scenario includes a Snort intrusion detection 
node that is capable of seeing all traffic traversing the router that connects the control center to the 
substations and is configured with the ‘sfportscan’ Snort rule to detect scanning activity. 
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Figure 5-3: Typical SCADA network topology for scanning and detection 

 
More detail regarding the scanning/detection scenario may be found in [44] and [41] as well as 
Appendix B. 

5.3. Case Study:  SCADA Network/Power Grid Impacts 

The CRASHOVERRIDE malware was integrated into the SCEPTRE emulation environment to 
study the impact of CRASH actions on portions of the synthetic Texas 2000-bus power grid. 
SCEPTRE is an ideal environment for these kinds of studies because it couples emulated cyber models 
(using minimega) with simulated power grid models (using PowerWorld). In addition, tools were 

developed to import combined grid/cyber topologies from Texas A&M University into SCEPTRE, 
which eliminates the need to generate these topologies by hand.  

One study considered a scenario where a portion of the synthetic Texas 2000-bus power grid is 
controlled by a subset of nine substations and 49 field devices, as shown in Figure 5-4. In this study, 
an initial network topology and subnetting scheme was provided to the SECURE optimization team 
to determine a worst-case attack for a given attack budget. (“Attack budget” is the number of 
subnetworks an attacker can subvert.) The resulting worst-case attack identifies the substations that 
are subverted, and the SCEPTRE emulation team assumes that all field devices within the substation 
are compromised.  

Next the optimization team computes a new subnetting topology that optimally minimizes the effect 
of a worst-case attacker and calculates the resulting worst-case attack. The new topology is imported 
back into SCEPTRE (using VLANs, firewall rules, or other configurations to enforce the new 
subnetting scheme), along with the new worst-case attack. 
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Figure 5-4: Optimal SCADA network segmentation workflow 

 

In both cases, the topologies and worst-case attacks are evaluated by coupling Dakota to Scorch, using 
Dakota to specify CRASHOVERRIDE parameters. 100 combinations of CRASH parameters are 
evaluated in both cases, and the results are shown in Figure 5-5. The figure clearly shows a difference 
between the original segmentation scheme (in orange) and the optimal segmentation scheme (in blue). 
Future work should quantify this difference for additional attacker budgets and at larger scales and 
validate the optimality of the computed solutions. 

 

Figure 5-5: Results showing benefit of optimal segmentation 
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The SECURE team also conducted an uncertainty quantification (UQ) study to forward propagate 
uncertainty in the number of RTUs affected by CRASHOVERRIDE to uncertainty in the resulting 
loss of load. The study was conducted on the topology described above, with 49 field devices and the 
synthetic 2000-bus Texas power grid model, but with no network segmentation.  

The results, shown in Figure 5-6, show a general trend toward increasing load loss with increasing 
numbers of RTUs targeted by CRASH, as indicated by the mean and median regression lines indicated 
in red and green, respectively. However, there is a significant amount of variance, particularly for 
smaller groups of RTUs, which makes good predictive regression difficult. However, if one were to 
consider regression on higher quantiles of results (say, 95th quantile), one would see less variance 
around these regressions, as shown in the top regression line in the figure. Furthermore, a 95th quantile 
estimation carries more meaning in terms of identifying, predicting, and planning for worst-case or 
tail events. 

 

Figure 5-6: UQ study, showing regression for 95th percentile (representing worst-case tail 
outcomes) 

 

More details about the SCADA network and power grid studies can be found in Appendix C. 

5.4. Integrating the various pieces:  Markov Model 

 

The Markov threat modeling technique described in Section 2.2 provides a useful end-to-end analysis 
of attacker success relative to defender effectiveness. One example of the utility of Markov threat 
analysis was demonstrated midway in the SECURE project, when the Markov model shown in Figure 

95th quantile = 440.18+27.10*RTUs
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5-7 was constructed using SME- and literature-informed transition probabilities. (At the time, the 
SECURE project had little experimental data to populate in the Markov model.) 

 

 

Figure 5-7: Baseline Markov model of APT-3 threat scenario 

 

The baseline model in Figure 5-7 was analyzed to understand the effect of varying defender capabilities 
(modeled in the transition probabilities) on the attacker’s ability to reach the Ready state (state 9), 
where the attacker could inflict power grid damage. For example, Figure 5-8 shows how a doubling in 
the Ready state detection probability, from 0.005 in panel (a) to 0.01 in panel (b), dramatically reduces 
the time the attacker can spend in that state. This effect is more comprehensively shown in panel (c). 
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Figure 5-8: Change in Ready state (state 9) residence probability vs. Ready state detection 
probability 

 
Next, the team considered a sensitivity analysis in order to understand where increases in detection 
capability provide the greatest benefit (to the defender). A similar analysis of Ready state residence 
time versus detection probability for all states was conducted, and the results are shown Figure 5-9. 
 

 

Figure 5-9: Sensitivity analysis, showing greatest benefit in Ready state detection relative to 
detection in other states 

 
Panel (a) shows similar reductions in an attacker’s Ready state residence time as the defender’s 
detection probability increases for each state, except for detection in the Ready state (which shows a 
dramatic decrease). Panel (b) shows more detail for detection in the Ready state, relative to the other 
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states. From these results, a decision maker can conclude that it would be most cost-effective to focus 
defender resources on detection in the Ready state, i.e. detecting malware presence in the SCADA 
network. 

More detail regarding Markov threat analysis and using it to guide defensive investments can be found 
in [34]. 
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6. CROSS-CUT:  VERIFICATION AND VALIDATION 

Verification and validation (V&V) are critical activities performed when using computational 
simulations for the purposes of predicting high-consequence events.  Under SECURE, we took V&V 
concepts from the physics and engineering community [5,14,29,31,1,2,33] and applied them to cyber 
emulation experiments.  This is summarized below.  

6.1. Verification 

An important part of using emulation is verifying whether the emulation environment is working as 
intended, also called verification [22,33]. Part of verification involves software testing and quality 
assurance. A unique aspect of cyber emulation involves assessing the performance of the emulation 
running in the virtualized environment and determining whether there are sufficient resources to 
properly handle the scenario that is being run. If there are not, the virtualized components may 
produce experimental artifacts and behavior that result in the experimental outcomes being 
unrepresentative or incorrect.  

Under SECURE, we focused on determining whether there are sufficient virtualized resources to 
support the emulation experiment and whether we can identify metrics that indicate when the results 
of an emulation experiment are unreliable. This work is inspired by previous work by Heller described 
in [13], but whereas Heller’s work was with the Mininet experimentation environment (which uses 
Linux namespaces to model individual nodes), we considered virtual machines running in 
minimega. Furthermore, where Heller considered invariants (e.g. network timing characteristics that 

change predictably with changing experimental conditions), we consider a wider variety of host and 
virtual machine metrics. We refer to these metrics as telemetry metrics, following the usage of this 
phrase from Google [11], Microsoft [26], Intel [23] and others [38]. These companies use telemetry in 
the context of network monitoring metrics (e.g. monitoring traffic to and from VMs, including 
number and size of packets; round trip time for TCP flows), virtual machine resource usage (e.g. 
number of system processes, thread counts, memory committed and available, physical disk read and 
write time), and application monitoring (e.g. CPU utilization as a measure of performance).  

We studied telemetry metrics relating to the performance of virtual machines which are used in a cyber 
emulation study and the physical machine hosting that study. We ran studies with two different 
scenarios under various levels of over-subscribed resources.[42] This first study was performed on a 
scanning/detection scenario, and then on a command and control scenario.  Both studies involved 
minimega which was deployed on experiments with increasing numbers of namespaces using a 

single physical node on a High Performance Computing (HPC) system at SNL. A namespace is an 
experiment that is isolated in its own VLAN or set of VLANs.  Each namespace has its own copy of 
each machine in the scenario networked through a unique set of VLANs.  Thus, we were able to run 
multiple namespaces (e.g. namespaces = 1, 2, 4, ,5 …50) in parallel while the experiments remained 
isolated within their own namespace, effectively increasing the load on the HPC node in a well 
controlled fashion.   

For the scanning/detection scenario, we found that the alert time distribution changed in a discernible 
way as a function of namespace:  the distribution of alert times was much wider with a higher mean 
for namespaces 20, 33, and 50 [42].  We also found that the telemetry metrics of system load and 
throughput can be used to filter out replicates that had statistically different results than the one-
namespace results which were used as the gold standard.  The same telemetry metrics of system load 
and stolen cycles were also used to identify oversubscription problems in the C2 scenario.   
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6.2. Validation 

Validation addresses the question of adequacy of the model:  is the model accurate enough and 
appropriate to be used for a prediction? [33]   Typically, validation involves the comparison of the 
model with observational or experimental data using statistical metrics called validation metrics [33, 
25].  

Under SECURE, we performed two research studies relating to validation:  

1. Reproducibility.   The main question in reproducibility is can one reproduce cyber emulation 
results generated on one testbed (e.g. Sandia’s minimega emulation running on an HPC 

using the SCORCH orchestration tool) on another testbed (e.g. Texas A&M University’s 
CORE testbed running in their Resilient Energy Systems Laboratory, RESLab).  The two 
emulation environments are built on fundamentally different technology:  minimega uses 

VMs but CORE uses containers.    

Reproducible cyber experimentation is essential to assure valid, unbiased results across cyber testbeds. 
Even minor differences in setup, configuration, and testbed components can have an impact on the 
experiments, and thus, reproducibility of results.  In collaboration with TAMU, we performed a set 
of reproducibility experiments for the scanning/detection scenario.[41]  The details are in the paper 
presented at the 14th Cyber Security Experimentation and Test workshop[41]; we note that as part of 
this study, we examined four statistical metrics:  the t-test, the Kolmogorov-Smirnov (K-S) test, the 
area metric, and the Relative Hausdorff metric.   

The following summarizes the lessons learned from the reproducibility study:  

• Even after providing a comprehensive writeup and details of the experiment, both teams 
still required significant coordination to reproduce the experiment. 

• It can be challenging to determine if small differences are due to differences in the 
hardware/emulation platform OR due to an implementation detail that is not correctly 
reproduced. Therefore, subject matter expertise is critical. 

• Statistical tests and ensembles of replicate results can help in this comparison as they 
provide some estimate of the uncertainty inherent in the results on one platform. 

• We recommend public repositories for experimental artifacts.  One example is the 
SEARCCH project:   Sharing Expertise and Artifacts for Reuse through Cybersecurity 
Community Hub project (https://searcch.cyberexperimentation.org/  ) 

• We need consensus in artifacts and how testbed technologies use them 

• We need to understand differences between common cyber experimentation platforms, 
to account for these differences when determining whether an experiment is reproduced 

• Appropriate distance metrics should be developed, depending on the experiment 
question and objective 
 

2. Physical validation.  

We conducted two sets of physical validation experiments. The first set used physical nodes in a HPC 
cluster at Sandia, and compared the experimental results from these physical nodes with the results 
from the minimega virtual machine testbed. These results compared very well, in part because both 

experiments used the exact same operating systems. Therefore, we conduced a subsequent series of 
physical validation experiments on physical hardware at TAMU’s RESLab.  For these experiments, 
we again used the scanning/detection scenario and used the same statistical metrics we found most 

https://searcch.cyberexperimentation.org/
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useful from the reproducibility study:  the K-S test and the area metric.  Instead of comparing 
minimega to CORE (reproducibility study) or physical HPC nodes, we compared minimega to 

RESLab. The RESLab experiments involved physical RTUs modeling the open ports in  the 
scanning/detection scenario, but used CORE emulation components modeling the rest.  Thus, it was 
not a purely physical system used for validation, but the physical units were modeling the most 
important components of interest:  the open, vulnerable RTUs.  The preliminary results from this 
exercise, which involved 1000 runs from TAMU and 1000 runs from SNL under a variety of 
conditions, show that we can validate Sandia’s minimega emulation against a hybrid physical system 

at TAMU.[40] 
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7. CROSS-CUT:  TOOLS 

Several software tools were developed and/or used as part of the SECURE project.  A short 
description of these is given below.  

7.1. SCORCH 

SCORCH is a software tool that manages the deployment of cyber experiments.  The key benefits of 
SCORCH are that 1) it will configure the experiments and 2) it is able to collect and store the outputs, 
thereby speeding up analysis time and reducing manual error. SCORCH is an automated scenario 
orchestration framework for emulation-based models that also utilizes minimega.  

7.2. Minimega/SCEPTRE 

minimega (https://minimega.org/) is an open source distributed Virtual Machine (VM) 

management tool used for launching and managing virtual machines locally or across a cluster [4]. 
minimega is fast, easy to deploy, and can scale to run on massive clusters with virtually no setup. It 

is scalable and able to support studying both small and very large VM networks. minimega is 

designed to give you low-level control of all the fine details when it comes to setting up and running 
VMs and has now been pulled into other tools, e.g. SCEPTRE, to take care of the low-level features 
of spinning up VMs. 

SCEPTRE is an application that uses an underlying network emulation and analytics platform to 
model, simulate, emulate, test, and validate control system security and process simulations. 
Traditionally, tools and techniques for simulating and emulating control system field devices have 
been limited because the physical processes being monitored and controlled are omitted. SCEPTRE 
leverages proven technologies and techniques to integrate the end device and process simulations, 
with control hardware-in-the-loop (HIL), providing an integrated system capable of representing 
realistic responses in a physical process as events occur in the control system, and vice versa. 
SCEPTRE is a proven control system environment platform, having been fielded for many R&D 
applications, operational joint tests, and exercises supporting testing, training, validation, and mission 
rehearsal.  

SCEPTRE is comprised of simulated control system devices, such as remote terminal units (RTUs), 
programmable logic controllers (PLCs), protection relays, and simulated processes, such as electric 
power transmission systems, refinery processes, and pipelines. The simulated control system devices 
are capable of communicating over Internet Protocol (IP) networks using standard SCADA protocols 
such as Modbus, DNP3, IEC 61850, and others. SCEPTRE also includes support for HIL, wherein 
real field devices under study (i.e. a specific model of PLC) can be connected to and interact with the 
physical process being simulated. This allows the user to include high fidelity systems where they are 
needed without sacrificing scalability. SCEPTRE provides an analysis capability for assessing and 
improving the cyber security of control systems used in the energy sector and DoD. The SCEPTRE 
platform provides an environment where hardware and software upgrades and new mitigations can 
be evaluated before installation in an operational environment. 

7.3. Elasticsearch 

Elasticsearch ( https://www.elastic.co/elasticsearch/ ) is an open source tool for storing large 
amounts of data in a highly searchable way that is amenable to a variety of data types and structures. 
Under SECURE, Elasticsearch was leveraged for data storage and retrieval during the Validation and 
Verification studies.  These studies required large amounts of data to be stored, sorted, and easily 

https://minimega.org/
https://www.elastic.co/elasticsearch/
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searchable. Using Elasticsearch allowed for storage of varied data types and structures, easy conversion 
of data to and from JSON format, and simple querying. 

7.4. PAO/Pyomo 

PAO is a Python-based package for Adversarial Optimization. The goal of this package is to provide 
a general modeling and analysis capability for bilevel, trilevel and other multilevel optimization forms 
that express adversarial dynamics. Many planning situations involve the analysis of a hierarchy of 
decision-makers with competing objectives. For example, the cyber-grid applications developed in the 
SECURE Grand Challenge consider the behavior of attackers and defenders, where defenders wish 
to protect their cyber infrastructure and execute power grid operations to meet expected energy 
demands, and attackers wish to maximally disrupt grid operations.  Thus, these cyber-grid applications 
can be naturally modeled as bi-level and tri-level optimization problems, where decision-makers need 
to account for the behavior of adversaries at a lower-level. 

SECURE researchers developed tailored optimization solutions for cyber-grid applications using the 
Pyomo modeling environment, which are analyzed with commercial and open source optimization 
solvers.  Concurrently, PAO was developed to automate these tailored solutions to future applications 
that share similar structure.  PAO extends the modeling concepts in the Pyomo algebraic modeling 
language to express problems with an intuitive algebraic syntax. Additionally, PAO supports compact 
problem representations that simplifies the implementation of solvers for bilevel, trilevel and other 
multilevel optimization problems. PAO currently includes four solver interfaces that are applicable to 
different classes of adversarial optimization problems. 

• Pyomo 

o GitHub repository: https://github.com/Pyomo/pyomo 

o Online documentation: https://pyomo.readthedocs.io/en/latest/ 

o Bynum, M., G. Hackebeil, W. E. Hart, C. Laird, B. Nicholson, J. Siirola, J.-P. 

Watson, and D. L. Woodruff. (2021) Pyomo: Optimization Modeling in Python. 

3rd. Springer. 

• PAO 

o GitHub repository: https://github.com/or-fusion/pao 

o Online documentation: https://pao.readthedocs.io/en/latest/ 

o Hart, W. E., A. Castillo, E. S. Johnson, and S. Punla-Green (2021). PAO 1.0: A 

Python Library for Adversarial Optimization. Tech. rep. SAND 2021–6720. 

Sandia National Laboratories. 

7.5. Dakota 

Dakota is a suite of iterative mathematical and statistical methods that interface to computational 
models or simulations ( https://dakota.sandia.gov ).  Dakota’s goal is to make parametric explorations 
of models practical to support design, analysis, or test cycles.  Dakota is an open-source software 
toolkit and has algorithms to enable design exploration, model calibration, risk analysis, and 
quantification of margins and uncertainty with computational models.  Dakota seeks to enhance the 
use of computational models with a variety of iterative analyses (running the model multiple times 
depending on the objective of the study) so that models may be used not just for single-point solutions, 
but also achieve broader impact in the areas of credible prediction and optimal design.    

https://github.com/Pyomo/pyomo
https://pyomo.readthedocs.io/en/latest/
https://github.com/or-fusion/pao
https://pao.readthedocs.io/en/latest/
https://dakota.sandia.gov/


 

48 

Related to SECURE, there is an extensive suite of uncertainty analysis methods in Dakota, including 
a variety of sampling methods (Monte Carlo, Latin Hypercube Sampling, quasi-Monte Carlo methods, 
design of experiments, fractional and full factorial designs), sensitivity analysis methods, reliability 
methods, stochastic expansion methods such as polynomial chaos, epistemic uncertainty approaches 
including interval analysis and Dempster-Shafer evidence calculations, and Bayesian calibration 
methods, and multifidelity uncertainty methods. These are summarized in:   

o L. P. Swiler, B.M. Adams, and M.S. Eldred, “Dakota: Bridging Advanced Scalable UQ 
Algorithms with Production Deployment.” In Springer Handbook on Uncertainty 
Quantification, Ghanem R., Higdon D., Owhadi H. (eds) (2015). 
https://doi.org/10.1007/978-3-319-11259-6_52-1. 
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8. RECOMMENDED WORKFLOW 

Given the variety of tools that can be used to assess cyber systems, experimentalists might be tempted 
to dive right into a study. However, an analysis rigorous enough for use in high-consequence cyber 
systems requires a carefully thought-out experimental design. This section describes the 
experimentation workflow developed and used by the SECURE research team while conducting its 
studies of power grid cyber effects. 

The workflow presented in this document is primarily focused on emulation testbed modeling, 
although it may be employed for other types of cyber models. Thus, to facilitate the discussion, we 
define the following terms:   

• Cyber Model – a generic term that can apply to any methods (or combinations of 

methods) used to assess cyber systems 

• Cyber Testbed - the hardware platform and software framework used to run a cyber 

model or combination of cyber models.  

• Physical Model - Cyber models that run real software on a representative hardware 

platform to model the actual system in full fidelity. 

• Emulation Model – Cyber models that run real software in real time on a computing 

cluster, using hardware abstractions such as virtual machines and/or containers to 

represent individual nodes, and virtual networking technologies such as Virtual Local 

Area Networks (VLANS) to interconnect VMs or containers. 

• Emulation Testbed – (also known as “virtual testbed”) Resources (e.g. computing cluster, 

virtualization technologies, and experimentation/orchestration software) used to 

instantiate emulation models. 

• Simulation Model – primarily discrete event simulators (e.g. OMNET++ [18] or ns-3 

[21]), which run abstract representations of software and hardware. These models can 

run faster than real time. 

• Mathematical Model – Mathematical formulas that capture dynamic and/or steady-state 

values of a quantity of interest and can be solved using mathematical analysis tools 

such as Matlab or Mathematica. 

Figure 8-1 shows a spectrum of testbeds employed in the modeling of cyber systems and associated 
tradeoffs in terms of realism vs. cost.  
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Figure 8-1. Spectrum of cyber model fidelity, ranging from actual system to simulation testbeds. 

 

Because the topic of experimental design for emulation models is an active area of investigation in the 
cyber-security research community, several frameworks have been developed to help facilitate sound 
experimental practices and generate reproducible results.  For example, the DEWs (Distributed 
Experiment Workflows) [27] provide generic descriptive language to encode the scenario and topology 
for an experiment.  Likewise, DARPA's National Cyber Range [7], Emulab [37], and DETER [28] are 
cyber testbeds that can be used for research and experimentation on networks. Reference [25] also 
examines how platform variations affect emulation models, using carefully structured experiments and 
statistical analysis. Although these tools exist and work well for experiments, methods for using them 
rigorously to provide comprehensive evidence to answer questions about high-consequence systems 
have not been developed and characterized. For example, reproducibility in cyber experiments remains 
a challenge, due to small timeframes, implementation differences, and differences in platform 
configurations. Therefore, to facilitate the achievement of reproducible, unbiased results and methods 
that may be readily applied in other contexts (e.g. on other cyber testbeds with differences in operating 
systems, software and hardware, kernels, system resources, etc.), the SECURE project developed the 
following workflow to help guide future studies, as shown in Figure 8-2. We acknowledge that this 
workflow was designed for an experimental model (to study sensitivity and uncertainty analysis) but 
note that it can be applied more generally to generate ensembles of runs that can support optimization 
studies or other studies.  Further detail and a description of SECURE’s experimental design (especially 
the design of experimental runs) can be found in "Design of Experiments for Cyber Emulation" [39]. 
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Figure 8-2.  Recommended workflow for cyber modeling suggested by the SECURE project 

 
When performing cyber modeling experiments, we recommend that the following workflow be 
used: 

1. Clearly articulate the question. Be specific. (e.g. "If an attacker uses port scans and a given 

configuration of the Nmap scanning tool, how many alerts will our intrusion detection 

software identify in a 60-second window?" NOT "Will our intrusion detection software work 

efficiently?") If possible, identify what statistics are of interest (e.g. the average number of 

alerts in a time window, the probability that there will be more than 10 alerts, or the full 

distribution of alerts).  

 
2. Define the approach that best answers the question. Scope the problem, identify inputs 

and outputs, and consider your modeling options. 

a. Identify your requirements (e.g. fidelity, scale, size of parameter space, desired variance 

in outputs, time per replicate, number of replicates). Most cyber models, require 

multiple runs per model configuration setting (i.e. multiple replicates), because there 

is inherent variability or stochastic behavior in each replicate, due to small timing 

differences, ordering of various events happening on the system, etc.   

b. Choose your modeling domain(s) (e.g. emulation, mathematical), noting that your 
choice of modeling domain should depend on the model requirements identified in 
Step 2(a), as shown in Figure 8-2. For example, if a large scale is required, scalable 
modeling technologies (e.g. emulation, simulation, or mathematical modeling) would 

Step 1. Articulate the 
question

Step 2. Define the 
approach

Step 3. Develop the model

Step 5. Define and run the 
experiment

Step 6. Analyze the 
experimental results

Step 7.  Document

Step 4. Validate the model
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be more practical than physical testbed modeling; however, if high fidelity is 
required, then physical or emulation testbed modeling would be more effective than 
simulation or mathematical modeling. Of course, a combination of technologies can 
be used to maximize outcomes (e.g. a coupled model or models at multiple levels of 
detail in a multifidelity modeling study).  

c. Define how each modeling activity contributes to the answer. 

 
3. Develop the model, depending on the modeling domains. The developmental activities 

for different types of models will vary by model:  

• Mathematical models develop equations that will be solved, typically as a function of time 

(e.g. traffic might be modeled with a Poisson arrival rate distribution to calculate the 

expected number of packets arriving in a particular time step).  

• Simulation models use discrete event network simulators, which often have simulation 

examples and model libraries (e.g. with different routing protocols, network traffic, 

etc.) that can be used as building blocks; however, the configuration of the simulation 

must typically be customized for the scenario of interest to the study.   

• Emulation models bear some similarity to simulated models, but the actual software 

components and virtualized hardware components (e.g. routers, servers, workstations, 

NIC cards, etc.) must be explicitly identified. The emulation platform we used for 

SECURE was minimega [17].  Below we specify steps that are fairly general and 

need to be customized for a particular emulation platform and experiment. 

i. Define or import the topology 

ii. Develop the application components, if needed 

iii. Define the experimental behaviors that will be investigated 

iv. Develop a data collection strategy 

v. Set up and verify the configuration 

vi. Obtain the resources to run the model 

 
4. Validate the model. Compare the model to higher fidelity representations and/or to 

independently developed models of similar fidelity, to assess the degree of agreement between 

your model and the benchmark. Choose the comparison metrics that best expose the statistics 

of interest (e.g. differences due to virtual machine artifacts). A high-fidelity model (e.g. 

simulation or emulation) should ideally be benchmarked against an actual physical system, as 

in [24]. However, lower-fidelity models (e.g. mathematical) might be benchmarked against 

higher-fidelity models. Any large and/or systemic differences between your modeled data and 

the benchmark data should be investigated before the experiment progresses. 

At present, there is no standard for benchmarking cyber emulations; the current best-practice is a 
hierarchical validation, which occurs in stages, as shown in Figure 8-3. First, the components and/or 
attack steps are validated individually, then larger groupings or components are validated, and then 
the entire system is validated. Figure 8-3 depicts the validation of a cyber-attack model, but a similar 
validation process could be applied to any kind of performance issue or behavior.   
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Figure 8-3.  Hierarchical validation for a cyber system, starting with validation of individual attack 

steps at the bottom and proceeding to validation of the full attack at the top.  

 
5. Define and run the experiment. Define the inputs/outputs for your model and specify them 

in a configuration file for an experimental orchestrator (e.g. Scorch or Dakota [16]).   Choose 

an experimental design that will produce an appropriate list of input/output parameter 

settings:  

a. Define the inputs that will be varied in the experiment and specify the distribution of 

possible values for each input (e.g. discrete bandwidth values, uniformly distributed traffic 

generation rates between upper/lower bounds, etc.).   Each input that will be varied in the 

experiment should have a specification of its distribution in a parametric or empirical 

distribution form. 

b. Define the outputs that will be extracted from the experiment. These outputs can take the 

form of detailed experimental data (e.g. packet captures and logfiles sent to an 

Elasticsearch/Logstash/Kibana (ELK) data collection node [19]), and/or summarized 

experimental outputs calculated within the experiment as it executes (e.g. the time at which 

an intrusion detection system generates an alert).  

c. Develop the experimental design. This can be done in a variety of ways [39, 36].  If the 

number of inputs is small (1-5) and each input has only 2 or 3 levels, a full factorial design 

can be run involving all combinations of input parameter levels.  If the inputs are specified 

with continuous distributions, Monte Carlo sampling or more efficient alternatives such 

as Latin Hypercube sampling or quasi-Monte-Carlo space-filling methods can be used to 
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generate samples.  In each of these cases, the number of samples should typically be at 

least 10x the number of input parameters. 

d. Define the number of replicates per design point. At each point in the experimental design 

space (e.g. input 1 is at value A, input 2 is at value B, etc.), it may be necessary to run the 

model multiple times, where each model run is a replicate.  If the model is deterministic 

(e.g. running at one setting of parameter inputs always gives the same results), then it is 

only necessary to run the model once per parameter setting.  However, many cyber models 

are stochastic due to slight variations in timings of processes and order of operation 

executions. In this case, one setting of the parameter inputs should be run with replicates 

to obtain statistics on the response for that parameter setting.   

e. Run the model.  Once the experimental design is identified, it produces a list of input 

parameter settings at which the cyber model should be run. This list is given to the 

experiment orchestrator (e.g. Scorch, Dakota). The next step is to run the cyber model at 

these settings. For each parameter setting, the model may be run once or some number of 

times (multiple replicates), depending on whether the model is deterministic or stochastic. 

 
6. Analyze the experimental results. Use your data to generate a table (as an Excel spreadsheet, 

a data structure in a Python analysis script, a table in Elasticsearch, a table in Minitab [20], etc.) 

and organize the results (where the rows are each run of the cyber model, the first set of 

columns are the input parameters, and the second set of columns are the outputs) for further 

analysis. 

a. Verify results. Depending on the experimental design and the available benchmarks, 

choose the most appropriate validation method (e.g. scatterplots of inputs v. outputs, 

calculation of basic statistics on the outputs, etc.).  

i. (Optional) If the values obtained in Step 6(a) are orders of magnitude different 

from the benchmark values, revisit Step 3. 

b. Assess convergence 

i. (Optional) If the values obtained in Step 6(b) are orders of magnitude different 

from the benchmark values, revisit Step 3. 

c. Determine conclusions/insights. Employ statistical analysis methods appropriate to the 

experimental design (e.g. main effects analysis for full factorial designs with discrete input 

levels, correlation analysis, standardized regression analysis, and/or Sobol variance-based 

indices for designs with continuous input distributions). Statistical tests (e.g. t-tests or 

Kolmogorov-Smirnov tests) can be used to compare the results gathered from different 

tests, scenarios, platforms, or emulators.  

 
7. Document.  Document your results comprehensively so that they will be fully useful and 

reproducible for subsequent researchers.    

a. Question(s). List the question(s) addressed in the study. 

b. Methods. Define each step of the methodology, with enough detail that the study can be 

easily replicated. 

c. Analysis. Describe the analyses performed. 

d. Results. Report the complete results, including tables of raw data. 

e. Conclusions/Insights. Highlight the conclusions/insights gained from the study.  
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9. PROJECT METRICS 

9.1. Publications & Presentations 

A list of publications and presentations from the SECURE project is listed below.  One special item 
that we wish to highlight:  a web-based Handbook has been developed to archive some of the research 
concepts and results of SECURE.  The Handbook was created in part from feedback from the 
External Advisory Board.  A goal of the Handbook is to highlight the SECURE project and results to 
the external community.  

9.1.1. Papers completed   

1. Castillo, B. Arguello, G. Cruz and L. Swiler, "Cyber-Physical Emulation and Optimization of 
Worst-Case Cyber Attacks on the Power Grid," 2019 Resilience Week (RWS), 2019, pp. 14-18, 
doi: 10.1109/RWS47064.2019.8971996. SAND 2019-12468 C. 

2. Pinar, Z. Benz, A. Castillo, W. Hart, L. Swiler, T. Tarman, “SECURE: An Evidence-based Approach 
to Cyber Experimentation,”  IEEE Resilience 
Week:  https://ieeexplore.ieee.org/document/8971976 ,  

3. Vugrin, J. Cruz, C. Reedy, T. Tarman, and A. Pinar “Cyber Threat Modeling and Validation: 
Port Scanning and Detection,”  Proceedings of the 7th Annual Hot Topics in the Science of Security 
(HoTSoS) Symposium. 

4. Geraci, G., L.P. Swiler, J. Crussell, B. Debusschere. "Exploration of Multifidelity approaches for 
Uncertainty Quantification in network applications."  Proceedings of 3rd International Conference on 
Uncertainty Quantification in Computational Sciences and Engineering in Crete, Greece, June 2019. 
SAND2019-3274C. 

5. Acquesta, L. P. Swiler, and A. Pinar ,“Time Series Dimension Reduction for Surrogate Models 
of Port Scanning Cyber Emulations.”.  SAND20-10617. 

6. Geraci, G., Crussell, J., Swiler, L.P. and Debusschere, B. J.  “Exploration of Multifidelity UQ 
Sampling Strategies for Computer Network Applications.” International Journal of Uncertainty 
Quantification, 2021. Pp. 93-118. DOI: 10.1615/Int.J.UncertaintyQuantification.2021033774. 
SAND2021-1221J. 

7. Gabert, A. Pınar, and U. Catalyurek, “Computing Hierarchical Dense Structures on Dynamic 
Graph Streams,”ACM Intl. Conf. on Web Search and Data Mining (WSDM) 2021 

8. Tarman, T. Rollins, L.P. Swiler, J. Cruz, E. Vugrin, H. Huang, A. Sahu, P. Wlazlo, A. Goulart, 
and K. Davis. Comparing reproduced cyber experimentation studies across different emulation 
testbeds.  USENIX 14th Cyber Security Experimentation and Test (CSET) Workshop. Aug. 9, 
2021.  SAND2021-5696C. 

9. Gabert, Y. Ozkaya, K. Sancak, A. Pinar, and U. Catalyurek, “ElGA: Elastic and Scalable 
Dynamic Graph Analysis,” to appear in SC’21. 

10. Gabert, A. Pinar, and U. Catalyurek, “Shared-Memory Scalable k-Core Maintenance on Dynamic 
Graphs and Hypergraphs,” in IEEE ParSocial 2021. 

11. Ozkaya, F. Balın, A. Pınar, and U. C ̧atalyu ̈rek,  SSGG: A scalable graph  generation algorithm 
to sample over a given shell distribution in Proc. IPDPS Workshops, W. Graph Learning. 

12. Stickland, J. Li, T.D. Tarman, L.P. Swiler. Uncertainty Quantification in Cyber Experimentation.  
SAND2021-5710C. 

13. Malashkhia, L. Swiler, A. Pinar, and Y. Wang, “A Robust Control Scheme for Time Delay 
Switch Attacks,” to appear in AMSec'21 Workshop on Additive Manufacturing (3D Printing) 
Security. 

https://ieeexplore.ieee.org/document/8971976
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9.1.2. Papers under review  

1. Arguello and E. Johnson and J. Gearhart, "A Trilevel Model for Segmentation of the 
Power Transmission Grid Cyber Network.”  SAND 2021-10208 O, submitted for journal 
publication, also available as arXiv.2108.10958: https://arxiv.org/abs/2108.10958 and  
Optimization Online: http://www.optimization-online.org/DB_HTML/2021/08/8562.html  

2. Outkin, T. Schulz, T. Tarman, P. Schulz, A. Pinar.  Defender Policy Evaluation and Resource 
Allocation against MITRE ATT&CK Data and Evaluations, submitted for journal publication.   

3. Johnson and S.S. Dey, "A scalable lower bound for the worst-case relay attack problem on the 
transmission grid," submitted for journal publication, available at arXiv.2105.02801. SAND 
2021-10211 O. 

4. Ozkaya, A. Pinar, and U. Catalyurek, “TRIGGER: TempoRal Interaction Graph GenEratoR,” 
submitted for conference publication. 

5. Cheramin, J.Cheng, R. Chen, and A.Pinar, “Data-Driven Robust Optimization Using 
ScenarioInduced Uncertainty Sets,” submitted for journal publication.  

6. Vugrin, E. and S. Hanson, J. Cruz, C. Glatter, T. Tarman, and A. Pinar.  "Detection of 
command and control traffic: model development and experimental validation."   Submitted for 
conference publication. 

7. Hanson, S. and G. Cruz.  “SCORCH User Guide.”  In preparation as a SAND report, 2021. 
8. Gabert, A. Pinar, and U. Catalyurek, “Coreness to Cores: Batch Dynamic Algorithm to 

Efficiently Find k-Cores,” submitted for conference publication, submitted for conference 
publication. 

9. Emma Johnson, Santanu Dey, Jonathan Eckstein, Cynthia Phillips, John Siirola, “A Covering 
Decomposition Algorithm for Power Grid Cyber-Network Segmentation,” submitted for 
journal publication. 

10. She’ifa Punla-Green, John Mitchell, Jared Gearhart, William Hart, Cynthia Phillips, “Shortest 
Path Network Interdiction with Asymmetric Uncertainty,: submitted for journal publication. 

 

9.1.3. Technical Presentations 

1. Tom Tarman,  SECURE overview, Texas A&M University,. December 2018 
2. Ali Pinar,  “SECURE: An Evidence-based Approach to Cyber Experimentation,” IEEE 

Resilience Week, October  2019 
3. Bryan Arguello, “Cyber-Physical Emulation and Optimization of Worst-Case Cyber Attacks 

on the Power Grid,” IEEE Resilience Week, October 2019. SAND 2019-12468 C. 
4. Tom Tarman , “Cyber Experimentation,” University of Texas at San Antonio, March 2019 
5. Bryan Arguello, “Talk: Bilevel Optimization of Cyber Physical Models for Power Grid 

Resilience,” INFORMS Annual Meeting, October 2019. SAND 2019-12885 C. 
6. Laura Painton Swiler, “Uncertainty Quantification in Cyber Emulation,” INFORMS Annual 

Meeting, October 2019 
7. Eric Vugrin, Gerardo Cruz, Christian Reedy, Alexander Outkin, Vincent Urias, Thomas 

Tarman, “Cyber Threat Modeling And Validation,” INFORMS Annual Meeting, October 
2019 

8. Ali Pinar,  “Rigorous Cyber Experimentation for Security of Cyber Physical Systems," 
INFORMS Conference on Security, February 2020.   

https://arxiv.org/abs/2108.10958
http://www.optimization-online.org/DB_HTML/2021/08/8562.html
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9. Bryan Arguello, Emma Johnson, Jared Gearhart, “A Trilevel Cyber-Physical Power System 
Network Segmentation Model,” INFORMS Annual Meeting, November 2020. SAND 2020-
11077 C. 

10. Bert J. Debusschere, Gianluca Geraci, John D. Jakeman, Cosmin Safta, and Laura Swiler, 
“Polynomial Chaos Expansions for Discrete Random Variables in Cyber Security Emulytics 
Experiments”, SIAM CSE 2021 (virtual), March 1, 2021.  SAND 2021-2270 C. 

11. Tom Tarman, Comparing reproduced cyber experimentation studies across different 
emulation testbeds.  USENIX 14th Cyber Security Experimentation and Test (CSET) Workshop. 
August 2021. 

12. Ali Pinar, “Cyber Security: A new frontier for computational science and engineering,” 
Institute for Mathematics and its Applications (IMA), U. Minnesota, February 2021 

13. Ali Pinar, “SECURE: An Evidence-based Approach to Cybersecurity,” 2019 Graph 
Exploitation Symposium, MIT Lincoln Labs, MA, April 2019. 

14. Ali Pinar, “Rigorous Cyber Experimentation for Science of Security,” Lab Research 
Technical Exchange, May 2021. 

15. Bryan Arguello, Jared Gearhart, Emma Johnson, Santanu Dey, “Trilevel Programming for 
Network Segmentation of Power System Cyber-Physical System,” INFORMS Annual 
Meeting, October 2021. In R&A. 

16. Emma Johnson, Santanu Dey, “A Scalable Lower Bound for the Worst-Case Relay Attack 
Problem on the Transmission Grid,” INFORMS Annual Meeting, October 2021. SAND 
2021-11154 C & SAND 2021-11196 V. 

17. Ali Pinar, “SECURE: Science of Security by Rigorous Experimentation,” October  2021 
18. Ali Pinar, “Principled Methods for Quantified Security for High-Consequence Cyber  

Physical Systems,” Workshop on Military Communications,  December 2021. 

9.2. Conference & Workshop Organization 

Despite the limitations imposed by the COVID-19 pandemic, our work has been presented in many 
conferences and workshops and the team members have contributed to organizations of these 
meetings in leadership roles.   Of note here, is the Cyber Experimentation and Science of Security 
Workshop (CESoS’21), which will be held in November 2021.  This planned workshop will bring 
together leading researchers in the field and will give Sandia the opportunity to present the SECURE 
work and introduce its new SCIRE institute: “Sandia’s Cyber security Institute for Rigorous 
Experimentation.” 

9.3. Mentoring and Training 

SECURE is an interdisciplinary project.  Cross-training team members on other disciplines to form a 
well-functioning team has been a big part of our effort and a bigger part of our success.  We believe 
this interdisciplinary culture built under SECURE will have an enduring effort at the Lab.  

The team comprised eight early career staff and many more senior researchers stepped in for higher 
roles.  The project also supported dissertation studies of 3 PhD students. Two of these students are 
already Sandians and we are optimistic that the third will join Sandia upon graduation.   
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9.4. Team Building & Partnerships 

 The project helped with building many external partnerships. In addition to connecting with many 
individuals, we expect that our partnerships with Georgia Institute of Technology, Texas A&M 
University, University of Southern California Information Sciences Institute, and University of 
California at Davis, as well as at Pacific Northwest National Laboratory and other  national 
laboratories, will be long-lasting productive partnerships which can position Sandia as a leader in 
rigorous cyber experimentation.  
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10. SUMMARY AND PROJECT LEGACY 

 

Judgments about the security of high-consequence cyber systems require hard evidence, quantified 
uncertainties around the evidence, and rigorous experimental methods to produce that evidence. The 
SECURE Grand Challenge LDRD project was proposed to address a significant cybersecurity 
experimental gap between rapidly maturing testbed technologies (e.g. minimega, DETER,  amd 

cloud computing technologies) and emerging R&D in the “science of cybersecurity” [3,6,15]. This is 
work is not being performed elsewhere, and is appropriate for Sandia National Laboratories to pursue, 
based on its multi-decade heritage as a nuclear weapons engineering laboratory responsible for the 
HPC codes and simulations that inform decisions regarding high-consequence nuclear weapon 
systems.  

The inspiration behind our approach is the success and impact of computational science and 
engineering (CSE), specifically on Sandia’s nuclear stockpile stewardship mission, and broadly on the 
scientific community. Cyber experimentation can provide the predictive capability as the scientific 
computing models do for physics-based systems, and thus there are a lot of parallels that we can draw 
inspiration from.  However, cyber systems are much different than physics-based systems, due to lack 
of closed-form equations, discrete nature of systems and extreme nonlinearities.  Due to these 
differences, we cannot expect traditional CSE methods to work well on cyber systems; we promised 
to invent new methods that can provide similar capabilities for cyber systems.  

SECURE successfully delivered on this promise. The SECURE external advisory board (EAB) 
acknowledged that SECURE addressed this important niche with rigor, and that only a national 
laboratory could credibly take on this challenge. As evidence of the success of SECURE, several 
“firsts” were realized during this project, including: 

• Multifidelity uncertainty quantification in a cyber experiment context. 

• The development of an integrated software package (PAO) for expressing and solving 
adversarial optimization models. 

• End-to-end cyber exemplars that integrate emulation, modeling, and uncertainty 
quantification to rigorously analyze cyber security problems.  

• Developed methodology for tri-level interdiction, allowing tractable solutions for optimal 
segmentation at large scales 

• Developed automated methods to import synthetic (and potentially real) cyber power grid 
topologies into SCEPTRE experiments, enabling scaled studies. 

• Developed integrated workflow of orchestration (Scorch), design of experiments (Dakota), 
and emulation (SCEPTRE) to enable rigorous cyber experimental studies. 

• Use of optimization to focus (computationally) expensive emulation experiments on optimal 
parameter regimes. For example, optimal segmentation was paired with emulation to identify 
optimal topologies and adversary scenarios. 

• Development of a novel telemetry-based verification approach for emulation-based testbeds, 
inspired by previous work with the Mininet experimentation environment [13]. 
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• Polynomial chaos expansions over “mixed” discrete and continuous variables in a cyber 
experiment context, enabling efficient sensitivity analysis. 

• Use of statistical tests at each time step of an experiments with large number of experimental 
replicates to carefully assess similarity between cyber experiments run on different emulation 
testbeds or to perform emulation vs. physical testbed comparisons. 

• Applied Markov modeling as an integrated framework for end-to-end integration of attack 
success probabilities at each step.  We extended it to analyze attacker/defender capabilities as 
well as to incorporate information from both MITRE ATT&CK framework and emulations 
in the following ways: 

a. Understanding attack evolution over time and handling time-unbounded 
attacks, 

b. Using the Markov model as good approximation of system security, even if 
one doesn’t know attacker strategies, 

c. Allowing single- and muli-step attacks within an integrated framework  

In addition, several important observations about rigorous cyber experimentation were encountered 
during this project, including: 

• Verification efforts helped find very subtle bugs when deploying emulation experiments on 
large numbers of namespaces on one host. 

• Cyber experimentation is best conducted (in terms of efficiently generating statistics and 
mapping the response space) when augmenting emulation models with results from other 
models: 

a. Mathematical modeling, where feasible, provides important insight into 
attacker/defender dynamics, and provides a supplemental source of metrics 
useful for cross-validation with emulation models and efficiently generating 
statistics. 

b. Likewise, discrete event simulation efficiently provides results that can be 
highly correlated with emulation, making it useful for multifidelity studies. 

c. While benefits can be gained from simplified system models, creating these 
representations currently requires significant levels of collaboration between 
modelers and cyber experts. 

• Emulation models have large inherent variability, even for fixed parameters. Including 
parameter uncertainty further complicates analysis of these systems. This highlights the need 
for methods like MFUQ and efficient experimental designs. 

• Sensitivity analysis on attack chains is critical for providing quantitative (and sometimes 
counter-intuitive) evidence to support defender investments. 

• Rigorous, quantitative attack analysis can expose counter-intuitive relationships between 
attack success metrics (not always unique solutions; Pareto frontier), informing defender 
decisions regarding tradeoffs in defensive investments. 

• Careful attention is required when translating information between models (mathematical, 
emulation, Markov attack model, etc.) 
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The impact of SECURE goes beyond these individual contributions. SECURE demonstrated how we 
can bring rigor into cyber experimentation, an elusive goal that has been chased by many for a long 
time.  We built our analyses on reproducible processes, verified experiments, and validated models. 
Our algorithms provide provably accurate results, state-of-the-art statistical analysis, and take into 
account the underlying uncertainties. As a result, we can objectively assess and quantify security.  We 
claim that quantifiable security measures will be a game-changer in cyber security.    

While SECURE has drastically advanced the state of the art, we recognize there is a long way in front 
of us. We aim to pursue this line of work through externally funded research, new internal 
collaborations, and external partnerships with academia and other national laboratories. To this goal, 
we are starting a new institute Sandia’s Cyber security Institute on Rigorous Experimentation (SCIRE). 
This institute will enable continued interdisciplinary collaborations across Sandia, connect us with the 
external researchers, strengthen Sandia’s position as a leader and visionary in rigorous cyber 
experimentation. What has started under SECURE will continue under SCIRE, and SECURE’s legacy 
will live on.  

We started the project by drawing inspiration from CSE.  And we are ending the project having 
demonstrated that rigorous cyber experimentation can be a pillar of the science of cyber security, just 
as CSE is a pillar of science.  

 



 

62 

11. REFERENCES 

 
NOTE:  Reports listed as “in preparation” were in preparation at the time this report was written. 
They may be available by contacting the authors.  

1. AIAA Standards:  Guide for the Verification and Validation of Computational Fluid Dynamics 
Simulations (AIAA G-077-1998(2002)) Computational Fluid Dynamics Committee. 
https://doi.org/10.2514/4.472855 

2. ASME V&V 20-2009 Standard for Verification and Validation in Computational Fluid Dynamics and 
Heat Transfer.  https://www.asme.org/products/codes-standards/v-v-20-2009-standard-
verification-validation 

3. Balenson, David, Laura Tinnel, and T Benzel. "Cybersecurity Experimentation of the Future 
(Cef): Catalyzing a New Generation of Experimental Cybersecurity Research." SRI 
International, Tech. Rep.  (2015). 

4. Crussell, Jonathan, Erickson, Jeremy, Fritz, David, and Floren, John. minimega v. 3.0, 
Computer software. Sandia National Laboratories, Albuquerque, NM, December 18, 2015. 
https://www.osti.gov//servlets/purl/1312788. 

5. Diegert, K., Klenke, S., Novotny, G., Paulsen, R., Pilch, M. and T. Trucano. Toward a More 
Rigorous Application of Margins and Uncertainties within the Nuclear Weapons Life Cycle – A Sandia 
Perspective. Sandia Technical Report SAND2007-6219. 

6. Dykstra, Josiah. Essential Cybersecurity Science: Build, Test, and Evaluate Secure Systems. " 
O'Reilly Media, Inc.", 2015. 

7. Ferguson, B., A. Tall, and D. Olsen. 2014. National cyber range overview. In 2014 IEEE 
Military Communications Conference. IEEE, 123–128. 

8. Geraci, G., Crussell, J., Swiler, L.P. and Debusschere, B. J.  “Exploration of Multifidelity UQ 
Sampling Strategies for Computer Network Applications.”  International Journal of Uncertainty 
Quantification, Jan. 2021. Pp. 93-118. DOI: 
10.1615/Int.J.UncertaintyQuantification.2021033774 

9. Geraci, G., L.P. Swiler, J. Crussell, and B. Debusschere.  Exploration of Multifidelity Approaches 
to Uncertainty Quantification in Network Applications.  UNCECOMP ECCOMAS 2019.  
Thematic Conference on Uncertainty Quantification in Computational Sciences and 
Engineering.  SAND2019-3274C. 

10. Ghanem, R. And P. Spanos, Stochastic Finite Elements: A Spectral Approach. New York, New 
York: Springer Verlag (2002). 

11. Google.  Network telemetry. 2021. https://cloud.google.com/network-telemetry. 

12. Hedayat, A.S., Sloane, N.J.A., and J. Stufken.  Orthogonal Arrays:  Theory and Applications.  
Springer Series in Statistics, 1999. 

13. Heller, Brandon. "Reproducible Network Research with High-Fidelity Emulation." Ph.D. 
dissertation, Stanford University, 2013. 

14. Helton, J.C. Conceptual and Computational Basis for the Quantification of Margins and Uncertainty.  
Sandia Technical Report 2009-3005.  

15. Herley, C., and P. C. van Oorschot. "Science of Security: Combining Theory and 
Measurement to Reflect the Observable." IEEE Security & Privacy 16, no. 1 (2018): 12-22. 
https://doi.org/10.1109/MSP.2018.1331028. 

16. https://dakota.sandia.gov 

https://doi.org/
https://www.asme.org/products/codes-standards/v-v-20-2009-standard-verification-validation
https://www.asme.org/products/codes-standards/v-v-20-2009-standard-verification-validation
https://doi.org/10.1109/MSP.2018.1331028.
https://dakota.sandia.gov/


 

63 

17. https://minimega.org/ 
18. https://omnetpp.org 
19. https://www.elastic.co/what-is/elk-stack 
20. https://www.minitab.com/ 
21. https://www.nsnam.org 
22. IEEE. IEEE Standard for System and Software Verification and Validation. IEEE STD 

1012-2012 (Revision of IEEE STD 1012-2004), pages 1–223, 2012.  Doi: 
10.1109/IEEESTD.2012.6204026. 

23. Intel.  Cloud telemetry: Advancing your it strategy. 2021 
https://www.intel.com/content/www/us/en/cloud-computing/telemetry.html. 

24. Jones, S.T., Gabert, K. G., and T. D.  Tarman.  Evaluating Emulation-based Models of Distributed 

Computing Systems.SAND2017-10634. https://www.osti.gov/biblio/ 1398865-evaluating-

emulation-based-models-distributed-computing-systems. 

25. Maricq, A., Duplyakin, D., Jiminez, I., Maltzahn, C., Stutsman, R. and R. Ricci. Taming 
Performance Variability. 13th USENIX Symposium on Operating Systems Design and 
Implementation (OSDI). 2018 

26. Microsoft.  Azure monitor. 2021. https://docs.microsoft.com/en-us/azure/azure-
monitor/autoscale/autoscale-common-metrics. 

27. Mirkovic, J., Bartlett, G. and J. Blythe. DEW:  Distributed Experiment Workflows.  USC 
Information Sciences.  Proceedings from USENIX/CSET 2018 Conference. 

28. Mirkovic, J., T.V. Benzel, T. Faber, R. Braden, J.T. Wroclawski, and S. Schwab. The DETER 
project: Advancing the science of cyber security experimentation and test. In 2010 IEEE 
International Conference on Technologies for Homeland Security (HST), pages 1–7. IEEE, 
2010. 

29. Morgan, M. G. and M. Henrion.  Uncertainty:  A Guide to Dealing with Uncertainty in Quantitative 
Risk and Policy Analysis.  Cambridge University Press, 1990. 

30. Motto, A.L.,  J. M. Arroyo and F. D. Galiana, "A mixed-integer LP procedure for the 
analysis of electric grid security under disruptive threat," in IEEE Transactions on Power 
Systems, vol. 20, no. 3, pp. 1357-1365, Aug. 2005, doi: 10.1109/TPWRS.2005.851942. 

31. National Research Council. Assessing the Reliability of Complex Models: Mathematical and Statistical 
Foundations of Verification, Validation, and Uncertainty Quantification. Washington, DC: The 
National Academies Press, 2012. https://doi.org/10.17226/13395. 

32. National Science and Technology Council, “Federal Cybersecurity Research and 
Development Strategic Plan.”  2016.   https://www.nitrd.gov/pubs/2016-federal-
cybersecurity-research-and-development-strategic-plan.pdf. 

33. Oberkampf, W.L. and C.J. Roy. Verification and Validation in Scientific Computing.  
Cambridge University Press, 2010.  

34. Outkin, A.V., T. Schulz, T.D. Tarman, P.V. Schulz, A. Pinar. Defender Policy Evaluation 
and Resource Allocation against MITRE ATT&CK Data and Evaluations.  SAND2021-
7713. https://arxiv.org/abs/2107.04075 

35. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.   Sensitivity Analysis in Practice: A Guide to 
Assessing Scientific Models. New York: Wiley; 2004. 

36. Santner, T., B. Williams, and W. Notz, The Design and Analysis of Computer Experiments. New 
York, New York: Springer (2003). 

https://minimega.org/
https://omnetpp.org/
https://www.elastic.co/what-is/elk-stack
https://www.minitab.com/
https://www.nsnam.org/
https://www.osti.gov/biblio/%201398865-evaluating-emulation-based-models-distributed-computing-systems
https://www.osti.gov/biblio/%201398865-evaluating-emulation-based-models-distributed-computing-systems
https://doi.org/10.17226/13395


 

64 

37. Siaterlis, C., A.P. Garcia, and B. Genge. On the use of Emulab testbeds for scientifically 
rigorous experiments. IEEE Communications Surveys & Tutorials, 15(2):929–942, 2012. 

38. Sumologic. What is telemetry? the guide to application monitoring. 2021. 
https://www.sumologic.com/insight/what-is-telemetry/. 

39. Swiler, L., Stickland, M, and T. Tarman.  Design of Experiments for Cyber Emulation.  Sandia 
National Laboratories Technical Report SAND2019-5640C.  May 2019. 

40. Tarman, T.D., L.P. Swiler, E. Vugrin, H. Huang, A. Sahu, P. Wlazlo, A. Goulart, and K. 
Davis. Validation of cyber experiments:  comparing emulation results against a physical 
testbed.  In preparation, 2021.   

41. Tarman, T.D., T. Rollins, L.P. Swiler, J. Cruz, E. Vugrin, H. Huang, A. Sahu, P. Wlazlo, A. 
Goulart, and K. Davis. Comparing reproduced cyber experimentation studies across 
different emulation testbeds.  USENIX 14th Cyber Security Experimentation and Test 
(CSET) Workshop. Aug. 9, 2021.  SAND2021-5696C. 

42. Thorpe, J., L.P. Swiler, J. Cruz, S. Hanson, T. Tarman, T. Rollins, and B. Debusschere.  
“Verification of Cyber Emulation Experiments Through Virtual Machine and Host 
Metrics.”  In preparation, 2021. 

43. Vugrin E., S. Hanson, J. Cruz, C. Glatter, T. Tarman, and A. Pinar. Detection of command 
and control traffic: model development and experimental validation. in preparation, 2021. 

44. Vugrin, E., J. Cruz, C. Reedy, T. Tarman, and A. Pinar “Cyber Threat Modeling and 
Validation: Port Scanning and Detection,”  Proceedings of the 7th Annual Hot Topics in the Science 
of Security (HoTSoS) Symposium. 

45. Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton 
University Press (2010). 

46. Y. Ozkaya, F. Balın, A. Pınar, and U. C ̧atalyu ̈rek,  SSGG: A scalable graph  generation 
algorithm to sample over a given shell distribution in Proc. IPDPS Workshops, W. Graph 
Learning. 

47. Y. Ozkaya, A. Pinar, and U. Catalyurek, “TRIGGER: TempoRal Interaction Graph 
GenEratoR,” submitted for conference publication 

 

 

 

https://www.sumologic.com/insight/what-is-telemetry/


 

65 

APPENDIX A. COMMAND AND CONTROL (C2) CASE STUDY 

A.1. Overview 

Over the last few decades, a variety of emulation tools have been developed to perform cyber 
experimentation. Despite this progress, relatively little attention has been devoted to developing 
methods that ensure the quality of experiments based on these capabilities. In this article, we 
demonstrate how the mathematical modeling, verification, validation, and uncertainty quantification 
methods, developed under SECURE, can be used in combination with emulation modeling to 
perform rigorous experimentation for a Command and Control (C2) cyber-attack. To our knowledge 
this exemplar demonstrates a level of experimental rigor and detail that has not been previously done 
for this kind of case study. 

Recall that the full end-to-end exemplar studied in SECURE considers a multi-stage attack in which 
an attacker attempts to access a power utility’s cyber control network and ultimately disrupt operations 
by causing load shed using the attack stages shown in Figure A 1. Here we focus on the second step 
where an attacker aims to maintain C2 communications between an infected host and C2 server in 
order to pivot to other hosts and/or the ICS network. To counter this, the system owner uses an 
intrusion detection system (IDS) to identify malicious C2 traffic and take steps to remediate the 
infection to prevent disruption of physical operations. 

 
Figure A 1. Multi-stage attack considered by SECURE  

 
The goals of this study fall into the following two categories: application objectives related to analyzing 
malicious C2 traffic in a cyber system and SECURE research objectives related to methods for cyber 
experimentation. Given this, we consider the following: 

• Application objectives:  
o How long does it take to detect a C2 channel? 
o How does background traffic affect detection? 
o Which factors have the largest impact on the performance of an IDS system? 

• SECURE research objectives:  
o What emulation capabilities are required to adequately represent this scenario? 
o Can we develop an approximate mathematical model of the emulation to analyze this 

scenario? 
o How can we validate the math model against the emulation? 
o What is the benefit of a math model? 
o Can the emulation and math model be used in conjunction to support analysis? 

A.2. Analysis Scenario 

In this study, we focus on detecting C2 malware traffic within the enterprise network portion of an 
electrical power utility. Figure A 2 illustrates the system being analyzed. We assume that one or more 
hosts within the network have been infected and are communicating with an external C2 server. The 
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internal network contains both benign and malicious network traffic, all of which is sent through a 
single router and switch. An IDS that monitors traffic to and from the network. The IDS performs 
packet inspection and issues an alert if the contents of an individual packet appears suspicious, 
according to one or more of its rules. We assume that it is possible that benign traffic may cause the 
IDS to issue an alert (i.e., a false-positive). In instances where there are large packet flow rates, the 
IDS may not have sufficient capacity to scan all packets [1]. In this case, unscanned malicious packets 
will still reach their destination without causing an alert. 

 

 
Figure A 2: Notional C2 exemplar system representation 

 
For this study we analyze C2 communication from the Emotet malware and its detection by the Snort 
IDS. Emotet was first discovered in 2014 as a banking Trojan. Since its initial discovery, Emotet has 
infected more than 1 million computers and caused hundreds of millions of dollars in damage [2]. 
Most antivirus and IDS programs have some sort of mechanism to detect an Emotet infection. For 
the Snort IDS alone, dozens of rules have been written to detect Emotet. 

Though this study is motivated by and focuses on specific Snort and Emotet features, the work 
discussed below is not unique to this IDS or malware. Rather, we believe the capabilities presented 
below could be generally applicable to any IDS and malware combination in which the IDS generates 
alerts based on individual packet inspection. Consideration of different IDSs and alerts would merely 
require alternate parameterizations. 

Given the goals of the attacker and the defender, the key Quantities of Interest (QoIs) are the alert 
rates (i.e., number of alerts issued at a point in time) for both malicious and benign traffic, under 
various network, attack, and IDS configurations. We recognize that issuance of an alert does not 
necessarily equal detection; detection generally requires a combination of alerts and human recognition 
that the alerts are indicative of a problem. Modeling the human element of detection is beyond the 
scope of this work, so, instead, we assume that a detection occurs when a large enough number of 
alerts are issued that network administrators would reasonably determine that the anomalous traffic is 
malicious. Hence, the primary focus of this work is accurately modeling alerts over time and not 
establishing detection thresholds. 
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The remainder of this article provides an overview of how the SECURE experimentation 
methodology was applied to the C2 malware problem. The following summarizes the process that we 
used to analyze the C2 problem. For each of steps described, detailed tutorials and technical 
documentation are also available. 

1. Emulation model development: Create a high-fidelity "ground truth" model using emulation. 
2. Emulation model verification: Build confidence that the emulation models are working as 

intended. 
3. Mathematical model development: Create a low-fidelity statistical model surrogate for the 

emulation model. 
4. Mathematical model validation: Assess the validity of the low-fidelity model using statistical 

tests for discrete, time-series data to ensure that the inexpensive mathematical model can be 
used as a proxy for the more costly high-fidelity emulation model. 

5. Analysis and Uncertainty quantification:  
1. Efficient sampling: Use Polynomial Chaos Expansion (PCE) to efficiently sample the 

input parameter space using the mathematical model to identify which input 
parameters have the largest effect on the QoIs. 

2. Multi-fidelity uncertainty quantification: Integrate results from low- and high- fidelity 
models to improve the accuracy of the QoIs with minimal experimentation costs, for 
the key parameters identified using PCE. 

A.3. C2 Emulation Environment 

We model the C2 environment using emulation, a capability primarily used to model distributed 
communication networks. As the name implies, emulation models aim to replicate high-level 
functionality of target networks using emulated hardware components. Abstraction of the hardware 
layer serves to facilitate implementation of these “logical network replicas” at reduced costs. A typical 
emulation environment consists of a set of virtual machines that are networked together using virtual 
switching. The entire environment is supported by a cluster of hardware servers. Emulation 
environments serve a variety of purposes such as testing, evaluation, training, and experimentation. 
Because of their heavy use of virtualization, large network environments can be deployed, torn down, 
and redeployed to an original state with relatively little effort. This makes emulation environments 
particularly well-suited for repeatable and reproducible experimentation of distributed communication 
networks. There are several tools available for creating, deploying, and managing emulation 
environments, including two created at Sandia National Laboratories: minimega and SCORCH. 

Sandia's minimega tool is used for launching and managing virtual machines locally or across a 

cluster. SCORCH is an automated scenario orchestration framework for emulation-based models that 
utilizes minimega to deploy and instrument experiments. 

We created the emulation model for this study using minimega and SCORCH. The environment 

model is comprised of the following primary components, as shown in Figure A 3: a malware traffic 
generator (attacker), an IDS (defender), and the background traffic generator (environment). Each 
component has parameters that can be adjusted and tuned for various experiment iterations. The 
malware traffic is generated via custom Python code that enables researchers to modify the message 
features, size, and frequency of the generated packets. Rather than represent each machine with an 
individual host, we use a single device to generate “aggregate traffic” representative of the total traffic 
we would see from multiple hosts. For this scenario, the malware traffic generator is calibrated to 
mimic the packet structure of the Emotet malware message format, encrypted structure, and C2 timing 



 

68 

(using the 2018/2019 variant of Emotet). The signature of the Emotet network traffic has been 
previously researched and captured in detection rules [2,3]. Snort is used as the IDS and implements 
Emotet-specific detection rules to alert on Emotet-based packet signatures. The IDS component can 
be tuned for different detection algorithms/rules, memory availability, and processing speed. To 
increase the scenario's fidelity and provide a realistic network for experiments, background packets 
are created and sent from a client to a server via a custom Python script. The background traffic 
message format, packet size and frequency can be modified per experiment. 

 

 
Figure A 3: C2 Exemplar Emulation Environment 

 
For this study, we focus on the parameters shown in Table A 1. These parameters can be binned into 
four groups. The general parameters describe basic parameters of the test environment. The IDS 
parameters define the capacity and characteristics of the IDS. The background traffic parameters specify the 
intensity of the background traffic and the false-positive rate. The malicious traffic parameters specify the 
intensity of the malware traffic and the false-negative rate. For each of these parameters, we indicate 
the value or the range of the values that the parameter can take. For those values that are uncertain, 
we assume they follow a continuous or discrete probability distribution, as indicated in the 
Distribution column. Even for this relatively modest sized problem, many parameter configurations 
can be explored. Note that some of parameters listed in Table A 1cannot directly be controlled in the 
emulation environment, as specified in the Comments column. 

Table A 1. Key variables of interest for the C2 study. 

Parameters Units Value Distribution Comments 

General 
Parameters 

    

Total number of 
workstations 

No units 10 Fixed 

Variable type: input parameter  
Basis: selected to represent 
"moderately" sized portion of a 
corporate network 

Average packet 
size 

Bytes 
150-
250 

Continuous 
uniform 

Variable type: observed quantity  
Basis: packets observed in the 
experiments had an average size of 
200 bytes in experiments; +/-50 bytes 
is selected to permit variability across 
experiments 
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IDS Parameters     

Snort capacity 
Bytes per 
second 

1e5, 
2e5, 
5e5, or 
1e6 

Discrete with 
equal 
probability 

Variable type: input parameter to 
emulation model 
Basis: selected to represent 
"moderately" sized portion of a 
corporate network 

Number of CPUs No units 8 Fixed 
Variable type: input parameter  
Basis: expert judgement and known 
hardware configurations 

Number of CPUs 
to maximize Snort 

No units 1-8 
Discrete with 
equal 
probability 

Variable type: input parameter  
Basis: positive integers bounded by 
total # of CPUs 

CPUs running 
other (non-Snort) 
processes 

No units 0-7 
Discrete with 
equal 
probability 

Variable type: input parameter 
Basis: positive, integers bounded by 
total # of CPUs 

Drop rate 
multiplier 

No units 0.9-1.1 

Symmetric 
continuous 
triangular 
distribution 

Variable type: observed quantity 
Basis: expert judgment used to assess 
the actual drop rate, which could be 
+/- 10% difference from the 
calculated rate 

Background 
Traffic 
Parameters 

    

Benign traffic per 
host 

Packets 
per sec 

5-100 
Continuous log-
uniform 

Variable type: input parameter 
Basis: 100 pps per host (with 20 hosts) 
results in 2000 pps for total traffic. 
This amount represents the upper 
limit on the traffic generator's capacity 
and is comparable to (and may exceed) 
congested TCP traffic conditions used 
in other IDS evaluation literature (e.g., 
[4] and [5]). 
The lower bound was selected to 
represent a minimal level of traffic for 
evaluation. 

Fraction of benign 
packets with 
Emotet signatures. 

Fraction 
of 
packets 
per sec 

1e-5-
1e-3 

Continuous log-
uniform 

Variable type: input parameter 
Basis: expert judgment because 
published values were not available; 
selected values are relatively small to 
indicate the small probability that the 
Emotet signature would occur due to 
spurious conditions 
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Detection rate for 
signatures in 
regular, benign 
traffic (if signature 
is present) 

No units 
0.9-
0.99 

Continuous 
uniform 

Variable type: observed quantity 
Basis: we observed an average 
detection rate of 0.95 when we used 
the Snort rule to evaluate actual 
Emotet traffic packet captures (pcaps) 
and simulated Emotet traffic in 
emulation experiments; range was 
expanded to 0.9-0.99 to permit 
variability across experiments 

Malicious Traffic 
Parameters 

    

Number of 
infected 
workstations 

No units 0-10 
Discrete with 
equal 
probability 

Variable type: input parameter 
Basis: non-negative integer, bounded 
by total number of hosts 

Malware traffic per 
infected host 

No units 4-10 
Continuous 
uniform 

Variable type: input parameter 
Basis: published observations and 
analysis of actual Emotet traffic pcaps  

Fraction of 
malware packets 
with Emotet 
signatures 

No units 0.1-0.2 
Continuous 
uniform 

Variable type: input parameter 
Basis: analysis of Emotet traffic pcaps 
and structure of TCP traffic 

Detection rate of 
signatures for 
malware traffic (if 
signature is 
present) 

No Units 
0.9-
0.99 

Continuous 
uniform 

Variable type: observed quantity 
Basis: we observed an average 
detection rate of 0.95 when we used 
the Snort rule to evaluate actual 
Emotet traffic pcaps and simulated 
Emotet traffic in emulation 
experiments 

A.4. Emulation Verification using Telemetry 

An important aspect of using emulation is verifying whether the emulation environment is working 
as intended.  For this study, we approach the verification problem using the same strategy that was 
employed in the SCADA study. The core idea of this approach is to monitor performance metrics 
while intentionally stressing the emulation environment to identify potential issues.  This monitoring 
process is called telemetry [6-9], which includes metrics like server load and availability, disk space 
usage, memory consumption, performance, etc.  Though many aspects of the emulation could be 
verified, we focused on determining whether sufficient virtualized resources are available to support 
the scenario because insufficient resources can cause experimental outcomes to be unrepresentative 
or incorrect. 

In this study, we run the C2 scenario under various levels of over-subscribed resources. We start with 
a baseline scenario where there is only one namespace running on a physical host. We then consider 
four scenarios where an increasing number of namespaces (2, 5, 10, and 20, and 40) are run in parallel 
on the same physical host. In this case, analysis of QoIs and telemetry data indicates that resources 
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were being oversubscribed with the 20 and 40 namespace cases.  The collected telemetry showed a 
clear point where resources were oversubscribed.  Further research is needed to develop general 
methods for verification of emulation models.  

A.5. Mathematical Model 

Emulation testbeds provide a safe, high-fidelity environment for conducting cyber experiments. 
However, since these testbeds run real software and protocols, the experiments typically need to be 
executed in real-time. This can be time-prohibitive in instances where: 

• Scenarios evolve over long time periods. 
• Analyses include features of the system may be unknown or vary, or in which the analyst 

aims to characterize a potentially wide range of possible outcomes. 
• Analyses consider stochastic behaviors and thus require many experiments to suitably 

characterize the relevant statistics. 

Given the potential number of parameter setting that could be explored (see Table A 1), we developed 
a low-fidelity statistical model that can be run significantly faster than the real-time emulation model. 
The model can be most easily described through an analogy, as depicted in Figure A 4. Consider a 
water contamination sensor system that receives flows from various sources across a water 
transportation network. The flows may contain benign or beneficial matter like fluoride (normal 
network traffic) and also toxins like lead (malicious C2 messages). Water containing both good and 
bad matter flows into a reservoir tank and passes through a filter (IDS) that removes the toxic particles. 
The "cleaned" water is then distributed throughout the system. The filter may fail to catch some 
portion of the toxins (false negatives); it may also remove benign materials (false positives). The 
filtration system is rate-limited and has a finite reservoir capacity (memory). If the inflow rate exceeds 
the capacity of the sensor system, a bypass valve is activated, permitting the unfiltered water to 
circumvent the filter and pour directly into the system without filtration. See [11] for a full description 
of the mathematical model. 

 
Figure A 4.  Mapping between water filtration and intrusion detection systems. 
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The mathematical model of the IDS builds on the flow/filter concepts to represent network traffic as 
an influx of packets from various hosts (flow) and the detection of C2 traffic by an IDS (filter). Most 
of the hosts are not infected with the malware, so the packets in their traffic is benign. Some hosts are 
infected by malware and generate packets that contains malicious C2 traffic. All packets are routed 
through a device running an IDS, whose signature-based rules act as a filter: if the rule identifies the 
malware signature from a malicious packet (true positive), the IDS issues an alert. Detection of 
malicious traffic is not perfect, so some malicious packets pass through without an alert being issued 
(false negative). In some instances, the IDS may issue an alert for a benign packet (false positive), but 
most benign packets result in no alert (true negative). 

The IDS is rate-limited in its capacity to process network traffic (i.e., the IDS has a threshold measured 
in packets/bytes per second) within a set time period. Hardware characteristics (e.g., number of CPUs, 
memory available), software features (e.g., types of detection rules being used by the IDS, computing 
requirements for individual rules, number of rules being used, degree of parallelization), and the 
number of other processes being run on the device (and computational requirements for the 
processes) all affect the IDS’s capacity. In the most extreme cases (when network traffic rates far 
exceed the IDS’s capacity), the IDS may eventually stop issuing alerts altogether until the memory 
buffer is cleared. In these instances, all packets will pass to their destinations without being inspected 
by the IDS, including any malicious C2 packets; because they are dropped, alerts are not generated for 
these packets, resulting in universal negatives (false and true). 

The mathematical model integrates these concepts into a probabilistic, discrete-time representation to 
describe the C2 traffic and detection by the IDS. The key model inputs include: 

• Packet arrival rates at the IDS for both benign and malicious traffic 

• True and false positive rates (on a per-packet basis) for the IDS’s signature-based rule 

• Average packet size 

• IDS capacity 
When specific values are assigned to  these inputs, the model produces the following two primary 
outputs: the average number of alerts that are expected over time (Figure A 5), and the probability 
that at least N alerts will be registered by a point in time (Figure A 6). Results can be produced for 
non-rate limiting (Figure A 5 and Figure A 6) and rate-limiting scenarios (Figure A 7). Observe that 
in the latter case, the number of alerts levels off as the IDS reaches capacity. The total alert results can 
also be separated into false positive alerts and true positive alerts. 
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Figure A 5.  Average number of alerts over time, for the emulation and mathematical models (non-

rate limited case). 

 
Figure A 6. Probability of having at least k alters by time period 16, for the emulation and 

mathematical models (non-rate limited case). 
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Figure A 7. Average number of alerts over time, for the emulation and mathematical models (rate 

limited case). Note how the number of alerts levels off. 

A.5.1. Comparison of Mathematical Model and Emulation Model Results 

The mathematical model is validated against the results generated by the emulation model. Figure A 
5, Figure A 6, and Figure A 7 show the results for both models. For these particular results, a visual 
inspection shows a strong level of agreement between the two models, with the mathematical model 
results generally falling within the 95% confidence intervals of the mean value from the emulation 
model results. The data generated by the emulation model is both discrete (number of alerts triggered) 
and time-series (number of alerts per time-step).  For example, a particular run might have 0 alerts 
triggered in the first second, 3 alerts after 5 seconds, and 7 alerts after 10 seconds. After enough of 
these emulation runs are collected, we can generate a cumulative distribution function (CDF) at each 
time step on the number of triggered alerts.  In other words, we have a curve representing the 
probability that more than k alerts are generated by a given point in time. We compare the CDFs from 
both models using a more rigorous, statistical approach than visual comparison. We do this by using 
the Kolmogorov-Smirnov (K-S) test, a standard statistical test for comparing two distributions. Figure 
A 8 shows an example of the model and experimental CDF curves at time period 9 for a particular 
C2 scenario.  
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Figure A 8. Comparison of the emulation and mathematical models CDFs for the probability of 
exceeding a given number of alerts by time period 9. 

Using the K-S test, we can calculate a p-value for each time period, as shown in Figure A 9. Observe 
that for time period 9, the p-value is about 0.2. A high p-value indicates that the null hypothesis, that 
the two CDFs are statistically similar, cannot be rejected. While the p-value dips around time period 
9, it is still above 0.1 even at its lowest point. Given this, we would not reject the null hypothesis in 
this example. 

 
Figure A 9.  p-values for the K-S by time period. 
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In addition to the results shown above, we have compared the emulation and mathematical model 
results across a variety of parameter combinations. Though the results may not be perfectly identical, 
the combination of visual inspection and statistical comparisons provide confidence that the 
mathematical model is a reasonable proxy for the actual system and that it can provide reasonable 
estimates of alert statistics for the C2 scenario under consideration.  

A.6. Analysis and Uncertainty Quantification 

Given the high- and low- fidelity models, we next focus on uncertainty quantification (UQ) to 
understand how uncertainty in the input parameters propagates to the QoIs. We do this using two 
analysis methods: polynomial chaos expansion (PCE) and multi-fidelity UQ (MFUQ). We first use 
PCE to screen the 12 uncertain parameters shown in Table A 1 to determine which parameters are 
the most important for more detailed study. The screening is done using the low-fidelity mathematical 
model to avoid the computational costs of using the emulation model. Once the key parameters are 
identified, MFUQ is used to analyze the QoI using a combination both models. 

A.6.1. PCE Sampling 

In the UQ community, QoIs are commonly represented as a polynomial function of the uncertain 
inputs; this approach is referred to as a Polynomial Chaos Expansion (PCE) of the QoI. Provided that 
a QoI is a smooth function of the inputs, the smoothness in the polynomial representation can give 
an accurate representation with fewer samples than would be required with a Monte Carlo (MC) 
approach.  Once a PCE is constructed, it can be used to determine the mean, variability, or other 
moments of the QoI. PCEs can also be used to perform a Global Sensitivity Analysis (GSA) of the 
QoI with respect to each of the inputs. In other words, it can tell us which inputs contribute the most 
to the variability in the output. 

One of the challenges of applying the PCE approach to cyber security experiments is that many of 
the input variables are discrete. For example, the number of infected nodes on a network, the number 
of CPUs on the host that runs an IDS, or the nominal network bandwidth of the node connections 
are all discretely valued. Therefore, we employ PCEs that have been tailored to discrete random 
variables and their probability masses. These tools have been implemented in PyApprox, a Sandia 
open source software package for uncertainty quantification [10]. 

We applied this approach to the QoIs of total alerts and false positives at time period 5, for the 
parameter distributions as in Table A 1. This corresponds to a case with 12 uncertain parameters, 5 of 
which are discrete in nature. A third order PCE was trained on random samples of the QoI that were 
obtained with the C2 math model. Table A 2 shows the main effect indices for both QoIs for the 12 
uncertain parameters. 
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Table A 2.  Main effects from PCE analysis for the number of total alerts and false positives at time 
period 5. 

Parameters Total Alerts, 
t = 5 sec. 

False Positives, 
t = 5 sec. 

Number of infected workstations 0.87 0.00 

Fraction of benign packets with Emotet signatures 0.00 0.51 

Benign traffic per host 0.01 0.20 

Malware traffic per infected host 0.05 0.00 

Fraction of malware packets with Emotet signatures 0.03 0.00 

Snort capacity 0.01 0.01 

Other CPU Processes 0.01 0.00 

Number of CPUs to maximize snort 0.00 0.00 

Average packet size 0.00 0.00 

Detection rate for signatures in benign traffic 0.00 0.00 

Detection rate of signatures for malware traffic 0.00 0.00 

Drop rate multiplier 0.00 0.00 

 

Based on these results, the main parameter that impacts the value of total alerts is the number of 
infected hosts, with lesser contributions from the amount of malware traffic per infected host  and 
the fraction of malware packets that show the Emotet signature. The number of false positive alerts 
is most sensitive to the amount of benign traffic per infected host and the fraction of benign traffic 
packets that show the Emotet signature. 

 

A.6.2. Multi-Fidelity UQ 

Next, we explore the use of MFUQ to make optimal use of the emulation model which has high 
fidelity but is expensive to run and the lower-fidelity mathematical model which can be evaluated 
quickly. MFUQ estimator is built starting from the single fidelity MC results (Qminimega) and adding a 
weighted unbiased term which involves the lower-fidelity math model (Qmath). The benefit of this 
additional term is that it can reduce the variance of the QoI (see [12] for the technical details of this 
approach). Using this approach many samples from the low-fidelity mathematical model can be 
combined a relatively small number of high-fidelity emulation model results to decrease the estimator 
variance and obtain more accurate and reliable statistics, with reduced computational costs. 

 

 
Figure A 10.  C2 MFUQ estimator. 

 

Based on the screening results from the PCE analysis, we focus on the five parameters shown in Table 
A 3. A total of 40 samples of these parameters was used for this study. The emulation model required 
18 hours (plus additional processing time) to perform a total of 400 emulation runs (the 40 unique 
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parameter combinations with 10 iterations each). In contrast, the mathematical model required less 
than 1 second total for all 40 of the parameter combinations (0.4 s for all the samples). We note that 
the mathematical model is able to provide statistics for the QoI without being affected by any 
stochastic noise; therefore, we will compare the average from 10 emulation model replicas with the 
values from the mathematical model. 

Table A 3.  Key parameters of interest for MFUQ study 

Parameters Varied in Experiment  Units Value Distribution 

Aggregate Benign traffic rate 
 Packets per 
sec 

100-3000 Continuous log-uniform 

Fraction of benign packets with 
Emotet signatures. 

 
No units 1e-5 to 8e-4 Log-uniform 

Aggregate malware traffic rate 
 Packets per 
sec 

10-20 Uniform 

Fraction of malware packets with 
Emotet signatures 

 
No units 0.01-0.025 Uniform 

RAM assigned to the 1 CPU running 
SNORT 

 
Mbytes 

128, 256, 512, 
1024  

Discrete with equal 
probability 

 
For this study, we consider the total number of alerts at time periods1, 5, and 10. We begin by 
performing a pilot study to compare the total number of alerts generated from both models. From 
Figure A 11, we note that the correlation between both models is high, as confirmed in Figure A 12 
which shows the estimated squared correlation between the models at the time steps considered. 
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Figure A 11.  Scatterplots of total number of alerts at timesteps 1, 5, and 10 for 40 parameter 

samples for the emulation and mathematical models. 

 
Figure A 12. Correlation squared between the emulation and mathematical models at time steps 1, 

5, and 10. 

From the pilot study, it is possible to estimate the variance of the number of alerts, which is reported, 
along with the coefficient of variation, in Figure A 13. We note that the variance of the number of 
alerts increases with time (as expected), and that the coefficient of variation (defined as the ratio 
between the standard deviation and the mean) approaches a value of 92%. By leveraging this 
information (relative to the computational costs of the two models and their correlation), we obtained 
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the optimal number of mathematical model replicates that would be required to minimize the 
estimator variance for a fixed number of emulation model experiments. Due to the increase in variance 
with time, the most restrictive condition is obtained for the time of 10 seconds. At this time, the 
optimal estimator is obtained by using a total of 86840 mathematical model samples. By adding 
samples to the original 40 samples from the emulation model, we obtain an estimator with a total cost 
of 40.53 equivalent emulation model runs. It follows that we can reduce the variance of the estimator 
by only adding a fraction of the cost of a single emulation model run (0.53). 

 
Figure A 13.  Variance (left) and coefficient of variation (right) for the total number of alerts. 

In Figure A 14, we report the mean number of alerts and the associated 99.7% confidence interval for 
the MFUQ estimator and the single-fidelity MC estimator. From the experiments, we can also evaluate 
the estimator variance, which was used to calculate the confidence intervals. We note that the variance 
reduction that the MFUQ estimators attains increases with time since the Multi-Fidelity estimator can 
maintain a high variance reduction with respect to MC, thanks to the increasing correlation between 
the models. The single MC estimator is not able to compensate for the increase in variance over time, 
and consequently, its confidence intervals grow more rapidly with progressively less accurate 
estimation for the mean number of alerts. 

 
Figure A 14. Prediction of mean number of alerts and associated confidence interval for single 

(MC) and multi-fidelity (MF) estimators. 
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A.7. Conclusions 

This exemplar demonstrates how the capabilities developed under SECURE can be used to support 
rigorous cyber experimentation. Specifically, it shows: 

• How experiments and metrics can be used to verify the behavior of emulation models. 
• How to develop low-fidelity models to approximate high-fidelity models and how to validate 

the outputs of these models. 
• How UQ methods can be used to efficiently explore input and output uncertainty. 
• How high- and low-fidelity models can be combined to effectively utilize the 

experimentation budget. 
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APPENDIX B. SCANNING AND DETECTION CASE STUDY 

B.1. Overview 

This section discusses scanning for vulnerable RTUs (remote terminal units) and the detection of 
scanning activity within the SCADA network. This activity is part of the end-to-end threat scenario, 
depicted in the purple box in Figure B 1. 

 

 
Figure B 1.  SECURE end-to-end threat scenario, with SCADA network studies highlighted 

 

In this scenario, when the attacker lands on an engineering workstation in the power grid control 
center, it doesn't know the IP addresses of RTUs that are vulnerable to the CRASHOVERRIDE 
malware, so it must scan for them. However, as the attacker is scanning, the defender is monitoring 
SCADA network traffic and examining it using an intrusion detection system (IDS). One method used 
by IDS to detect scanning activity is to look for network packets that might indicate such activity, and 
when these packets are received with an intensity above a certain threshold, the IDS signals an alert. 
This detection approach guides an attacker's strategy: it can attempt to run slowly "below the radar" 
of IDS detection (at the expense of launching its attack later), or it can run quickly (at a higher risk of 
detection). 

The following sections describe the mathematical modeling, the ns-3 simulation, and the emulation-
based experimentation that were applied to model this step in the attack timeline. 

B.2. Scenario 

The scenario addressed in the emulation, simulation, and mathematical models assumes the attacker 
uses Nmap to scan for vulnerable RTUs, and the defender uses Snort (with the sfportscan module) to 
detect scanning activity. Both tools were selected for these models because they are commonly used, 
open source, and familiar to the experimental team. In particular, the fact that these tools are open 
source means that the experimental team can better understand how these tools work "under the 
hood," which is especially important when developing simulation and mathematical models. However, 
it's important to emphasize that, although these specific tools were selected for the studies, the 
methodologies (and, in some cases, the results) are generalizable to other scanning and IDS tools. 
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B.3. Topology 

The topology studied in the emulation, mathematical, and simulation models is shown in the following 
Figure B 2. 

 
Figure B 2. Notional SCADA network topology for scanning/detection study 

 

This topology (which does not reflect a particular real-world SCADA/ICS network, but is meant to 
be representative), consists of the following components: 
• An engineering workstation in a control center network that represents the attacker's current 
location, from which it scans the SCADA network for vulnerable devices; 
• A router that separates the control center IP subnet from the SCADA network IP subnet; 
• An IDS that listens to all traffic on the SCADA network IP subnet; 
• 8 SCADA substations, all on the same IP subnet; and 
• 24 hosts, distributed across the SCADA substations, configured as follows:  

o 4 hosts are vulnerable to CRASHOVERRIDE, 
o 8 hosts are not vulnerable, but are discoverable, 
o 12 hosts are neither vulnerable nor discoverable. 

 

B.4. Nmap 

As described earlier, in our modeled scenarios we configure the attacker node to use Nmap to scan 
for and find vulnerable nodes. Nmap performs its scan using the Transmission Control Protocol 
(TCP) connection establishment protocol to look for active IP addresses with open ports, as shown 
in the following Figure B 3: 
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Figure B 3. Nmap protocol operations while scanning open, closed, and filtered hosts 

 
In our scenarios, we model "vulnerable" hosts (see previous section) as hosts that have a particular 
port in the "open" state, which represents a vulnerable application. When Nmap scans a host on an 
active IP address with an open port (i.e. an application listening on that port), Nmap sends a TCP 
SYN (synchronization) packet to that host IP/port combination, and the host responds with a 
SYN/ACK (acknowledgement). Normally the initiator would acknowledge the connection with a 
third message, ACK; however, Nmap does not want to maintain an open connection, so it responds 
with an RST (reset). If Nmap receives a SYN/ACK from a remote host, then it knows two things: 
that the IP address is valid, and that an application is listening on that port. 

Our scenarios model non-vulnerable but discoverable hosts as hosts that have that particular port in 
the "closed" state (meaning that these hosts are not running the vulnerable application). When Nmap 
scans a host on an active IP address with a closed port, Nmap sends a TCP SYN packet to the host 
IP/port combination, and the host responds with a SNY/RST message. Therefore, if Nmap receives 
a SYN/RST from a remote host, it knows that the IP address is valid, but there is no application 
listening on that port. 

Hosts that are neither vulnerable nor discoverable are modeled as hosts with the IP address/port 
combination that are "filtered." In this case, when Nmap sends a TCP SYN message these hosts, there 
is no reply back to the Nmap host, meaning that the host either does not exist, or chooses not to 
reply. 

Intrusion detection systems (IDS) will observe these connection request/response packets and use 
them to determine whether a scanning attack is occurring, as described in the next section. To counter 
IDS, Nmap has a couple of command line configurations that can be used. To reduce the scanning 
traffic intensity, Nmap allows the user to increase the delay between scanning probes (the “delay” 
parameter) and decrease the number of hosts that are probed in each attempt (the “host group” 
parameter). By default, Nmap scans hosts in sequence by IP address; however, that approach could 
tip off an IDS, so Nmap has a command line parameter to randomize the sequence in which the hosts 
IPs are probed. 

In our studies, we varied parameters related to attacker strategy (i.e. “fast” vs. “slow”) and randomness 
(i.e. “sequential” vs. “random”). In addition, we also configured our experiments to allow random 
packet drop (i.e. “no drop” vs. “drop”), to determine the effect of imperfect packet transfers on 
results. The combination of the randomness order and random packet drop parameters are organized 
into two formulations: a deterministic formulation (i.e. sequential ordering, no packet drop) and a 
stochastic formulation (i.e. random ordering, random packet drop). The plots shown later in this section 
show results from both formulations. 
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B.5. Detection 

Our scenarios assume intrusion detection using Snort (Ref. 2). Snort is a very flexible IDS framework 
that uses signature definition files and rules to identify traffic as malicious. In this example we use the 
“sfportscan” rule to detect Nmap scanning traffic using the technique identified in the previous 
section. As shown in Figure B 4, the sfportscan rule looks for SYN/RST traffic from "closed" (i.e. 
non-vulnerable, but discoverable) hosts, which is indicative of a scanning attack. If Snort/sfportscan 
counts five or more SYN/RST packets within a 60 second window, then it generates an alert. Our 
models and scenarios consider two attacker strategies: a "fast" strategy where the attacker attempts to 
discover as many vulnerable nodes as quickly as possible, and a "slow" strategy where the attacker 
attempts to stay within the 5 SYN/RST packets within a 60 second threshold. The results shown later 
in this section account for both strategies. 

 
Figure B 4.  Snort “sfportscan” rule 

B.6. Tools 

B.6.1. Mathematical model 

We developed a mathematical model to assess the port discovery process. The model describes the 
stochastic state transitions that occur within the Nmap protocol that occur over time during the 
scanning process. This mathematical model is described in detail in (Ref. 1) and summarized below 
and in Figure B 5: 

1. The model states (illustrated in Figure B 5) are defined by the progress that Nmap makes 
scanning the nodes. The initial state at time 0 (indicated in the state on the far left of Figure 
B 5) contains key model parameters provided to the model. Each state consists of three lists 
that track the nodes that have yet to be scanned (topmost list in the state figure), the nodes 
that are being actively scanned (middle list), and the nodes that have already been scanned 
(bottom list). Furthermore, the color of the dots in the lists indicates the scanned nodes' 
status - magenta for filtered (inconclusive), green for closed (secure), and red for open 
(vulnerable). All nodes begin in the first "To Scan" list in the initial state. 

2. The model describes the transition from the initial state to subsequent states (in the second 
column in Figure B 5). The transition probabilities Pr{# filtered, # closed, # open} are 
determined by the number and type of nodes that have yet to be scanned and the probability 
that combinations of nodes are selected for scanning. 

3. The third step the model consists of a third set of states (third column) that describe which 
nodes have been discovered (i.e. TCP SYN/RSTs occurred) and which ones timed out. The 
transition probabilities are conditioned on the current (second) state and depend on which 
nodes have been discovered so far. That is, the transition probability is Pr{# 
filtered_to_scan, # closed_to_scan, # open_to_scan | # filtered, # closed, # open} 

4. If timeouts occurred, steps 2 and 3 are repeated. 
5. Steps 2-4 are repeated until all nodes are moved to the Scanned list. 
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The steps in the model are implemented to effectively create a probability tree that lists the 
probability of discovering open, closed, and filtered nodes at each time step. 
 

 
Figure B 5. Mathematical state transition diagram 

We use the model results to compute the statistics of port discovery. Figure B 6 shows the open port 
discovery process. The magenta stars represent the mean number of open ports discovered, as 
calculated with the math model. The blue line represents the mean number of open ports discovered 
from 1000 runs of the minimega emulation model, and the dashed black lines represent the 95% 

confidence intervals on the emulation means. The plot shows the mathematical results tracking the 
mean of the minimega runs and falling within the 95% confidence interval of these runs. This 

agreement validates the predictive value of the mathematical model, which, for small topologies, can 
run more quickly than the emulation model, making it more suitable for more widely evaluating the 
effect of configuration parameters (e.g. host group size and delay) on the results. 

 
Figure B 6. Port discovery analysis (mathematical model and minimega emulation) 
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The model results were also processed to determine when and if detection would have occurred using 
the logic in the Snort sfportscan algorithm. These times were compared against the detection times 
that were experimentally determined using the minimega topology. The mathematical results, 

shown in Figure B 7, also closely track the results from the emulation runs and, again, validate the 
mathematical model's predictive ability. 

 
Figure B 7. Detection times 

B.6.2. ns-3 

Ns-3 (Ref. 3) is a discrete event simulator that is used for network simulation and has an extensive 
model library for various network links, devices, and applications. Because it is a simulation, the 
components are abstracted objects and it does not run real implementations of applications and 
protocols. However, ns-3 simulations can run much more quickly when compared to emulations 
because discrete event simulations are event-driven rather than time-driven and can run faster than 
real time. This makes an ns-3 simulation particularly useful for serving as the low fidelity model in 
multi-fidelity modeling studies because it is much more efficient, and if implemented correctly, well 
correlated with emulation runs. 

The Nmap ns-3 model developed in this work implements two major components - a topology and 
an Nmap application simulation model. The topology, shown in Figure B 8, corresponds to the 
SCADA network topology described earlier, but is different from the emulation model topology in a 
couple of ways: 

• The ns-3 simulation topology has each SCADA device on its own subnet: 
This design choice is an artifact of how the example ns-3 star topology code does subnetting, 
and should not appreciably affect packet timings and results. Nevertheless, it does affect 
scalability of the topology because the subnetting schemed used in the model only allows up 
to 255 subnets (and with one host per subnet, 255 hosts). 
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• Different mechanisms are used to implement closed and filtered nodes: 
Whereas the emulation uses iptables filtering to implement closed and filtered nodes, the ns-
3 model does not install a packet sink on closed nodes, and causes Nmap to scan unused IP 
addresses for filtered nodes. 

 
Figure B 8. ns-3 model for scanning/detection 

 
The Nmap application running on the scanning node functions similarly to the real Nmap application 
running in the emulation. Also, the ns-3 model implements packet dropping using a similar mechanism 
that is used in the emulation model. 

B.7. Emulation experiments using Scorch 

The name SCORCH comes from the terms SCenario ORCHestration. It is primarily an automated 
scenario orchestration framework for emulation-based models, where a scenario is a specification of 
high-level experimental behaviors for a given experimental goal. Concretely, SCORCH is implemented 
as a python package that interfaces with minimega to run experimental scenarios on and collect 

data from emulation-based models (EBMs) managed by minimega. 

At a high-level, basic SCORCH usage is as follows. First, a scenario configuration file is created that defines 
a scenario (experimental behaviors), model parameters, and output parsing. This file describes the 
“what” of the experimental scenario. The scenario is defined in terms of modular scenario components 
which represent re-usable experiment primitives. The code implementing components describes the 
“how” of the experimental scenario. 

Secondly, a minimega topology is deployed on a hardware cluster (or single machine). This is the 

EBM to which the experimental scenario will be applied. This step highlights a degree of separation 
between structure and function of the experiment. The minimega topology represents the structure 

of the experiment while the SCORCH scenario represents the function. This separation enables 
efficiency in experimentation by, for example, enabling the user to apply the same scenario to a variety 
of topologies without the need to re-create the scenario for each topology, or enabling the user to 
apply a variety of scenarios to the same topology without having to tear down the topology. 
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In this study, the SCADA network topology is deployed within minimega where each virtual 

machine (VM) receives the necessary software and model parameters to execute the 
scanning/detection scenario. For example, the scanning VM includes Nmap and a list of parameters 
such as: number of IP addresses and ports to scan, specific port number to scan, time to wait between 
scans (delay), etc. This set is subsequently used to scan the SCADA network. Each time a port is 
scanned, the metadata associated with the scan is logged to an Nmap.out file. To counter the 
adversarial scanning VM, the detector VM runs snort and its configuration parameters capable of 
sensing the syn packets used in Nmap probing. If snort notices a packet that aligns with criteria in one 
of its rules, it will signal an alert and append all such to an alert file. During this reciprocal exchange, 
tcpdump captures all traffic on the network by way of a port mirror residing on the minimega virtual 

LAN hosting the SCADA network. This data is saved as a PCAP file. 

B.7.1. Data collection 

Input/output to and from the live virtual network is handled by the individual components as 
facilitated by the framework. Here, the minimega command and control agent, miniccc, handles the 

data input and output process, in tandem with the snort, tcdump, and filebeat components. During 
SCORCH execution, the Nmap and snort components call miniccc to signal that their respective 
model parameters and other supporting data, be added to the model. This occurs during EBM setup, 
where miniccc copies the data from the hardware cluster node to the respective VM within the 
minimega topology. After the experiment has completed, each component initiates an exfil process 

where it again calls the miniccc agent to extract any logging data accrued by Nmap, snort or tcpdump. 
This data is then written to the host cluster node for analysis. If enabled, SCORCH interfaces with 
Filebeat to push the collected experimental data and artifacts to a specified Elasticsearch server.  

Following data collection, post processing scripts run against the PCAP and snort alert files to derive 
the time delta (in seconds) between the 1st packet captured and the 1st alert instance captured, for 
every Nmap portsweep occurrence. If any time format discrepancies exist between the PCAP and 
alert file, the scripts will convert the packet time to reflect seconds since Unix epoch time (Jan 1, 
1970).  Once the initial alert time values have been calculated, the post processing scripts aggregate 
the initial alerts times for every experiment and log to a metrics.txt file. This is done for each snort 
sensitivity level (low, medium, high). 

B.8. Experimental methods 

B.8.1. Experiment reproduction 

Reproducibility is essential to science because it ensures results are not biased according to overt or 
hidden desires for a particular outcome. The SECURE team, working with our collaborators from 
Texas A&M University (TAMU), wanted to see understand the degree to which the results published 
in (Ref. 1) can be reproduce by a research team that did not contribute to the original paper. In the 
process of reproducing this study (which is described in detail in Ref. 4), the team not only considered 
the methods for reproducing the results, but also the metrics by which the results from Sandia and 
TAMU should be compared. The comparison metrics used during this study were: 

• t-test: the t-test is a widely-used test for determining if there is a statistically significant 
difference between the means of two data sets, 
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• Kolmogorov-Smirnov Test: the KS-test is a non-parametric statistical test for equality of 
distributions, based on the maximum difference between the cumulative distribution 
functions (CDFs), 

• Area Test: the area test also compares CDFs, but accounts for the entire difference between 
CDFs rather than the maximum difference, and 

• Relative Hausdorff Distance: originally developed for graph analysis, the Relative Hausdorff 
Distance can also be used to compare distributions 

The plots in Figure B 9 show the application of these metrics to compare Sandia and TAMU port 
discovery results in the case where there is no added randomness (i.e. deterministic formulation): 
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                     Fast, deterministic          Slow, deterministic 
Figure B 9. Port Discovery Statistical Test Results for Deterministic Case 
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The results above show perfect agreement between the Sandia and TAMU results, as evidenced by all 
four metrics, indicating that TAMU correctly set up the experiment for the deterministic 
formulation. The plots in Figure B 10 show the application of these metrics to compare Sandia and 
TAMU port discovery results in the case where there is there is added randomness in the Nmap search 
order and in packet loss (i.e. stochastic formulation): 
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Fast, stochastic            Slow, stochastic 

Figure B 10. Port Discovery Statistical Test Results for Deterministic Case 
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From these comparisons we find that the KS Test shows good agreement between the Sandia and 
TAMU results, as evidenced by the p values > 0.05. The Area Metrics for all cases also show good 
agreement as evidenced by the consistently low area values. However, we find that the Relative 
Hausdorff metric does not seem to be a suitable metric for comparing results, as seen in the plots 
above.  

B.9. Verification 

An important part of using emulation is verifying whether the emulation environment is working as 
intended, also called verification [Ref. 5]. Part of verification involves software testing and quality 
assurance. A unique aspect of cyber emulation involves assessing the performance of the emulation 
running in the virtualized environment and determining whether there are sufficient resources to 
properly handle the scenario that is being run. If there are not, the virtualized components may 
produce experimental artifacts and behavior that result in the experimental outcomes being 
unrepresentative or incorrect.  

Under SECURE, we focused on determining whether there are sufficient virtualized resources to 
support the emulation experiment and whether we can identify metrics that indicate when the results 
of an emulation experiment are unreliable. We refer to these metrics as telemetry metrics, following 
the usage of this phrase from Microsoft [6], Google [7], Intel [9] and Sumo Logic [9].  We studied 
telemetry metrics such as system load and CPU utilization relating to the performance of virtual 
machines which are used in the scanning/detection scenario and the physical machine hosting that 
study. We ran experiments with various levels of over-subscribed resources.   

In these experiments, we purposefully put more and more strain on the physical resources available 
to the emulation experiments. We accomplished this by forcing the physical host to do more and more 
work in parallel through the concept of a namespace, which is an isolated copy of the experiment 
environment running on its own VLAN.  For the purposes of this study, we ran several iterations of 
the same experiment with increasing numbers of parallel namespaces. By increasing the number of 
namespaces, we hoped to reach a point of resource over-subscription, where the results of the 
experiments run are affected by emulation artifacts caused by this over-subscription. We saw evidence 
of oversubscription at 20 namespaces and greater [Ref. 10]. 

We found that statistical tests such as the Tukey multiple mean comparison test was useful to identify 
anomalies in results as we increased the number of parallel namespaces running in the experiments.  
For scanning/detection, as we increased namespaces, we found that the alert time distributions shifted 
upward and became much more diffuse with longer tails.  We also found that the telemetry metrics of 
system load and throughput were effective at filtering out replicates which had statistically significantly 
different results than the baseline case with one namespace [10]. 

B.10. Validation 

Validation is the process of verifying that the model is correct with respect to the questions that it is 
intended to answer. Validation can be done in several ways; it can be performed on multiple models 
and compared (i.e. cross-validation), and validation experiments can be conducted in physical testbeds 
and compared with models. In the SECURE project we performed two different kinds of physical 
experiments and compared the results with the minimega scanning/detection model: 



 

95 

1. Validation experiments on physical hosts in the Sandia Carnac cluster. The physical hosts 
used for these experiments were all identical, but configured differently to assume different 
roles in the validation experiment, and 

2. Validation experiments using physical and virtual devices in the Texas A&M testbed. 
Physical relay devices were used to model vulnerable hosts (open ports) in the scanning 
detection scenario, however, due to limited numbers of physical devices, closed ports were 
modeled using the CORE virtual machine testbed, and filtered devices were modeled using 
firewall rules in the network switch. 

The Carnac validation experiments utilized the same software (applications and operating systems) 
that was used in the minimega virtual machine-based experiments. The primary differences between 

the minimega and Carnac experiments were 1) minimega used KVM-based virtual machines 

whereas the Carnac experiments were run on physical hosts, and 2) a few configuration differences 
due to differences in networking between the virtual and physical experiments. We found the port 
scanning and Snort detection time results between the minimega and Carnac experiments matched 

up very well. 

The Texas A&M University (TAMU) physical testbed experiments used a mixture of physical and 
virtual hosts in order to achieve the scales that were needed to conduct the validation experiment. The 
TAMU team used four field devices to implement vulnerable hosts with open ports, eight virtual 
machines running in the CORE virtual testbed environment to represent secure hosts with closed 
ports, and used firewall rules in the network switch to represent 12 secure hosts that are filtering 
inbound TCP connection requests. The TAMU physical testbed configuration used the same scanning 
and detection software used in the minimega experiment, however, because the TAMU testbed was 

very different from the minimega testbed, a number of custom scripts were written to orchestrate 

the experiment and collect data. These scripts required some amount of debugging, resulting in some 
back-and-forth between the Sandia and TAMU teams to make sure the physical experiment was 
producing correct validation data. Due to limitations in available time, the two teams were able to 
validate port discovery but did not have an opportunity to assess validation with respect to detection 
times. Detailed port discovery validation data are presented in Ref. 11.  

B.11. Optimal segmentation 

Network segmentation is a strategy used by the network designer to limit the scope of what an attacker 
may see if they are able to achieve a malware presence on the network. However, network 
segmentation has costs and constraints on the network design - too much segmentation will incur 
excessive costs and exceed the defender's budget. Therefore, a tri-level optimization formulation was 
developed to account for 1) network designer's budget, 2) attacker's budget (in terms of the number 
of networks that the attacker can compromise), and 3) the network operator's response to an attack 
(e.g. re-dispatching generation resources to loads). This optimization model and results are 
documented in Ref. 12.  
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APPENDIX C. SCADA NETWORK/POWER GRID IMPACTS 

C.1. Overview 

This section demonstrates how the methods developed under SECURE can be used to analyze the 
power grid impacts of the larger attack chain. Recall that the full end-to-end exemplar considered 
under SECURE describes a multi-stage attack in which an attacker attempts to access a power utility’s 
corporate enterprise network, pivot to the ICS network, identify vulnerable RTUs, run the 
CRASHOVERRIDE malware and ultimately disrupt operations by causing load shed. The focus of 
this article is the power grid impacts caused by the CRASHOVERRIDE malware.  

C.2. CRASHOVERRIDE 

CRASHOVERRIDE was malware designed to attack power grids and was used in the 2016 cyber 
attack on the Ukrainian electric grid. Unlike the previous attack on the Ukrainian grid in 2015 in which 
attackers manually switched off power to electrical substations, the CRASHOVERRIDE attack was 
fully automated and could perform attacks much more quickly and with less preparation. Once the 
malware had infected the system, CRASHOVERRIDE could launch four payload modules. This 
study focuses on the module that communicates directly with grid equipment and switches breakers 
within the power grid. https://www.dragos.com/resource/crashoverride-analyzing-the-malware-
that-attacks-power-grids/ 

In power systems, field devices (such as relays, RTUs and PLCs) monitor and control the power grid. 
CRASHOVERRIDE understands how to enumerate and discover the inputs and outputs to field 
devices and leverages this to open circuit breakers in the power system. Additionally, 
CRASHOVERRIDE can force the field devices into an infinite loop thus continually opening the 
circuit breakers even if operators are dispatched to re-close them.  

In our multi-stage attack, Nmap is used to scan the network for vulnerable RTUs. 
CRASHOVERRIDE will then target only those RTUs and open the breakers associated with those 
RTUs. The power grid impacts of this CRASHOVERRIDE attack will highly depend on the 
identification of vulnerable RTUs.  

C.2.1. CRASHOVERRIDE Configuration 

CRASHOVERRIDE modules were designed to be used with configuration files specifying various 
parameters of the attack. This section focuses on the configuration associated with the module that 
targets the protocol payload. In this configuration, a set of stations are specified for an attack. Each 
targeted station has the following configuration options: 

• target ip - specifies the IP address of the targeted field device 
• first action - specifies the first action (on or off) used to switch grid components 
• change - specifies whether to continually toggle power grid equipment (1) or only change 

once (0) 
• interval - specifies the time interval in between toggles 

C.3. TAMU Topology 

Power grid impact experiments were all performed on a synthetic cyber-physical topology of the Texas 
power grid developed by Texas A&M University's (TAMU) Cyber Physical Resilient Energy Systems 
(CyPRES) project. https://cypres.engr.tamu.edu/test-cases/ 

https://www.dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids/
https://www.dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids/
https://cypres.engr.tamu.edu/test-cases/
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This topology consists of both cyber and physical components. The cyber model shown in Figure C 
1 has three main sets of components: (1) balancing authorities, (2) utility control centers, and (3) 
substations. The primary and secondary balancing authorities are responsible for managing the flow 
of electric power among the utilities. The utility control centers are responsible for monitoring multiple 
substations and contain networking equipment, a demilitarized zone, and SCADA software. The 
substations are responsible for monitoring and controlling the power grid and contain networking 
equipment, relays, as well as corporate devices such as PCs, security cameras, phones, and card readers. 
The relays in each substation are mapped to busses and branches of a synthetic 2000-bus power model 
of the Texas grid shown in Figure C 2. Overall, this topology contains 2 balancing authorities, 150 
utility control centers, and 1251 substations. 

 
Figure C 1. TAMU cyber topology 
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Figure C 2. 2000-bus power model 

C.4. Power Grid Impact Studies 

The CRASHOVERRIDE malware and the TAMU topology were used for two main studies: an 
uncertainty quantification study and an optimal segmentation study.  

C.4.1. UQ Study 

A workflow was developed for the UQ study that leverages both traditional UQ tools and emulation 
tools. Dakota provides a means to sample CrashOverride parameters and generates a CrashOverride 
configuration file. For each sample of parameters, Scorch then injects the new CrashOverride 
configuration file into the SCEPTRE experiment, runs the CrashOverride malware in SCEPTRE, 
collects physical process data from the power model, and then resets the SCEPTRE emulation. 
Dakota then chooses the next sample and the process repeats. The data is then post processed and 
can then be further analyzed.  

The UQ study was performed on a small subset of the TAMU topology consisting of 1 balancing 
authority, 2 control centers, and 11 substations. All protections on relays in the topology were disabled 
so that the effects of CRASHOVERRIDE could be clearly identified. 800 experiments were run 
sampling the parameters in Table C 1. The overall timing of each experiment was 150s; the first 30 
seconds of each experiment was normal operations. CRASHOVERRIDE was executed at the 30s 
mark and was run for an additional 2 minutes. The physical process data was post-processed to 
calculate loss of load for each experiment. 

Parameter Values 

target ip set of 49 relay IPs 

first action [off] 
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change [0, 1] 

interval [10, 11, 12, ..., 60] 

Table C 1.  Parameters of UQ Study 1 

 

Figure C 3 shows results of the UQ study. Each point on the plot shows the loss of load results for a 
single experiment. The red line shows the mean regression line. the green line shows the median 
regression line while the black lines show the regression lines for the 0.05, 0.1, 0.25, 0.75, 0.9, 0.95 
quantiles respectively.  

 
Figure C 3. UQ Experiment Results with Quantile Lines for Normalized Loss of Load 

 
For a given number of RTUs out (such as 4), there is a huge spread in the loss of load based on which 
four RTUs are targeted.  This variance makes it hard to get a good regression model: the regression 
captures the mean trend but does not capture the variance well. If we instead look at the quantile 
regression lines, there is a better trend than with the mean regression line. Each quantile regression 
also gives us an analytic formula for a tail probability of normalized loss of load. For example, the 
95th quantile = 440.18+27.10*RTUs_out. This formula can be used in end-to-end CRASH studies, 
where we want to couple upstream attack uncertainties to a tail probability loss of load (instead of 
worst case). 

Future studies are planned, to increase complexity of the model by scaling the size of the topology as 
well as reimplementing the relay protections. However, due to the large variability of results present 
in the small topology, future work will first include more analysis of the current results such as worst-
case analyses.  

C.5. Segmentation Study 

The second study using the TAMU topology and CRASHOVERRIDE malware was a segmentation 
study. The optimal segmentation work determined optimal segmentation of a network using 
mathematical optimization. This study applied the mathematical results to the TAMU topology and 
investigated the impacts the CRASHOVERRIDE malware would have on this new, segmented 
topology. We hypothesized that using the mathematical results would decrease the impact of the 



 

101 

CRASHOVERRIDE malware since optimal segmentation would force the attacker to pivot more 
within the network to deliver the CRASHOVERRIDE payload to specific relays.  

A workflow was designed that interfaces emulation with mathematical optimization for network 
segmentation. The workflow starts with an initial SCADA network implemented in SCEPTRE. The 
design of the topology (i.e. current network segments) is input to the mathematical optimization. The 
mathematical optimization then does two things. 1) identifies the worst-case attacker on the original 
topology and 2) identifies a new optimally segmented network topology along with the worst-case 
attack for this new topology. The SCEPTRE topology is then updated with the new segmented 
topology.  Theoretically speaking, this is done by re-subnetting and applying new firewall rules. 
However, for our example, we wanted to investigate the effects of the CrashOverride malware against 
the optimal and non-optimal network topologies. So practically speaking, we investigated this by 
simply changing the potential targets of CrashOverride based on the segmentation that came from the 
optimization. 

To gather results, the worst-case attacker (specific to each topology) was used to identify the set of 
RTUs that CrashOverride would target. The CrashOverride malware was implemented and for each 
topology, 100 experiments were run varying the other parameters of CrashOverride.  Figure C 4 shows 
results of this study. The results show that the optimal segmentation of the network lowered the 
cumulative loss of load for the scenario.  

 
Figure C 4. Segmentation Results 

Moreover, this study shows the value of coupling mathematical optimization with emulation. 
Determining an optimal segmentation in emulation is usually SME driven and would require full 
enumeration or brute force to determine a true optimal solution. This is infeasible in emulation so 
practically heuristics would normally be used, but these do no guarantee an optimal or even near 
optimal solution. By coupling the emulation with mathematical optimization, most of the burden is 
done by the lightweight mathematical model.  

Beyond this initial study, other questions we want to answer about this study are: 

1. Can we use emulation to show that the mathematical result is better than SME design?  
2. Can we use emulation to explore the robustness of the mathematical abstraction? 
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3. Does the incorporation of other real-world parameters (such as scanning and detection 
probabilities) affect the optimality of the segmentation? 

4. What are the tradeoff costs between cost to implement segmentation versus benefit the 
segmentation provides against an attacker? 
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APPENDIX D. OPTIMAL SENSOR PLACEMENT MODEL 

This appendix describes the optimal sensor placement model, which is a network interdiction model 
that identifies where a defender should place intrusion detection systems (IDSs) in a cyber system to 
minimize the probability that attackers can successfully achieve a given attack objective. For example, 
an attack objective could be to cause a specific amount of load not served by the power grid. 

This model combines four key elements to create a realistic representation of a cyber-physical system, 
and attacker and defender behaviors. First, it uses cyber-attack graphs to represent the landscape 
where attackers and defenders make decisions and interact. Attackers must move across these graphs 
from the initial point of compromise to locations where they can produce a cyber or physical 
consequence. At each step of the attack they will select subsequent actions so that the probability of 
being detected is minimized. Second, it captures the constraints that defenders must consider when 
installing IDS in a cyber network. Third, it uses threat information about known cyber threat groups 
to model attacker behaviors. Finally, when applicable, it uses physical system models to ensure that 
the attacks that occur on the cyber network produce the desired effect on the physical system.  

This model uses bi-level programming to capture the interactions between the defender and the 
attacker. The defender makes the first move by selecting which IDSs should be installed in the cyber 
network and how they should be deployed. The attacker can see the defender’s decisions before 
deciding which actions to take and will change their attack strategy based on where sensors are placed. 
While the defender must move first, they are able to anticipate the attacker’s response to their actions 
and incorporate that information into their decision. Bi-level programming makes certain assumptions 
that are likely unrealistic in practice. For example, in its standard form it assumes that the attacker has 
complete knowledge of the system that is being attacked. However, by assuming the attacker has 
complete information the worst-case attacks can be bounded. This information can help cyber analysts 
focus on the most important attack and defense strategies. 

The remainder of this paper is organized as follows. Section D.1 describes the four elements of the 
model in more detail. Section D.2 provides the details of the math model formulation and techniques 
used to solve the model. Section D.3 demonstrates the application of this model to a small attack 
graph. 

D.1. Model Elements 

This section describes the approach for modeling each of the four major elements of this model. A 
common theme throughout each of these sections is to make the model as realistic as possible for 
modeling and protecting cyber-physical systems. 

D.1.1. Attack Graphs 

For this model, we use attack graphs to represent the “game board” where the attacker and defender 
interact. Attack graphs were developed and first applied to cyber application in the 1990’s and various 
methods have been developed for generating attack graphs [1,2,3]. In a cyber-attack graph, nodes 
represent different states of the system. The state of system can include information that describes 
whether an attacker has access to a component of the cyber system, their permission levels, and trust 
relationships that exist between components. The edges represent the actions taken by the attacker to 
move from one system state to another. 



 

104 

D.1.2. Defender Model 

The defender model describes the decision space available to the defender for installing and 
configuring IDS. It consists of the defender’s objective, the available decisions, and constraints on 
which combinations of decisions are allowable. 

The defender’s objective is to minimize the likelihood that an attacker can achieve a given consequence 
on the physical system without being detected. This is different that the objective functions employed 
in many interdiction models that typically focus on minimizing the worst consequence that at attacker 
can achieve. One advantage of focusing on the worst possible outcome does provide a bound on how 
much damage the attacker could cause to the physical system. The disadvantage of this approach is 
that the mitigation strategy for the worst-case scenario may not protect against other attack scenarios 
that cause less damage to the system. Furthermore, attackers may have specific objectives in mind that 
have a much smaller impact than the worst-case attack. Similarly, defenders may have a threshold for 
system failure that is less than the worst-case attack. The approach employed by this model allows the 
defender to define the threat and then determine the necessary steps to protect against it. 

In this model, we consider two types of defender decisions for IDS. The first type is edge interdiction 
decisions. These are binary choices indicating whether an edge on the attack graph should be 
protected. Each edge is assumed to have a baseline probability of detection if no action is taken and 
an increased probability of detection if the defender chooses to protect the edge. The second type is 
enabling capability decisions. These are decisions that do not directly map to the attack graph but enable 
one or more edge interdiction decisions. These types of decisions provide for more flexibility when 
modeling the defender’s decision space. For example, if an IDS system includes a fixed and variable 
cost component, an enabling capability decision can be used to represent the upfront acquisition cost 
and edge interdiction decision variables can be used to represent the cost of interdicting each edge. 

The model includes three types of constraints on the defenders IDS decision. The first is a cost 
constraint that prevents the combined costs of all IDS decisions from exceeding the available budget. 
The second is a constraint on the false alarm rate of a given protection strategy. False alarms consume 
cyber analysts time, erode confidence in the system, and increase the likelihood that actual attacks are 
missed, therefore it is desirable to keep the rate of alarms to a manageable level. Finally, the model 
includes constraints that limit the burden that can be placed on users of the system due to IDS 
placement. Disallowing users from performing certain tasks or onerous authentication requirements 
make it more difficult for users to perform legitimate function, so a balance must be struck between 
security and usability. 

D.1.3. Attacker Model 

We use the threat group information in the MITRE ATT&CK™ database as the basis for representing 
the attacker behavior in this model [4]. ATT&CK contains a list of known cyber-threat groups. For 
each group, it identifies the techniques that the group has been observed to use. When executing an 
attack, the attacker is only able to use edges on the attack graph that are within their list of observed 
capabilities. The only other constraint we place on the attacker is that they must execute an attack that 
achieves at least the target level of disruption. The objective for the attacker is to select the attack with 
the lowest probability of detection. 

By using this threat information, we aim to limit the assumptions and data requirements for the 
attacker. A common approach for modeling attackers in the interdiction literature is to assume that 
capabilities of the attacker are limited by a knapsack constraint. This requires establishing a “budget” 
on the attacker’s ability to acquire new capabilities and a “cost” for each capability under consideration. 
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In practice, it is difficult to determine values for each of these terms. Given this, we favor the approach 
of using only the techniques that these groups have been observed using. 

One potential criticism of our approach is that the observed capabilities of these groups may not 
represent their full set of capabilities. While this is likely the case, there are a few observations that 
mitigate some aspects of this concern. First, the data in ATT&CK is compiled from many cyber 
security groups around the world that monitor the various threat groups and report on the methods 
they use. Second, even though threat groups have the advantage of being able to operate remotely and 
in relative secrecy, they are still organizations that face many of the same challenges as any technical 
organization. Learning new capabilities takes time and resources, and organizational momentum can 
be difficult to change. Given this, it is more likely that organizations incrementally add or pivot to new 
capabilities instead of fundamentally changing the way they execute attacks. In future work, we can 

also consider an “N + k” extension to the model where attackers can acquire up to k additional 
capabilities. 

D.1.4. Physical System Model 

The final element of the model is a representation of consequence on the physical system that would 
result from a specific cyber-attack. Any attack that is selected by the attacker must meet or exceed the 
threshold value for the consequence. Given this, the model needs some method for mapping a given 
cyber-attack to damage on the system. For this model, we provide a generic structure for connecting 
attacks to consequences. For example, certain edges on the attack graphs can be assigned a numerical 
prize and the attacker can aim to collect enough of these prizes to meet the threshold value. 
Alternatively, the system model can be separate optimization problem, e.g. an D.C. optimal power 
flow (DCOPF) model, to calculate the consequence resulting from an attack. 

D.2. Math Model 

We formulate the math model as a bi-level interdiction problem. The first stage consists of the 

defender and the second stage consists of one or more attackers. Let a ∈ A represent each attacker 
threat group. Given a specific cyber-physical system configuration and the capabilities of the different 

threat groups, we let G represent the resulting directed attack graph where N and E represent the nodes 

and edges, respectively. Each threat group a has an associated attack graph Ga ⊆ G where Na and Ea 

represent the nodes and edges that the group can include in their attacks based on their capabilities. 

We assume that each of these attack graphs share a common root node s which represents the remote 

station where attacks originate. We also assume that there are a set of terminal edges T ⊂ E that 
represent connections between the cyber and physical system. Once the attacker traverses these edges 

they can produce an effect on the physical system. The set Ta = Ea ∩T represents the terminal nodes 

available to attacker a. Finally, we assume that there is at least one path between the root node s and 

each edge t ∈ Ta for each attacker a. 

For each edge e ∈ E there is a baseline probability re ∈ (0,1] that attacker would evade detection if 

they attacked that edge based on the existing security infrastructure. Let D ⊆ E represent the edges 

that can be interdicted by installing an IDS. For each edge e ∈ D there is a reduced probability of 

evasion for the attacker qe ∈ [0,re). We assume that these parameters depend only on the action 
(attack) being taken and do not depend on the specific attacker performing the action. Therefore, 
attackers who could use the same technique at the same step in an attack will share a common edge. 
Since ATT&CK does not provide data on how stealthy each group is at evading detection we do not 
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specify these inputs by attacker. If this data were available, parallel edges could be created to represent 
different skill levels for the same type of attack. 

The defender also has a set of enabling capabilities C that they can choose to invest in. These capabilities 
do not directly impact the attack graphs but may be required before specific interdictions from the set 

D can be selected by the defender. Let Pc be the set of edges e that are enabled by capability c. The 

binary parameter 𝐼𝐶
𝑃 takes a value of zero when capability c just allows the associated edges e ∈ Pc to 

be mitigated, and a value of one when selecting capability c forces the associated edges to be mitigated. 
This model assumes that each edge mitigation is associated with at most one enabling capability. 

The defender must ensure that the investments they select do not exceed their available cost budget, 

false-positive rate threshold, and user impact threshold. Let B = {cost,false−positive,impact} be the 

collection of the defender “budget” categories. For each category b ∈ B there is an upper limit mb > 
0. For each category b and enabling capability C and edge interdiction e ∈ D there is an associated cost 

𝑐𝑏𝑐
𝐶 ≥ 0 and 𝑐𝑏𝑒

𝐸 ≥ 0, respectively. For the cost category the units of these parameters are dollars. For 
false-positives it is number of events per some unit of time (e.g. false-positives per day). For the user 
impact, the units are more subjective measurements of how much a given mitigation would impact 
users (e.g. a 0 to 10 scale). 

The defender sets a threshold v that represents the smallest disruption on the physical system that 
they would like to protect against. The units for this term depend on the system being modeled. For 
example, in the case of a power grid the units could be load not served. Given this, each attacker will 

attempt to find a valid subgraph of Ga. A sub-graph is valid if it starts at node s, is connected, and 

contains a subset of nodes 𝑇𝑎
′ ⊆ 𝑇𝑎 that generate a consequence of at least v on the physical system. 

Let Gav ⊆ Ga represent the family of valid attack subgraphs for attacker a that meet or exceed the 

threshold disruption v. 

Let S ⊆ D represent the edges that the defender chooses to protect. The following function calculates 

the probability that attack G ∈ Gav evades detection, given a collection of interdictions S. The 
probability of an attacker evading detection on different edges is assumed to be independent. 

 

 

Let 𝑥𝑒
𝐸 and 𝑥𝑐

𝐶 be binary variables that represent the edge and capability interdictions selected by the 
defender, respectively. Given this, the probability of evasion, in terms of these binary variables, is 
defined as follows. 

 

The sensor placement math model is given below. The defender’s objective function is given by (3). 
The aim is to minimize the probability that a collection of attackers will successfully execute an attack 

that achieves a consequence of at least v. The defender can select a combination of enabling capabilities 
and edge interdictions subject to the three “budgets” under consideration. The budget constraints are 
modeled using a knapsack constraint (4). Constraints (5) and (6) connect the enabling capabilities to the 
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edge interdictions. The first constraint is used when an enabling capability allows an edge to be mitigated, 
whereas the second constraint forces the edge to be mitigated. Once an interdiction strategy has been 

realized, each attacker then finds the best available attack Ga the maximizes their chances of evading 
detection.  

 

D.2.1. Model Reformulation 

The model in described by Expressions (3) through (7) is not conducive to being solved in the form 
presented. In this section, a mixed-integer linear programming formulation of the model and 

decomposition strategy is derived. Let π represent the probability that an attacker evades detection. 
Given this, the defender’s decision model can be described as follows. 

 

Towle and Luedtke have shown that (1) and equivalently (2) are supermodular set functions and that 
the feasible region for this model can alternatively be defined using the set HGa, which is defined 
below (see Proposition 2 [5]). The set HGa has been studied by several researches and can be described 
by linear equalities [6,7]. This creates the potential to solve this model using a delayed constraint 

generation strategy. The idea of this approach is to generate an optimal interdiction strategy 𝑥𝐸
∗
 and 

then solve an auxiliary problem to see if a new attack Ga can be found that violates Constraint (12) 
for any of the threat groups. If such an attack can be found, new linear inequalities can be generated 
and added to the master problem. Since Constraint (12) decomposes by threat group the auxiliary 
problem for each of the threat groups can be solved in parallel. 

  (14) 
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To leverage this, we develop the auxiliary problem as follows. Assume that there is a fixed interdiction 

strategy SF . For a given threat group a, let ye be a binary variable that indicates that edge e is part of 

attack graph Ga. Since a separate auxiliary problem can be written for each threat group, we drop the 

index a from the notation. Let ze represent the probability of evasion on edge e for the given 

interdiction strategy SF , as shown below. 

 

The attacker’s objective is to find an attack G that maximizes the probability of evasion, as shown by 
the objective below. 

 

This objective can be converted to a linear expression by taking the logarithm of the za parameter, as 
shown below. 

 

The following constraints ensure that the attack graph that is generated meets the requirements 

described previously. For this model, assume that each edge t ∈ T has a numerical “prize” pe attached 
to it. Constraint (18) is a covering constraint that requires that the attack graph that is selected by the 

attacker must be able to generate at least the minimum reward v. Constraint (19) enforces precedence 

relationships between attacks across the network. It states that an attack on an edge e defined by nodes 

(i,k) is only allowed if one of edges that immediately proceeds edges e (i.e. an edge (j,i)) has been 
attacked. Note: This formulation assumes the graph is directed and acyclic. 

 

If za = 0 (i.e. the interdiction detects attacks with probability 1) the logarithm will be undefined. In 
these instances, any edges that meet this condition can be removed from the network since the attacker 
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should not want to pursue an attack that has no chance of succeeding. If all the sub-problems for each 

threat group are not feasible without these edges, then the current interdiction strategy S is optimal. 

Constraint (18) represents one strategy for ensuring that the generated attack is valid. One alternative 

approach is to use disjunctions to define a collection of subsets of Ta that would meet the threshold 

v, if disrupted. Let 𝑇𝑣  represent the set of sets of edges e ∈ Ta that achieve the desired disruption. Let 

𝑗 = 1,… , |𝑇𝑣| be an index on this set and Yj be an indicator that the set 𝑇𝑗
𝑣 ∈ 𝑇𝑣  is active. Given this, 

the constraint below can be used in place of (18) to ensure that a valid combination of edges is 

attacked. This constraint does not force edges that are not part of a set 𝑇𝑗
𝑣  to be equal to zero, though 

this can be added if needed. 

 

For this initial version of the model, cuts of the form shown in Constraint (22) (from Nemhauser and 

Wolsley [6]) are used. The function 𝜌𝐺
𝑎(𝑆) represents the marginal difference in hG obtained by adding 

a to S and is calculated as follows: 𝜌𝐺
𝑎(𝑆) ≔ ℎ𝐺(𝑆 ∩ {𝑎}) − ℎ𝐺(𝑆). Researchers have noted that these 

cuts tend to be very weak and present methods for deriving much stronger cuts [5,7]. These improved 
cuts can be used in a future version of the algorithm. 

 

D.3. Example 

To demonstrate this model, consider the attack graph shown in Figure D 1. This graph contains 30 
edges, 25 of which can be interdicted. The remaining 5 edges are reward edges. Table D 1 summarizes 
the input for each edge. In this example, assume that the defender is concerned about attacks that 
would produce a reward of at least 3 units for the attacker. 

 

Figure D 1. Test case attack graph. Solid lines indicate attack edges. Dashed lines indicate reward 
edges. 
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Table D 1.  Input data for example network. 

From 
Node 

To 
Node 

Interdiction 
Cost 

Reward Baseline 
Evasion 

Probability 

Interdicted 
Evasion 

Probability 

0 1 1.41  0.81 0.42 

0 2 1.10  0.86 0.49 

0 3 1.42  0.90 0.51 

0 4 1.38  0.89 0.45 

0 5 1.18  0.91 0.39 

1 6 1.21  0.87 0.51 

1 7 1.02  0.84 0.35 

2 6 1.09  0.85 0.40 

2 7 1.11  0.92 0.45 

3 8 1.45  0.88 0.52 

3 9 1.12  0.82 0.35 

4 9 1.06  0.86 0.49 

4 10 1.31  0.83 0.43 

5 9 1.16  0.81 0.43 

5 10 1.19  0.81 0.40 

6 11 1.29  0.84 0.48 

6 12 1.33  0.94 0.53 

7 11 1.04  0.94 0.38 

7 12 1.35  0.84 0.41 

8 12 1.45  0.85 0.42 

8 13 1.43  0.85 0.49 

9 14 1.23  0.92 0.52 

9 15 1.43  0.94 0.41 

10 14 1.46  0.84 0.44 

10 15 1.08  0.84 0.35 

11 16  2.74 1 1 

12 17  1.42 1 1 

13 18  1.21 1 1 

14 19  1.20 1 1 

15 20  1.49 1 1 

 

The baseline detection probably can be found by solving the attacker sub-problem with the baseline 
detection probabilities. With no interdictions the attacker has a 62.9 percent chance of successfully 
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executing the optimal attack without being detected. Figure D 2 shows the optimal attack in this 

scenario. The edges selected by the attacker are shown in bold. This attack includes edge (11,16), 

which is the most valuable reward edge, and the nearby edge (12,17). Note that there are no 

combinations of two reward edges that produce a reward of at least 3 and do not include edge (11,16). 
If this edge can be effectively defended, the attacker will have to attack three of the other edges to 
achieve a reward of 3. 

 

 

Figure D 2. Optimal attack with no interdictions (πOPT = 0.629). 

 

Next, consider the case where the defender has a budget of 12. For context, the defender would 
require a budget of 32 to protect all the edges in the network. In this case, the attacker has only a 14.0 
percent chance of successfully executing the optimal attack. Figure D 3 shows the solution in this case. 
The interdicted edges are shown in green and the edges that are attacked are in bold. Observe that in 
this case edge (11,16) is no longer attacked. Furthermore, the selected interdictions appear to 
emphasize protecting this edge since all paths to node 16 include two interdicted edges. This has the 
effect of forcing the attacker to attack three edges to obtain the minimum reward. 

 

 

Figure D 3.  Optimal interdiction strategy and attack for a defender budget b = 12 (πOPT = 0.140). 
Interdicted edges are shown in green. Attacked edges are bold. 
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Finally, consider the tradeoff between the level of investment made by the defender and the probably 
that the attacker can evade detection. This was achieved by solving the model for all budgets between 
0 and 32. Figure D 4 shows the probability that the attacker successfully evades detection as a function 
of the available defender budget. Once the defender budget reaches 22, no additional reduction in the 
attacker’s probability is possible. This type of result can help decision makes understand the tradeoffs 
between cost and risk. 

 

Figure D 4.  Optimal probability of evasion versus defender budget. 
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