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ABSTRACT

This report summarizes the activities performed as part of the Science and Engineering of
Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) Grand
Challenge LDRD project. We provide an overview of the research done in this project,
including work on cyber emulation, uncertainty quantification, and optimization. We present
examples of integrated analyses petrformed on two case studies: a network scanning/detection
study and a malware command and control study. We highlight the importance of experimental
workflows and list references of papers and presentations developed under this project. We
outline lessons learned and suggestions for future work.
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ACRONYMS AND DEFINITIONS

Abbreviation

Definition

ATT&CK

A framework and knowledge base developed by
MITRE Corporation for adversary tactics and
techniques based on real-world observations.
ATT&CK is used as a foundation for the
development of specific threat models.

C2

Command and control. Used to refer to
communications between malware that is installed
on a compromised network and an Internet-
connected server that is used to issue commands
to control the malware.

CRASHOVERRIDE

A malware framework that attacks RTUs on power
grid networks; presumed to have been used in the
2016 cyberattack on the Ukraine power system.

CSE Computational Science and Engineering
DC-OPF DC Optimal Power Flow
A holistic approach to system emulation and
Emulytics analytics: https://www.sandia.gov/emulytics/
EBM Emulation-Based Model
IDS Intrusion Detection System
An open-source utility to scan for and find hosts
Nmap and services
PAO Python Adversarial Optimization
RTU Remote Terminal Unit
Supervisory Control And Data Acquisition system.
Typically refers to an industrial control system. In
our use cases, it is the control system managing
SCADA the power grid network.
Science and Engineering of Cyber security through
Uncertainty quantification and Rigorous
SECURE Experimentation
SNL Sandia National Laboratories
Snort An intrusion detection system
TAMU Texas A&M University
uQ Uncertainty Quantification
V&V Verification & Validation
VM Virtual Machine




1. INTRODUCTION

1.1. Overview and evolution of research

Securing cyber systems is paramount, but cyber defenders lack evidence-based techniques, which
employ principled and rigorous measurements and models. The 2016 Federal Cybersecurity R&D
Strategic Plan [32] states: “Most [cybersecurity] techniques are domain- and context-specific, often not
validated as mathematically and empirically sound, and rarely consider efficacy and efficiency. Thus,
the state of the practice consists of heuristic techniques, informal principles and models of presumed
adversary behavior, and process-oriented metrics.” Such rigorous, principled methods become
critically important for high-consequence systems that support national security missions.

Through a lab-wide initiative, Sandia has been investing in research project, SECURE: Science &
Engineering of Cyber Security by Uncertainty Quantification and Rigorous Experimentation. The
goal of SECURE is to discover and develop techniques for evidence-based cybersecurity, leveraging
the cyber experimental foundation provided by Emulytics (a scalable, virtualized environment for
modeling cyber systems) to produce quantitative knowledge concerning a target system, estimate
cybersecurity risks, and identify defensive strategies. Specifically, we have integrated Emulytics,
uncertainty quantification and adversarial optimization into workflows, enabling evidence-based risk
assessment and risk mitigation.

Our approach is inspired by the success of computational science and engineering (CSE) in our nuclear
stockpile stewardship programs. Without physical experiments, we assess the readiness of the nuclear
stockpile by computational experiments. Can we use similar computational experiments to secure our
cyber systems? While this is possible in principle, cyber systems are drastically different than physics-
based systems, requiring novel techniques for rigorous cyber experimentation. SECURE is built on
three pillars 1) Emulytics to create detailed, quantitative knowledge concerning a target system; 2) data
analysis and uncertainty guantification (UQ) techniques that will use information from emulations to
develop rigorous reduced-order models that capture key features of these systems; and 3) adversarial
stochastic optimization that will analyze these reduced-order models to optimize cyber defenses, which
are validated and refined using Emulytics.

Cybersecurity experimentation on live environments is costly, time consuming, and disruptive (if not
impossible). Thus, these tests provide sparse knowledge about complex cyber systems, and provide
limited ability to answer “what if” questions: “What is the best way to defend our networkr” “In
creating defenses, which attacks should concern us as being maximally disruptive to this system?”
Consequently, enabling technologies for Emulytics in virtualized environments are beginning to
coalesce to vastly improve our ability to develop, test, and deploy cybersecurity strategies. This
capability enables an experimental approach to evidence-based cybersecurity, where computational
experiments provide insight into the dynamics and interactions in a cyber system. In simple systems,
results of these experiments can directly answer “what if”” questions. In complex cyber systems, novel
statistical methods for UQ are needed to understand complex interactions. Such statistical
characterizations can then be used to explore alternative defense strategies.

This report documents the methods, tools, and case studies developed in SECURE and demonstrates
that cyber experimentation can be the foundation of principled cyber security. We claim rigorous
cyber experimentation can be a pillar of science of cyber security to ensure security of high-
consequence cyber systems, just as CSE is now a pillar of science for our nuclear stockpile stewardship.
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1.2. Research Elements

A systematic approach to cyber analytics requires efforts from wvarying disciplines in close
coordination. We need to understand (a) our predictive capabilities and limitations with emulation, (b)
how to analyze uncertainty to produce meaningful results for real world systems when there are
uncertainties concerning the nature of threats, and (c) demonstrate an ability to quantifying confidence
and value across competing risk management strategies, which lead to our three research elements.

1.2.1. Research Element 1: Predictive Cyber Emulation

Developed at Sandia, Emulytics is a state-of-the-art tool set to define cyber-experiment models and
testbeds at scale for complex, distributed systems. These systems present challenges related to high-
dimensionality, sparseness of data, and expensive forward models. Thus, it is still poorly understood
how representation fidelity impacts predictive capabilities in real-world cyber systems, especially in
situations with unknown/unobserved or pervasive threats where only the effects are observable.
SECURE developed Emulytics methods and mathematical models that scientifically address the
fidelity of our models and testbeds under deep uncertainty in the threat space. Our in-silico laboratory
enabled reproducible and replicable results for a variety of testbed states and threats.

1.2.2.  Research Element 2: Uncertainty Quantification

Our UQ capabilities assess the confidence in computational predictions given a variety of information
streams, including models, experimental data, boundary conditions, and expert opinion. Cyber systems
present unique research challenges in terms of model validation due to the presence of discontinuous
and discrete outputs, the necessity for effective network inference for unknown network structures
and topologies, and the tractability of high-dimensional structural and model uncertainties. We
developed a set of capabilities to perform validation and forward propagation of uncertainties—
including configuration parameters and threats—to handle discreteness and discontinuities, dimension
reduction, and multi-fidelity representations.

1.2.3. Research Element 3: Adversarial Optimization

We developed scalable, general-purpose decision-making capabilities for the risk management of both
known and unknown cyber threats. The current state-of-the-art in adversarial optimization consists
of domain specific models and algorithms that generally assume perfect knowledge on the part of the
adversary, perfect execution of adversarial attacks, simultaneous attack vectors, known outcomes of
specific attacks, and perfect execution of defender response. The simplest problems are strongly NP-
hard, and there is a current lack of well-established solution procedures even for simplified models.
We developed a suite of scalable adversarial optimization techniques to address uncertainties such as
parameter or structural uncertainties in a network. We identified worst case attackers and attacks that
are represented as alternatives against which we can devise and evaluate threat mitigation strategies.
Our main objective was to determine optimal investment and runtime defense strategies for
interdicting future, possible adversarial threats. We evaluated the performance of proposed optimal
solutions with emulation.

1.3. Integration exemplars

Exemplar problems provide a large R&D project such as SECURE a means to focus research efforts
onto a useful, visible outcome. Moreover, it ensures integrations among research elements, which is
essential and challenging for interdisciplinary efforts, especially when the research elements do not
have a history of working together. Although there are a number of potential high-consequence cyber
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systems that SECURE could leverage as an exemplar, the team chose cyber-controlled power systems
because they are generalizable to a large number of other high consequence systems (including other
cyber-physical systems, enterprise networks, etc.). The power grid threat scenario considered by
SECURE starts with an initial infection in a grid operator’s enterprise network, where malware
establishes a command and control (C2) channel to an Internet server. Next, the malware pivots into
the grid operator’s control center, where it scans the Supervisory Control and Data Acquisition
(SCADA) network to identify vulnerable field devices. It then runs the CRASHOVERRIDE malware
on the field devices, effecting consequences on the power grid (measured in terms of load lost due to
malware actions). This exemplar drove a number of studies, which are described in detail later in this
reportt.

1.4. Workflows

A primary product of SECURE is definition of a cyber experimentation workflow that follows the
principles of a scientific process that relies on computation. We documented our approach in detail
in Section 8, and prepared a handbook of cyber experimentation that can guide practitioners through
the process. This handbook also outlines the algorithmic challenges behind the process providing a
useful resource for algorithms developers to enhance the theoretical foundations that support rigorous
cyber experimentation.

1.5. Outline of report

The three thrust areas (Emulytics, Uncertainty Quantification, and Adversarial Optimization) are
described in Chapters 2-4. Chapter 5 discusses the overall integrated exemplar with detailed case
studies on scanning/detection, command and control, and the SCADA network to support the
exemplar. The integration of the entire attack chain in a probabilistic approach using a Markov model
is also discussed in Chapter 5. Chapter 6 discusses the cross-cutting themes of Verification and
Validation. Chapter 7 describes the software tools used and/or developed as part of SECURE.
Chapter 8 presents a recommended cyber experimentation workflow. Chapter 9 lists project
accomplishments and Chapter 10 provides a summary of the project and its legacy. The Appendices
provide details on the case studies in the exemplar we developed for this research, which is an end-
to-end cyber attack on a SCADA network.
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2. EMULYTICS THRUST AREA

The Emulytics team had two roles on the SECURE project; it had a support role and it had a research
role. In its support role, the SECURE Emulytics team developed exemplar scenarios emulation-based
models and other models to support the other SECURE teams. In its research role, the Emulytics
team developed novel R&D in the areas of mathematical modeling of end-to-end threat scenarios and
cybersecurity scenarios that support the end-to-end analysis.

2.1. Emulation and Simulation Models

In its support role, the Emulytics team developed an end-to-end cybersecurity exemplar based on the
Advanced Persistent Threat 3 (APT-3) scenatio' coupled with the 2016 CRASHOVERRIDE attack
on the Ukraine power grid. This scenario is depicted in Figure 2-1. Each stage in the exemplar scenario
provides transition probabilities to an end-to-end Markov model, which is used to determine attacker
(or defender) success metrics such as probability of successful attack and time to successful attack.
For some stages (indicated in the figure as blue dots), this information is determined from MITRE
ATT&CK vendor evaluation data or through other sources (e.g. publications, SME judgment, etc.).
For other stages (indicated as purple dots) these transition probabilities are determined through
SECURE modeling, using emulation-based models, mathematical models, and ns-3 discrete event
simulation models.
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Figure 2-1: End-to-end threat scenario based on APT-3 and CRASHOVERRIDE

For the model-informed parts of the threat model the Emulytics team developed minimega and
SCEPTRE emulation models (see Chapter 7.2 for more detail about minimega and SCEPTRE).
Minimega was used in the “Command and control” (C2) study to provide a high fidelity, controlled
environment to assess intrusion detection performance and validate a mathematical model describing
the stochastic nature of malware C2 detection. Minimega was also used in the “ID wvulnerable
RTUs” study, again to assess intrusion detection performance and validate a mathematical model that
describes the discovery and detection processes. Finally, SCEPTRE models were developed to couple
emulation-based models of cyber assets to a synthetic power grid topology depicting a hypothetical

1 https://attack.mitre.otg/groups/G0022/
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2000-bus model of the Texas power grid. This coupled model was used to assess power grid impacts
due to CRASHOVERRIDE malware actions.

More details regarding the C2 and scanning/detection models are found in the Appendix A and
Appendix B.

2.2. Markov Models

The Emulytics team used Markov analysis to assess attacker/defender performance relative to the
end-to-end scenario, answering questions regarding an attacker’s probability of successfully
performing a power grid attack, and the time required for an attacker to traverse all of the steps
required to reach this state. The process starts with translating the end-to-end scenario to a Markov
state transition diagram, as shown in Figure 2-2.
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Figure 2-2: Translating the end-to-end threat scenario to a Markov state transition diagram

Once the state transition diagram is constructed, the task shifts to populating the model with transition
probabilities. These transition probabilities can be determined via a number of means: through data
collected from the MITRE ATT&CK evaluations, through subject matter expert (SME) judgment, or
through cyber experimentation. In this study, we used cyber experimentation (i.e. emulation-based
modeling and mathematical modeling) to calculate transition probabilities for both the “Command
and control” (Markov state 6) and the “ID vulnerable RTUs” (Markov state 8) steps highlighted in
green in Figure 2-2. These transition probabilities are shown in Table 2-1 and Table 2-2.

Table 2-1: C2/Markov state 6 transition probabilities (from emulation and mathematical models)
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Snort condition Timestep | Detection | Next state Same  state
value probability | transition transition
probability probability
Unstressed 16's 0.565 0.435 0.0
Stressed (dropping packets) 16's 0.372 0.628 0.0

Table 2-2: ID RTUs/Markov state 8 transition probabilities (from emulation and mathematical

models)

Attacker  Timestep Detection | Next state Same state
scanning  value probability | transition | transition
strategy probability = probability
Fast 30s 0.69 0.31 0.0

Slow 61s 0.70 0.30 0.0

An example of an analysis using the experimental and MITRE ATT&CK transition probabilities is
shown in Figure 2-3.
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Ready
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Figure 2-3: Markov analysis results showing attacker time to success and success probabilities,
depending on defender capabilities
This analysis assumes a set of different defender (blue team) capabilities denoted Bj, depending on
the specific MITRE ATT&CK tactics employed by the attacker (denoted by subscript i), and the
defender’s ability to handle increasing levels of ambiguity in attack indications (denoted by subscript
j, and summarized in Table 2-3).
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Table 2-3: Defender capabilities
Defender | Level of Detection capabilities

name ambiguity

Bi; None Indicators of compromise (1I0C)
Bi; Medium 10C, specific alerts

Bi;s High 10C, specific alerts, general alerts

Figure 2-3 shows the mean time it takes an attacker to transition from state 1 (initial state) to state 9
(ready to attack state) in the Markov chain on the Y axis, and the steady state probability of the attacker
residing in state 9 on the X axis. These results are collected into two sets, indicated by the ovals, with
the yellow oval indicating results if the attacker only needs to discover exactly one RTU to proceed,
and the red oval indicating results if the attacker needs to discover more than one RTU. In cases where
the attacker must find more than one RTU in order to continue with its attack, the probability of
success is lowest and the time to success is longest (as shown in the set surrounded by the red oval).
This makes intuitive sense, since the criteria are more difficult than in the other set, where the attacker
only needs to find one RTU.

Within each set there are two arcs: one arc (green and orange points) is for attacker i=1, and the other
arc (dark red and purple points) is for attacker i=2. Recall that each of these attackers is distinguished
by the particular MITRE ATT&CK tactics that the attacker employs. As can be seen in Figure 2-3,
attacker i=lappears to use tactics that do a better job of evading detection than attacker i=2. Details
regarding the Markov model formulation and the tactics used by both attackers can be found in [34].

Within each arc there are two groups. In one group, denoted by triangles and *1 markers, the intrusion
detection system is stressed by the volume of network data, and is dropping packets as a result. In the
other group, denoted by squares and *2 markers, the intrusion detection system is able to process
every packet. As the results show, when the C2 intrusion detection system is stressed and dropping
packets, the attacker’s time to success decreases and its ready fraction increases, indicating that the
attacker is more likely to achieve its object more quickly, which makes intuitive sense.

Within each group points are classified according to defender capability. Orange and purple markers
represent a defender of Medium capability (Bi2), and green and dark red markers represent a defender
of High capability (Bis). As Figure 2-3 shows, when the defendet’s capability increases from j=2 to
j=3, the attacker’s time to success increases and its ready fraction decreases, indicating that it becomes
harder for the attacker to achieve its objectives, which also makes intuitive sense. It should be noted
that defender j=1 is not shown in this figure because the results are off the scale of the plot at Ready
Fraction = 1.0, meaning that the attacker is certain to succeed against defender j=1.

2.3. Mathematical Models

Mathematical models provide useful insights into the dynamics of a cybersecurity scenario, particularly
during model development. In addition, mathematical models can provide a computationally-efficient
surrogate for emulation-based modeling, and depending on the analysis question, at sufficient fidelity.
During the SECURE project two mathematical models were developed: one that evaluated an
attacker’s ability to communicate to a command and control server on the Internet without detection
(the C2 step, or step #6 in the Markov model), and another that evaluated an attacker’s ability to
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identify vulnerable RTUs in a SCADA network without detection (the Identify Vulnerable RTUs step,
or step #8 in the Markov model).

The C2 mathematical model was based on a stochastic Poisson arrival model and captured different
rates for malware C2 traffic (modeled after the Emotet malware) and for benign user background
traffic. The model considered intrusion detection and considered cases where intrusion detection is
overwhelmed and unable to process every packet. The model was calibrated using data from an initial
set of emulation runs and validated against additional runs to assess the mathematical model’s
predictive value as well as its correlation to emulation (for later use in multi-fidelity studies). The
validation results, shown in Figure 2-4, show good agreement between the mathematical model results
and the experimental mean, and the model results fall within the emulation experiments’ 95%
confidence interval. More detail about the C2 model can be found in [43].
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Figure 2-4: Intrusion detection comparison between C2 mathematical and emulation models

The model for assessing an attacker’s discovery of vulnerable RTUs, and a defender’s ability to detect
such scanning, was also developed. Unlike the C2 model, the scanning/detection model is a state-
based model that tracks the attacker’s discovery process, as shown in Figure 2-5. Using this discovery
model (specifically the number of ports discovered vs. time) and a model of the intrusion detection
system’s alerting algorithm, one can calculate the likelihood of a scan triggering an intrusion detection
alert. Similar to the C2 model, the scanning/detection model was also validated against emulation
results, and as shown in Figure 2-6, the mathematical model for node discovery agreed with the
emulation results relative to the 95% confidence interval. More detail can be found in [44].

20



o Scan o Scan

eeeee | X  lsseees
::. To Scan ) eee
LN N ] Y
.0 LR N e
\Scanned / S \_Scanned /
.
\ Scanned /
¢ To Scan
.Ooiﬁar DSCE“
LR ¢ To Scan o Scan sees e
(~ To Scan .e cssse cosse P
 FENEN] . see see
. .o .
eee \_Scanned / (X) e eoe
[N ] o \ Scanned /
oo \_Scanned / \_Scanned /
“To Scan
csese ~To Scan
- \_Scanned / \... seses
( oScan \ . eoe
creeee To Sean S
(N N seese \_Scanned / .S...d
{ M ) \_Scanned /
e
\\‘*. \.’ o Scan
o0 seese
LN ]
e
\_Scanned /
\_Scanned / L
\_Scanned
( |o§can \
eecoee
eee
]

ee ~
\_Scanned )\

Figure 2-5: State transition diagram for scanning/detection mathematical model
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2.3.1. Traffic Generation

In this study, background traffic was generated with the specific question in mind. This approach,
tailoring solutions specifically for the experimental goal, can be more effective and efficient. At the
same time, there is merit in general purpose approaches that can provide a basis to be tailored. In
collaboration with Prof. Catalyurek at Georgia Institute of Technology, we investigated temporal
graph generation. First. part of the work focused on topology and generating different graphs with
a specified k-core structure [46]. The second part of the work focused on the temporal structure.
Specifically, we investigated modeling how frequently the interactions between two entities are
repeated, changing. Patterns for the frequencies. We proposed how to build a model from a given
data and generating graphs from a given model. For future work, we plan to extend this work to
specifically cyber traffic generation [47].
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3. UNCERTAINTY QUANTIFICATION THRUST AREA

Uncertainty quantification refers to characterizing input uncertainties and propagating them through
amodel (e.g. a cyber simulation or emulation model) to obtain the resulting uncertainties on the output
quantities of interest. Uncertainty analysis can be used to assess the likelihood of typical or extreme
outputs, determine the mean or median performance, understand the variability in the responses, and
tind probability of failure. A related activity to UQ is sensitivity analysis, which is the identification of
the most important variables affecting the response. It involves understanding how model outputs
vary as the inputs vary.

In SECURE, we studied three areas supporting UQ. Dimension reduction identifies the most important
components of a high-dimensional space, allowing uncertainty analysis to focus only on the important
components, thus helping tractability. Discrete polynomials are an example of a surrogate model, which
serve as a “‘surrogate” or proxy for the computationally expensive simulation or emulation. Surrogate
models are used extensively in UQ and optimization of computational models because they are fast
to evaluate. However, the accuracy of the surrogate approximation must be determined. Multifidelity
UQ is another area of UQ which attempts to improve efficiency of sampling by incorporating samples
from both low and high-fidelity models.

3.1. Dimension Reduction

In monitoring the behavior of physical or emulated computer experiments, the number of certain
events that occur in a given timeframe can be highly significant. Thus, recording these quantities at
some frequency (e.g. every second) creates useful time-series data, although that data may be inherently
stochastic (due to randomness in timings of initializations, small changes in orderings of system calls,
etc.). The challenge is to understand how much of the inherent randomness observed in time series
vectors of quantities from cyber experiments can be explained by a few underlying components (i.e.
reducing the dimensionality of the data while retaining as much of its variability as possible).

In this work, we examined Principal Component Analysis (PCA) on cyber experiment time-series and
compared with a discrete version of PCA called XPCA. We studied XPCA because the Nmap port
discovery results are discrete values: 1, 2, 3, etc. ports found. We applied PCA and XPCA to several
datasets involving 1000 replicates of port scanning results. Our main finding of this work is that PCA
performs better than XCPA with respect to variance explained but worse with respect to
reconstruction error on these discrete time series data sets. This is due to the discrete nature of the
port discovery time series. The full results are described in the paper below.

e “Time Series Dimension Reduction for Surrogate Models of Port Scanning Cyber
Emulations.” Erin C.S. Acquesta, Laura P. Swiler, and Ali Pinar. SAND20-10617.

3.2. Discrete PCE

Uncertainty quantification is often accomplished via computationally expensive Monte Carlo
sampling. However, less costly stochastic expansion methods can approximate the functional
dependence of the simulation response on uncertain model parameters by expansion in a polynomial
basis. The polynomials used are tailored to the characterization of the uncertain variables. Polynomial
chaos expansion is based on orthogonal polynomials.[10,45] The goal of PCE is to construct a more
efficient and accurate estimate of the uncertain response distribution than would be obtained from
Monte Carlo sampling.
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In this research, we investigated the use of discrete orthogonal polynomials for constructing
polynomial chaos expansions to build a response approximation of the results from cyber
experiments. One unique feature of the work is the presence of replicates (replicated data points)
from the cyber emulations. The references below discuss how samples are chosen in input space and
presents an analysis of “best practice” approaches for constructing stochastic expansions based on
data one might obtain from a cyber experiment.

e Bert J. Debusschere, Gianluca Geraci, John D. Jakeman, Cosmin Safta, and Laura Swiler,
“Polynomial Chaos Expansions for Discrete Random Variables in Cyber Security
Emulytics Experiments”, SIAM CSE 2021 presentation, March 1, 2021. SAND2021-
2270C.

e Bert J. Debusschere, John Jakeman, Eric Vugrin, Gianluca Geraci, Laura Swiler.
“Sensitivity Analysis for Cyber Security Scenarios Using Mixed Discrete - Continuous
Polynomial Approximations.” Manuscript in preparation.

3.3. Multifidelity UQ

Often, uncertainty quantification is challenging to perform because of the large number of samples
that must be run through a cyber model, which can be computationally expensive. However, in multi-
fidelity (MF) uncertainty quantification, many samples from one or more low-fidelity models (such as
a mathematical model or a network simulator like NS-3) are fused with a few runs of a high-fidelity
cyber model (e.g. actual software run on real or virtualized hardware) to decrease the estimator
variance and obtain more reliable statistics. While we may only be able to run a few dozen samples of
a high-fidelity model, we assume the cost of the low-fidelity model is much cheaper and so we can
generate many low-fidelity samples for the cost of one high-fidelity model evaluation. The papers [9,8]
present the theory behind multifidelity UQ. Additionally, [8] presents several network problems of
increasing difficulty, and demonstrates that the multifidelity estimator demonstrated increased
efficiency with respect to Monte Carlo sampling.

The MF estimator for a mean of response QQ can be built starting from the single fidelity MC for the
high-fidelity model and adding a weighted unbiased term to it:

XN

. ) 1 ; 1 )
Q' = B Qg+ (i Qo — g T Qi) .

QMF = thgh + adow,

In Equation 3.1, N is the number of high-fidelity runs, and ris the oversampling ratio that allows for
a maximization of the efficiency of the estimator by defining the optimal number of low-fidelity model
evaluations as (N+1) x . The first term on the right-hand side is just the usual mean estimate from
the high-fidelity model. The second term is the low fidelity estimate “corrected” so that it is unbiased.
Note that the second term has many more samples: this contributes to the variance reduction of the
MF estimator. For a MF estimator with a single low-fidelity model, the coefficient a
is obtained in closed form as function of the correlation and estimated variance of the two models.
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For the application of MF UQ to the command and control study that is discussed in Chapter 5, we
started with 40 evaluations of the high-fidelity model, which in this case was a minimega emulation.
The low-fidelity model in the C2 case was a mathematical model. For C2, Equation 3.1 becomes
Equation 3.2:

—_— 1 i 1 i 1 6))
Q7 = B Qnimega + @ (55 21 Qoo ~ sria 2% Qo) 32

minimega math ~ 2171x40 math

MF — - N
Q - Qmmlmega + O(Amath'

Given the particular cost ratios and correlations of this problem, further described in Appendix A, the
estimate of the mean number of alerts (QQ) as a function of three time point (t=1, 5, and 10 seconds)
is shown in Table 3-1. Comparison between the single fidelity MC estimator based on minimega
data only and the MF estimator based on the additional math model evaluations. Note that two
estimates of the mean response are provided: one based on 40 minimega runs and one based on a
multifidelity estimate that incorporated both the minimega runs and the math model runs as shown
in Equation 3.2. In Table 3-1, it is possible to observe how, for larger times, the value of the a
coefficient approaches 1, which corresponds to the case of perfect correlation and ratio one between
the variances of the two models.

Table 3-1. Comparison between the single fidelity MC estimator based on minimega data only and
the MF estimator based on the additional math model evaluations.

(Qm?ln-i?nega 0 v fﬁmath (QJMF
0.570 0.8049 | -0.7056 | -0.0798 || 0.626
2.802 0.9725 | -0.9568 | 0.0921 | 2.714

10 5.695 0.9832 | -0.9868 | 0.3908 || 5.309

| |
C.ﬂr—kw
| S—

3.4. Multifidelity Estimation with Replicates

A unique feature of the cyber emulations that we studied under SECURE was their stochastic nature.
That is, if we ran the emulation model multiple times with the same configuration, we would obtain
results that were different. This can be due to timing and ordering of processes that are spawned as
well as differences in the host or VM state, for example. This means that the quantity of interest listed
as Q above needs to be evaluated some number of times (replicas) for each experiment to obtain a
mean value under the stochastic conditions.

In this section, we consider the possibility to optimize the number of replicas in a low-fidelity model
in order to speed-up the multifidelity computations. We might want to perform fewer replicas of the
high-fidelity model than the low-fidelity model, for example, because of the higher cost. This section
examines the ramifications of these replicas.

This scenario is based on the C2 example described in the previous section and Appendix A, although
we here consider that the mathematical model, serving as low-fidelity model, is indeed characterized
by the distribution of the number of alerts at each time step. Therefore, for each time location, we
can quety the model to obtain a single prediction/replica. In the limit of infinite number of replicas,
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the average would correspond to the deterministic mean value predicted by the model, but, in all other
cases, the predicted value will show a stochastic error with respect to the true system’s response. We
consider the cost of a replica to be 0.001s, while the runtime for minimega, the high-fidelity, is
unchanged at 162s. We note here that, as done in the previous scenario, minimega will need the
average of 10 replicas to get a quantity of interest.

The effect of the stochastic noise in the low-fidelity is to decrease the correlation between the high-
and low-fidelity. The true correlation can be recovered only in the limit of infinite replicas, however
increasing the number of replicas for the low-fidelity increases, linearly, the computational cost.

We want to address here the following question: given an assigned high-fidelity model and dataset,
what is the best configuration for the low-fidelity for both the number of UQQ parameters and replicas?
In this context, the best estimator is the one that minimizes the estimator variance with the minimum
cost.

As a first result we show the optimal cost ratio between a MF UQ estimator and a single fidelity
estimator, i.e. minimega simulation only for different time steps.
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Figure 3-1. Cost ratio between MF estimator and MC as a function of the low-fidelity number of
replicas

In Figure 3-1, the cost ratio is reported for all time instances considered in the study, 1, 5 and 10
seconds, as a function of the number of replicas for the low-fidelity. We observe that the minimum
cost ratio, which indicates the maximum estimator efficiency, is obtained with a number of replicas
between 100 and 300 replicas. The most restrictive case occurs for the time instant 1s, which requires
274 replicas. We will use this number of replicas for the estimators at all time instances.

We consider and compare several estimators in the numerical experiment. All of them use the 40
minimega runs, each with 10 replicas, and they differ only for how the low-fidelity correction is
handled:
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¢ The first MF estimator uses the optimal number of replicas (274) and an oversampling
ratio of 421. The total cost of the estimator is then equivalent to 43 high-fidelity runs;

* The second MF estimator has a total equivalent cost of 43 high-fidelity simulations, by
design in order to be compared with the previous one, but it uses only 10 replicas for both
high and low-fidelity. This estimator corresponds to a MF estimator that does not exploit
the optimization in the low-fidelity replicas. In order the keep total cost constant, the
oversampling ratio is much larger (11536.8), since for each UQ samples only 10 replicas
are evaluated, compared to 274 replicas of the previous estimator;

* The MC estimator with an equivalent cost of 43 high-fidelity samples is estimated in order
to provide a fair comparison among estimators;

* The MF that we used in the previous section is also reported for comparison, although
that estimator has a lower equivalent computational cost of 41.
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Figure 3-2. Confidence intervals for several multifidelity estimators with and without optimization
of the number of low-fidelity replicas

In Figure 3-2, all the multifidelity estimators, with and without optimization of the number of low-
fidelity replicas, are reported. As expected, the MF estimator with the optimal number of low-fidelity
replicas, green lines, is the one with the smallest confidence interval, whereas the estimators with 10
low-fidelity replicas have a similar confidence interval.

The comparison is even more clear by considering the data reported in Table 3-2.

27



A

Estimator N¢ r Nf’?F t—1s | t—5s | t—10s | N?F‘eq
MF 40 176234 | 10 0.425 | 0.091 0.050 41
MF (NZF°%) 40 421 274 0.297 | 0.056 0.034 43
MF (C,q) 40 11536.8 10 0.424 | 0.090 0.049 43
MC 43 . - - - . 43

Table 3-2. MF estimator data for the cases with and without optimization of the low-fidelity
replicas.

In Table 3-2, the colors of the estimators correspond to the color of the lines in Figure 3-2. In addition
to the oversampling factor and the number of low-fidelity replicas, we also report the variance
reduction, for all the MF estimators, achieved at the different time instances. The best MF estimator,
which uses the low-fidelity optimization, achieved a variance reduction ranging from 70% to 97%,
approximately. On the contrary, without low-fidelity replicas optimization, the variance reduction
achieved ranges from 60% to 95%. We further note here that the optimal performance of the
estimators is indeed obtained for the time instance of 1s, which also corresponds to the time for which
the 274 replicas is optimal. Later time steps, would require, in principle, lower number of replicas,
although we have fixed the number of 274 replicas to reflect the practical constraint behind the
selection of an optimal allocation for different quantities of interest.

This study of replicas in multifidelity uncertainty estimation is a unique contribution that has been
supported by the SECURE project.
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4, ADVERSARIAL OPTIMIZATION

Another focus of the SECURE project was the use of adversarial optimization to model the
interactions between cyber defenders and attackers. Standard optimization models aim to identify a
solution that maximizes or minimizes a given function, subject to a collection of mathematical
constraints. For example, consider the DC optimal power flow (DC-OPF) model. This model, which
approximates AC power flow, identifies how a grid should be operated to eliminate or minimize unmet
demand. Since electric power grids are governed by the laws of physics and capacities of equipment
like lines and generators, a collection of constraints must be satisfied by any solution to ensure that it
is feasible.

Adversarial optimization extends standard optimization methods by embedding optimization models
within other optimization models. For example, consider a version of the DC-OPF model which we
refer to as the "IN-£ DC-OPF" problem. In this example, we assume that there is a power grid with N
components and an attacker who can disable £ of those components. The attacker aims to find the
set of components to attack so that unmet demand or load shed on the system is maximized. However,
once the grid operator observes the attack, they will update how their system is being operated to
minimize load shed. This problem belongs to class of adversarial optimization problems called bi-level
programs, since there is an outer optimization problem, an attacker who wants to maximize load shed,
and an inner optimization problem, a grid operator who wants to mitigate the effect of an attack until
the affected components can be restored.

These methods are of particular interest to SECURE because they provide a means of finding worst-
case attacks against a system. In the case of the N-£ DC-OFP problem, these methods give a bound
on the maximum amount of load shed that can be caused for an attack of a given size. Without these
methods, some type of sampling-based or heuristic search would be required to find bad attacks, but
it would be difficult to prove that the worst-case attack had been found. The bi-level framework can
also be extended to consider tri-level level problems. One use of this class of problems is to determine
how to best protect a system. In the tri-level case, a defender could first determine how a system
should be protected (the first level). The attacker will then find the worst-case attack against the
fortified system (the second level) knowing that the grid operator will try to minimize the impact of
the attack (the third level).

The adversarial optimization work on SECURE had two main focuses. The first was developing a
toolkit to express and solve adversarial optimization problems. While there is a large body of published
literature on adversarial optimization algorithms, there are few general-purpose tools available to write
and solve these types of problems. In practice, this means that applying these methods typically
requires custom solutions. To address this, the SECURE team developed the Python Adversarial
Optimization (PAO) toolkit, which contains both a modeling language for expressing adversarial
problems and algorithms for solving them (see Section 7.4 for addition details). The second focus was
on developing adversarial optimization models to address cyber-physical security problems. The
remainder of this section describes each of the adversarial optimization models developed under
SECURE.

4.1. N-k Worst Case Analysis

The first optimization capability developed under SECURE was the N-£ DC-OPF problem described
above. To begin, we implemented an existing version of this model [30]. A key feature of this model
is that it does not make any assumptions about how the £ components on the system are disabled.
For example, it could be from either a physical or a cyber-attack. This is useful because this capability

29



can be used to bound the damage that can be caused for a wide variety of threats, without having to
model the specific threat. Figure 4-1 shows an example of this for the IEEE-118 bus test network. In
this example, we consider the load shed that is caused by attacking a given number of buses. We
assume that when a bus is attacked the associated loads, generators, and lines are disabled. We compare
random attacks generated via one thousand Monte Carlo samples (the box-and-whisker plots) to the
worst-case attacks found using the N-k model (red dots). Observe that the worst-case attacks can be
significantly more severe than even the tails of the randomly generated attack distributions.
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Figure 4-1. Comparison of load shed for the IEEE-118 bus system for random and worst-case
attacks.

SECURE utilized the N-£ model in the following two research thrusts:

First, it was coupled with a cyber-physical emulation to better understand the impact of a
CrashOverride malware attack on a notional electric system. More details on this work can be found
in the paper below:

A. Castillo, B. Arguello, G. Cruz and L. Swiler, "Cyber-Physical Emulation and Optimization of
Worst-Case Cyber Attacks on the Power Grid," 2019 Resilience Week (RWS), 2019, pp. 14-18, doi:
10.1109/RWS47064.2019.8971996. SAND2019-12468C.

Second, we explored a simplified version of the model to speed up solution times. While the N-£&
model is a powerful capability for finding worst-case attacks, it can be difficult to solve for large attack
budgets, even for networks with a few hundred buses. This difficulty further increases with the number
of buses in the network. To address this challenge, the simplified version of the model removes a
complicating constraint (Ohm’s law) from the DC-OPF model, reducing it to capacitated network
flow. Solving the N-£ model without this constraint gives a lower bound on the worst-case attack and
leads to a significant improvement in performance. Analysis and experiments showed that in certain
regimes, the results from the simplified model are often as good or nearly as good as the original DC-
OPF formulation. The details of this approach can be found in the reference below:
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E.S. Johnson and S.S. Dey, "A scalable lower bound for the worst-case relay attack problem on the
transmission grid," in first round of revisions at INFORMS Journal on Computing, available at
arXiv.2105.02801, SAND2021-10211.

4.2. Network segmentation

As an extension of the N-£ DC-OPF model, the power grid cyber-physical network segmentation
model was developed under SECURE to improve grid resiliency to SCADA cyber-attacks. The model
assumes a three-tier SCADA system where an attacker must start attacks from balancing authorities,
the first tier. Attacks must then pivot to control centers to reach substations. Once a substation has
been infiltrated, all grid components at that substation are disabled by the attacker to damage the grid
and cause loss of power to customers. A network designer can segment networks within each tier a
pre-determined number of times to restrict possible attack vectors, with anticipation of the worst
possible attack on the segmented SCADA system. See Figure 4-2 for an example of a cyber-physical
system before and after network segmentation, considering a worst-case attack where an attacker is
limited to attacking 5 subnets.
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Figure 4-2. Worst-case attack before network segmentation and after network segmentation.
Segmentation allowances: 1 extra balancing authority segment, 2 extra control center segments, 5
extra substations segments. Attacker budget: 5 subnets

In this example of optimal network segmentation, we show a baseline SCADA configuration for the
9-bus WSCC test system along with an optimally segmented network. Before network segmentation,
there is one balancing authority network, two control center networks, and 9 substation networks. An
attacker with five units of attack budget can cause a load shed of 315 MW—the full system load. After
network segmentation, the balancing authority is segmented into two subnets, each control center is
segmented into two subnets, and five substations are each segmented into two subnets. This
configuration only allows an attacker with the same attack budget to shed 215 MW of load.

Network segmentation under worst-case attacks is performed via a mixed-integer trilevel interdiction
model. The three players in this model are a network designer, an attacker, and a grid operator who
runs a DC-OPF model to redispatch the grid after a worst-case attack on the optimally segmented
SCADA system. The model was solved using bilevel branch-and-bound, as well as a trilevel cut-
generation approach. Algorithm details and results can be viewed in the following publications
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B Arguello and E.S. Johnson and J.L.. Gearhart, "A Trilevel Model for Segmentation of the Power
Transmission Grid Cyber Network", submitted to IEEE systems, available at arXiv.2108.10958.
SAND2021-102080.

4.3. Optimal Sensor Placement

The sensor placement optimization model was developed to identify where sensors should be placed
in a cyber network to maximize the probability that attacks are detected, knowing that an attacker will
aim to evade detection after the sensors are placed. This model uses attack graphs, derived from the
threat modeling work described in Section 2.2, as the "game board" where attackers and defenders
interact. An example of an attack graph is shown in Figure 4-3. In this example, the boxes represent
the state that an attacker is in (e.g. root permission on a SCADA workstation) and the arcs represent
attacks (actions) that are taken to move between states. The example shown below is an attack graph
for the WECC 9 bus power system. In this example, attacks begin at the remote station (at the top)
and terminate at one or more of the nine PLCs associated with the nine buses on the power system.

Each arc has a baseline probability of detecting an attack and a modified detection probability if the
defender chooses to install (or upgrade) a sensor on that arc. The attacker wants to cause at least some
amount of load shed. To achieve this, they determine which PLCs to attack and how to attack them,
in a manner that obtains this load shed with the lowest probability of being detected. Note that attacks
can take the form of a path if only one PLC is attacked or a tree if multiple PLCs are attacked. The
defender has a budget for the number of sensors that can be installed. Their goal is to determine how
to place sensors to maximize the probability that the attack is detected.

In the example shown below, we assume that the attacker wants to cause at least 125MW of load shed,
about 40 percent of the total load. Using notional baseline detection probabilities, they can achieve
this about 72 percent of the time. If seven new sensors can be installed, the evasion probability is
reduced to 24 percent. The orange hourglass icons show the locations where the optimization model
chose to place sensors in this example. After the sensors are placed, the attacker identifies the best
attack that is available to them. This is shown by the arcs highlighted in red in Figure 4-3. In this case
the attacker can achieve the target load shed by attacking PL.C 5. However, doing so requires them to
pass by two new sensor installations, in addition to the existing detection capabilities.
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Figure 4-3. Notional attack graph for the WECC 9 bus system. Optimal placement decisions for a
budget of 7 and a load shed threshold of 1.25MW are shown by orange hourglass icons. The red
arrows show the path that has the highest probability of evading detection (24 percent).

This model is formulated as a bi-level problem where the defender first installs sensors and the attack
finds the best available attack. In the case described above where the attackers want to cause a specified
amount of load shed, there is an implicit third stage for the DC-OPF problem. Unlike the previous
examples, the attack is not looking to maximize load shed. Instead, they want to ensure that the grid
operator cannot avoid shedding the specified amount of load.

4.4, Robust Optimization

SECURE also developed methods to incorporate robustness into multi-level adversarial optimization
problems. In their standard form, optimization models use constraints that are parameterized by
known values. However, in practice uncertainties can exist in the parameters used by the model. When
distributional information on these parameters is available, approaches like stochastic programming
can be used to account for decision making under uncertainty. When distributional information is not
available, robust optimization methods offer an alternative approach for dealing with uncertainty.
Robust optimization assumes that parameters are not fixed but are instead constrained to take values
within some uncertainty set. When robust models are solved, the solutions that are generated are
guaranteed to perform well over all parameter values in the uncertainty set.

Under SECURE, these approaches were applied in the context of sensor placement on networks, such
as the attack graphs shown in the previous section. In a cyber setting, the sensor model focuses on
placing sensors to maximize the probability of detecting an attack. As sensors are placed, the attacker
may alter their path to minimize the probability that they are detected. One potential issue with this
model is that the sensors that are placed on the network might not perform as expected or advertised.
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Given this, the robust version of this model helps ensure that the placement decisions guard against
some amount of sensor failure or degradation.
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5. END-TO-END EXEMPLAR

The SECURE project developed an end-to-end cybersecurity exemplar based on the Advanced
Persistent Threat 3 (APT-3) scenario® coupled with the 2016 CRASHOVERRIDE attack on the
Ukraine power grid. This scenario is depicted in Figure 5-1. For each stage in the exemplar scenario
that the team evaluated experimentally (depicted as purple dots in the arrow), the SECURE team
selected a set of attack tactics (e.g. from the MITRE ATT&CK database) that were representative of
real attack tactics, amenable to experimental implementation, but generalizable to other tactics. For
other stages, the SECURE team either used experimental data from the MITRE ATT&CK
evaluations or used data from the literature and/or subject matter judgment. In all cases, data from
cach stage informed transition probabilities for a Markov model in order to assess end-to-end
performance [see Section 2.2].
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Figure 5-1: End-to-end threat scenario based on APT-3 and CRASHOVERRIDE

5.1. Case Study: Command and Control (C2)

After initial infection, the next attack step in the exemplar scenario is focused on Command and
Control (C2). In this step, an attacker aims to establish a malicious C2 channel between one or more
infected hosts and a C2 server. To counter this, the system defender uses an intrusion detection system
(IDS) to monitor network traffic and detect malicious C2 traffic, as illustrated in Figure 5-2. In this
example there is both benign (green) and malicious (red) traffic on the network. While there are many
types of C2 malware and IDS systems that could be considered, we selected Emotet and SNORT,
respectively, for this case study.

2 https:/ /attack.mitre.otg/groups/G0022/
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Figure 5-2: Notional C2 exemplar system representation.

The aim of this case study was to use the SECURE experimentation methodology to rigorously
analyze this system. Specifically, we were interested in understanding the number of alerts (both true
and false positives) that would be generated by the IDS over time under various conditions and
settings. To accomplish this, we developed an emulation model and a mathematical model for this
system. The emulation model provided a high-fidelity representation but was costly to run since it
requires specialized computing resources and runs in real time. The math model has lower-fidelity but
can be run significantly faster than the emulation model, using desktop computing resources. Next,
validation and verification activities were performed on these models to build confidence in the results
they provide. Finally, analysis was performed using these models to understand which parameters have
the largest impact on this system. A key focus of the analysis was optimally using both models in
tandem to efficiently perform the analysis, while ensuring the accuracy of the results. See Appendix A
for a detailed description of this study.

5.2. Case Study: Scanning/Detection

In the APT-3 threat scenario, when an attacker gains a presence on a control center machine (e.g. an
engineering workstation), the attacker performs reconnaissance on the SCADA network to identify
vulnerable RTUs that are susceptible to CRASHOVERRIDE attack. In this case, without loss of
generality, the SECURE team selected Nmap as the network reconnaissance tool because it is simple,
open source, and generalizable to other scanning tools. Using Nmap, the attacker probes the network
address space to 1) find active IP addresses, and 2) determine which ports are open on those nodes.
In most of our scenarios, as shown in Figure 5-3, the attacker resides on a control center workstation
and runs Nmap to identify 24 RTUs across eight substations. Vulnerable RTUs are modeled as nodes
with an open Secure Shell (SSH) port and secure nodes are those whose SSH port is closed or those
who do not respond to Nmap probes. In addition, the scenario includes a Snort intrusion detection
node that is capable of seeing all traffic traversing the router that connects the control center to the
substations and is configured with the ‘sfportscan’ Snort rule to detect scanning activity.
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Figure 5-3: Typical SCADA network topology for scanning and detection

More detail regarding the scanning/detection scenatio may be found in [44] and [41] as well as
Appendix B.

5.3. Case Study: SCADA Network/Power Grid Impacts

The CRASHOVERRIDE malware was integrated into the SCEPTRE emulation environment to
study the impact of CRASH actions on portions of the synthetic Texas 2000-bus power grid.
SCEPTRE is an ideal environment for these kinds of studies because it couples emulated cyber models
(using minimega) with simulated power grid models (using PowerWorld). In addition, tools were
developed to import combined grid/cyber topologies from Texas A&M University into SCEPTRE,
which eliminates the need to generate these topologies by hand.

One study considered a scenario where a portion of the synthetic Texas 2000-bus power grid is
controlled by a subset of nine substations and 49 field devices, as shown in Figure 5-4. In this study,
an initial network topology and subnetting scheme was provided to the SECURE optimization team
to determine a worst-case attack for a given attack budget. (“Attack budget” is the number of
subnetworks an attacker can subvert.) The resulting worst-case attack identifies the substations that
are subverted, and the SCEPTRE emulation team assumes that all field devices within the substation
are compromised.

Next the optimization team computes a new subnetting topology that optimally minimizes the effect
of a worst-case attacker and calculates the resulting worst-case attack. The new topology is imported
back into SCEPTRE (using VLLANS, firewall rules, or other configurations to enforce the new
subnetting scheme), along with the new worst-case attack.
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Figure 5-4: Optimal SCADA network segmentation workflow

In both cases, the topologies and worst-case attacks are evaluated by coupling Dakota to Scorch, using
Dakota to specify CRASHOVERRIDE parameters. 100 combinations of CRASH parameters are
evaluated in both cases, and the results are shown in Figure 5-5. The figure clearly shows a difference
between the original segmentation scheme (in orange) and the optimal segmentation scheme (in blue).
Future work should quantify this difference for additional attacker budgets and at larger scales and
validate the optimality of the computed solutions.

70000
60000
o)
S 50000
)
S (]
L . e
") [ ] L]
@ 40000 ‘. = b o
o ‘. o % JO‘ .. ..‘ L J ¢
9] ® gy L ]
£ 30000 P : %% il 8
© ° °s ® o .
2 ® e . N
@ ee N °
E 2000 | & ° ~ *
(@] ° %
10000 Original Segmentation
@ Optimal Segmentation
0
0 20 40 60 80 100

Sample Number

Figure 5-5: Results showing benefit of optimal segmentation
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The SECURE team also conducted an uncertainty quantification (UQ) study to forward propagate
uncertainty in the number of RTUs affected by CRASHOVERRIDE to uncertainty in the resulting
loss of load. The study was conducted on the topology described above, with 49 field devices and the
synthetic 2000-bus Texas power grid model, but with no network segmentation.

The results, shown in Figure 5-6, show a general trend toward increasing load loss with increasing
numbers of RTUs targeted by CRASH, as indicated by the mean and median regression lines indicated
in red and green, respectively. However, there is a significant amount of variance, particularly for
smaller groups of RTUs, which makes good predictive regression difficult. However, if one were to
consider regression on higher quantiles of results (say, 95" quantile), one would see less variance
around these regressions, as shown in the top regression line in the figure. Furthermore, a 95™ quantile
estimation carries more meaning in terms of identifying, predicting, and planning for worst-case or
tail events.
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Figure 5-6: UQ study, showing regression for 95th percentile (representing worst-case tail
outcomes)

More details about the SCADA network and power grid studies can be found in Appendix C.

5.4. Integrating the various pieces: Markov Model

The Markov threat modeling technique described in Section 2.2 provides a useful end-to-end analysis
of attacker success relative to defender effectiveness. One example of the utility of Markov threat
analysis was demonstrated midway in the SECURE project, when the Markov model shown in Figure
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5-7 was constructed using SME- and literature-informed transition probabilities. (At the time, the
SECURE project had little experimental data to populate in the Markov model.)

0.28

Figure 5-7: Baseline Markov model of APT-3 threat scenario

The baseline model in Figure 5-7 was analyzed to understand the effect of varying defender capabilities
(modeled in the transition probabilities) on the attacker’s ability to reach the Ready state (state 9),
where the attacker could inflict power grid damage. For example, Figure 5-8 shows how a doubling in
the Ready state detection probability, from 0.005 in panel (a) to 0.01 in panel (b), dramatically reduces
the time the attacker can spend in that state. This effect is more comprehensively shown in panel (c).
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Figure 5-8: Change in Ready state (state 9) residence probability vs. Ready state detection
probability

Next, the team considered a sensitivity analysis in order to understand where increases in detection
capability provide the greatest benefit (to the defender). A similar analysis of Ready state residence
time versus detection probability for all states was conducted, and the results are shown Figure 5-9.
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Figure 5-9: Sensitivity analysis, showing greatest benefit in Ready state detection relative to
detection in other states

Panel (a) shows similar reductions in an attacker’s Ready state residence time as the defendet’s

detection probability increases for each state, except for detection in the Ready state (which shows a
dramatic decrease). Panel (b) shows more detail for detection in the Ready state, relative to the other
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states. From these results, a decision maker can conclude that it would be most cost-effective to focus
defender resources on detection in the Ready state, i.e. detecting malware presence in the SCADA

network.
More detail regarding Markov threat analysis and using it to guide defensive investments can be found
in [34].
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6. CROSS-CUT: VERIFICATION AND VALIDATION

Verification and validation (V&V) are critical activities performed when using computational
simulations for the purposes of predicting high-consequence events. Under SECURE, we took V&V
concepts from the physics and engineering community [5,14,29,31,1,2,33] and applied them to cyber
emulation experiments. This is summarized below.

6.1. Verification

An important part of using emulation is verifying whether the emulation environment is working as
intended, also called verification [22,33]. Part of verification involves software testing and quality
assurance. A unique aspect of cyber emulation involves assessing the performance of the emulation
running in the virtualized environment and determining whether there are sufficient resources to
properly handle the scenario that is being run. If there are not, the virtualized components may
produce experimental artifacts and behavior that result in the experimental outcomes being
unrepresentative or incorrect.

Under SECURE, we focused on determining whether there are sufficient virtualized resources to
support the emulation experiment and whether we can identify metrics that indicate when the results
of an emulation experiment are unreliable. This work is inspired by previous work by Heller described
in [13], but whereas Heller’s work was with the Mininet experimentation environment (which uses
Linux namespaces to model individual nodes), we considered virtual machines running in
minimega. Furthermore, where Heller considered invariants (e.g. network timing characteristics that
change predictably with changing experimental conditions), we consider a wider variety of host and
virtual machine metrics. We refer to these metrics as telemetry metrics, following the usage of this
phrase from Google [11], Microsoft [26], Intel [23] and others [38]. These companies use telemetry in
the context of network monitoring metrics (e.g. monitoring traffic to and from VMs, including
number and size of packets; round trip time for TCP flows), virtual machine resource usage (e.g.
number of system processes, thread counts, memory committed and available, physical disk read and
write time), and application monitoring (e.g. CPU utilization as a measure of performance).

We studied telemetry metrics relating to the performance of virtual machines which are used in a cyber
emulation study and the physical machine hosting that study. We ran studies with two different
scenarios under various levels of over-subscribed resources.[42] This first study was performed on a
scanning/detection scenario, and then on a command and control scenatio. Both studies involved
minimega which was deployed on experiments with increasing numbers of namespaces using a
single physical node on a High Performance Computing (HPC) system at SNL. A namespace is an
experiment that is isolated in its own VLAN or set of VLANs. Each namespace has its own copy of
each machine in the scenatio networked through a unique set of VLANs. Thus, we were able to run
multiple namespaces (e.g. namespaces = 1, 2, 4, )5 ...50) in parallel while the experiments remained
isolated within their own namespace, effectively increasing the load on the HPC node in a well
controlled fashion.

For the scanning/detection scenario, we found that the alert time distribution changed in a discernible
way as a function of namespace: the distribution of alert times was much wider with a higher mean
for namespaces 20, 33, and 50 [42]. We also found that the telemetry metrics of system load and
throughput can be used to filter out replicates that had statistically different results than the one-
namespace results which were used as the gold standard. The same telemetry metrics of system load
and stolen cycles were also used to identify oversubscription problems in the C2 scenario.
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6.2. Validation

Validation addresses the question of adequacy of the model: is the model accurate enough and
appropriate to be used for a prediction? [33] Typically, validation involves the comparison of the
model with observational or experimental data using statistical metrics called validation metrics [33,
25].

Under SECURE, we performed two research studies relating to validation:

1. Reproducibility. The main question in reproducibility is can one reproduce cyber emulation
results generated on one testbed (e.g. Sandia’s minimega emulation running on an HPC
using the SCORCH orchestration tool) on another testbed (e.g. Texas A&M University’s
CORE testbed running in their Resilient Energy Systems Laboratory, RESLab). The two
emulation environments are built on fundamentally different technology: minimega uses
VMs but CORE uses containers.

Reproducible cyber experimentation is essential to assure valid, unbiased results across cyber testbeds.
Even minor differences in setup, configuration, and testbed components can have an impact on the
experiments, and thus, reproducibility of results. In collaboration with TAMU, we performed a set
of reproducibility experiments for the scanning/detection scenario.[41] The details are in the paper
presented at the 14™ Cyber Security Experimentation and Test workshop[41]; we note that as part of
this study, we examined four statistical metrics: the t-test, the Kolmogorov-Smirnov (K-S) test, the
area metric, and the Relative Hausdorff metric.

The following summarizes the lessons learned from the reproducibility study:

e Even after providing a comprehensive writeup and details of the experiment, both teams
still required significant coordination to reproduce the experiment.

e It can be challenging to determine if small differences are due to differences in the
hardware/emulation platform OR due to an implementation detail that is not cotrectly
reproduced. Therefore, subject matter expertise is critical.

e Statistical tests and ensembles of replicate results can help in this comparison as they
provide some estimate of the uncertainty inherent in the results on one platform.

e We recommend public repositories for experimental artifacts. One example is the
SEARCCH project: Sharing Expertise and Artifacts for Reuse through Cybersecurity
Community Hub project (https://searcch.cyberexperimentation.org/ )

e We need consensus in artifacts and how testbed technologies use them

e We need to understand differences between common cyber experimentation platforms,
to account for these differences when determining whether an experiment is reproduced

e Appropriate distance metrics should be developed, depending on the experiment
question and objective

2. Physical validation.

We conducted two sets of physical validation experiments. The first set used physical nodes in a HPC
cluster at Sandia, and compared the experimental results from these physical nodes with the results
from the minimega virtual machine testbed. These results compared very well, in part because both
experiments used the exact same operating systems. Therefore, we conduced a subsequent series of
physical validation experiments on physical hardware at TAMU’s RESLab. For these experiments,
we again used the scanning/detection scenatio and used the same statistical metrics we found most
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useful from the reproducibility study: the K-S test and the area metric. Instead of comparing
minimega to CORE (reproducibility study) or physical HPC nodes, we compared minimega to
RESLab. The RESLab experiments involved physical RTUs modeling the open ports in the
scanning/detection scenatio, but used CORE emulation components modeling the rest. Thus, it was
not a purely physical system used for validation, but the physical units were modeling the most
important components of interest: the open, vulnerable RTUs. The preliminary results from this
exercise, which involved 1000 runs from TAMU and 1000 runs from SNL under a variety of
conditions, show that we can validate Sandia’s minimega emulation against a hybrid physical system
at TAMU.[40]
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7. CROSS-CUT: TOOLS

Several software tools were developed and/or used as part of the SECURE project. A short
description of these is given below.

7.1. SCORCH

SCORCH is a software tool that manages the deployment of cyber experiments. The key benefits of
SCORCH are that 1) it will configure the experiments and 2) it is able to collect and store the outputs,
thereby speeding up analysis time and reducing manual error. SCORCH is an automated scenario
orchestration framework for emulation-based models that also utilizes minimega.

7.2, Minimega/SCEPTRE
minimega (https://minimega.org/) is an open source distributed Virtual Machine (VM)

management tool used for launching and managing virtual machines locally or across a cluster [4].
minimega is fast, easy to deploy, and can scale to run on massive clusters with virtually no setup. It
is scalable and able to support studying both small and very large VM networks. minimega is
designed to give you low-level control of all the fine details when it comes to setting up and running
VMs and has now been pulled into other tools, e.g. SCEPTRE, to take care of the low-level features
of spinning up VMs.

SCEPTRE is an application that uses an underlying network emulation and analytics platform to
model, simulate, emulate, test, and validate control system security and process simulations.
Traditionally, tools and techniques for simulating and emulating control system field devices have
been limited because the physical processes being monitored and controlled are omitted. SCEPTRE
leverages proven technologies and techniques to integrate the end device and process simulations,
with control hardware-in-the-loop (HIL), providing an integrated system capable of representing
realistic responses in a physical process as events occur in the control system, and vice versa.
SCEPTRE is a proven control system environment platform, having been fielded for many R&D
applications, operational joint tests, and exercises supporting testing, training, validation, and mission
rehearsal.

SCEPTRE is comprised of simulated control system devices, such as remote terminal units (RTUs),
programmable logic controllers (PLCs), protection relays, and simulated processes, such as electric
power transmission systems, refinery processes, and pipelines. The simulated control system devices
are capable of communicating over Internet Protocol (IP) networks using standard SCADA protocols
such as Modbus, DNP3, IEC 61850, and others. SCEPTRE also includes support for HIL, wherein
real field devices under study (i.e. a specific model of PL.C) can be connected to and interact with the
physical process being simulated. This allows the user to include high fidelity systems where they are
needed without sacrificing scalability. SCEPTRE provides an analysis capability for assessing and
improving the cyber security of control systems used in the energy sector and DoD. The SCEPTRE
platform provides an environment where hardware and software upgrades and new mitigations can
be evaluated before installation in an operational environment.

7.3. Elasticsearch

Elasticsearch ( https://www.elastic.co/elasticsearch/ ) is an open source tool for storing large
amounts of data in a highly searchable way that is amenable to a variety of data types and structures.
Under SECURE, Elasticsearch was leveraged for data storage and retrieval during the Validation and
Verification studies. These studies required large amounts of data to be stored, sorted, and easily
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searchable. Using Elasticsearch allowed for storage of varied data types and structures, easy conversion
of data to and from JSON format, and simple querying.

7.4. PAO/Pyomo

PAO is a Python-based package for Adversarial Optimization. The goal of this package is to provide
a general modeling and analysis capability for bilevel, trilevel and other multilevel optimization forms
that express adversarial dynamics. Many planning situations involve the analysis of a hierarchy of
decision-makers with competing objectives. For example, the cyber-grid applications developed in the
SECURE Grand Challenge consider the behavior of attackers and defenders, where defenders wish
to protect their cyber infrastructure and execute power grid operations to meet expected energy
demands, and attackers wish to maximally disrupt grid operations. Thus, these cyber-grid applications
can be naturally modeled as bi-level and tri-level optimization problems, where decision-makers need
to account for the behavior of adversaries at a lower-level.

SECURE researchers developed tailored optimization solutions for cyber-grid applications using the
Pyomo modeling environment, which are analyzed with commercial and open source optimization
solvers. Concurrently, PAO was developed to automate these tailored solutions to future applications
that share similar structure. PAO extends the modeling concepts in the Pyomo algebraic modeling
language to express problems with an intuitive algebraic syntax. Additionally, PAO supports compact
problem representations that simplifies the implementation of solvers for bilevel, trilevel and other
multilevel optimization problems. PAO currently includes four solver interfaces that are applicable to
different classes of adversarial optimization problems.

e Pyomo
o GitHub repository: https://github.com/Pyomo/pvomo

o Online documentation: https://pyomo.readthedocs.io/en/latest

o Bynum, M., G. Hackebeil, W. E. Hart, C. Laird, B. Nicholson, ]. Siirola, J.-P.
Watson, and D. L. Woodruff. (2021) Pyomo: Optimization Modeling in Python.
3rd. Springer.

o GitHub repository: https://github.com/or-fusion/pao

o Online documentation: https://pao.readthedocs.io/en/latest

o Hart, W. E., A. Castillo, E. S. Johnson, and S. Punla-Green (2021). PAO 1.0: A
Python Library for Adversarial Optimization. Tech. rep. SAND 2021-6720.
Sandia National Laboratories.

7.5. Dakota

Dakota is a suite of iterative mathematical and statistical methods that interface to computational
models or simulations ( https://dakota.sandia.gov ). Dakota’s goal is to make parametric explorations
of models practical to support design, analysis, or test cycles. Dakota is an open-source software
toolkit and has algorithms to enable design exploration, model calibration, risk analysis, and
quantification of margins and uncertainty with computational models. Dakota seeks to enhance the
use of computational models with a variety of iterative analyses (running the model multiple times
depending on the objective of the study) so that models may be used not just for single-point solutions,
but also achieve broader impact in the areas of credible prediction and optimal design.
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Related to SECURE, there is an extensive suite of uncertainty analysis methods in Dakota, including
a variety of sampling methods (Monte Carlo, Latin Hypercube Sampling, quasi-Monte Catlo methods,
design of experiments, fractional and full factorial designs), sensitivity analysis methods, reliability
methods, stochastic expansion methods such as polynomial chaos, epistemic uncertainty approaches
including interval analysis and Dempster-Shafer evidence calculations, and Bayesian calibration
methods, and multifidelity uncertainty methods. These are summarized in:

o L. P.Swiler, B.M. Adams, and M.S. Eldred, “Dakota: Bridging Advanced Scalable UQ
Algorithms with Production Deployment.” In Springer Handbook on Uncertainty
Quantification, Ghanem R., Higdon D., Owhadi H. (eds) (2015).
https://doi.org/10.1007/978-3-319-11259-6_52-1.
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8.

Given the variety of tools that can be used to assess cyber systems, experimentalists might be tempted
to dive right into a study. However, an analysis rigorous enough for use in high-consequence cyber
systems requires a carefully thought-out experimental design. This section describes the
experimentation workflow developed and used by the SECURE research team while conducting its

RECOMMENDED WORKFLOW

studies of power grid cyber effects.

The workflow presented in this document is primarily focused on emulation testbed modeling,
although it may be employed for other types of cyber models. Thus, to facilitate the discussion, we

define the following terms:

Figure 8-1 shows a spectrum of testbeds employed in the modeling of cyber systems and associated

Cyber Model — a generic term that can apply to any methods (or combinations of
methods) used to assess cyber systems

Cyber Testbed - the hardware platform and software framework used to run a cyber
model or combination of cyber models.

Physical Model - Cyber models that run real software on a representative hardware
platform to model the actual system in full fidelity.

Emmlation Model — Cyber models that run real software in real time on a computing
cluster, using hardware abstractions such as virtual machines and/or containers to
represent individual nodes, and virtual networking technologies such as Virtual Local
Area Networks (VLANS) to interconnect VMs or containers.

Emmlation Testhed— (also known as “virtual testbed”) Resources (e.g. computing cluster,
virtualization technologies, and experimentation/orchestration software) used to
instantiate emulation models.

Simulation Model — primarily discrete event simulators (e.g. OMNET++ [18] or ns-3
[21]), which run abstract representations of software and hardware. These models can
run faster than real time.

Mathematical Model — Mathematical formulas that capture dynamic and/or steady-state
values of a quantity of interest and can be solved using mathematical analysis tools
such as Matlab or Mathematica.

tradeoffs in terms of realism vs. cost.
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Figure 8-1. Spectrum of cyber model fidelity, ranging from actual system to simulation testbeds.

Because the topic of experimental design for emulation models is an active area of investigation in the
cyber-security research community, several frameworks have been developed to help facilitate sound
experimental practices and generate reproducible results. For example, the DEWs (Distributed
Experiment Workflows) [27] provide generic descriptive language to encode the scenario and topology
for an experiment. Likewise, DARPA's National Cyber Range [7], Emulab [37], and DETER [28] are
cyber testbeds that can be used for research and experimentation on networks. Reference [25] also
examines how platform variations affect emulation models, using carefully structured experiments and
statistical analysis. Although these tools exist and work well for experiments, methods for using them
rigorously to provide comprehensive evidence to answer questions about high-consequence systems
have not been developed and characterized. For example, reproducibility in cyber experiments remains
a challenge, due to small timeframes, implementation differences, and differences in platform
configurations. Therefore, to facilitate the achievement of reproducible, unbiased results and methods
that may be readily applied in other contexts (e.g. on other cyber testbeds with differences in operating
systems, software and hardware, kernels, system resources, etc.), the SECURE project developed the
following workflow to help guide future studies, as shown in Figure 8-2. We acknowledge that this
workflow was designed for an experimental model (to study sensitivity and uncertainty analysis) but
note that it can be applied more generally to generate ensembles of runs that can support optimization
studies or other studies. Further detail and a description of SECURE’s experimental design (especially
the design of experimental runs) can be found in "Design of Experiments for Cyber Emulation" [39].
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Step 7. Document

Figure 8-2. Recommended workflow for cyber modeling suggested by the SECURE project

When performing cyber modeling experiments, we recommend that the following workflow be
used:

1. Clearly articulate the question. Be specific. (e.g. "If an attacker uses port scans and a given
configuration of the Nmap scanning tool, how many alerts will our intrusion detection
software identify in a 60-second window?" NOT "Will our intrusion detection software work
efficiently?") If possible, identify what statistics are of interest (e.g. the average number of
alerts in a time window, the probability that there will be more than 10 alerts, or the full
distribution of alerts).

2. Define the approach that best answers the question. Scope the problem, identify inputs
and outputs, and consider your modeling options.

a. Identify your requirements (e.g. fidelity, scale, size of parameter space, desired variance
in outputs, time per replicate, number of replicates). Most cyber models, require
multiple runs per model configuration setting (i.e. multiple replicates), because there
is inherent variability or stochastic behavior in each replicate, due to small timing
differences, ordering of various events happening on the system, etc.

b. Choose your modeling domain(s) (e.g. emulation, mathematical), noting that your
choice of modeling domain should depend on the model requirements identified in
Step 2(a), as shown in Figure 8-2. For example, if a large scale is required, scalable
modeling technologies (e.g. emulation, simulation, or mathematical modeling) would
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be more practical than physical testbed modeling; however, if high fidelity is
required, then physical or emulation testbed modeling would be more effective than
simulation or mathematical modeling. Of course, a combination of technologies can
be used to maximize outcomes (e.g. a coupled model or models at multiple levels of
detail in a multifidelity modeling study).

c. Define how each modeling activity contributes to the answer.

3. Develop the model, depending on the modeling domains. The developmental activities
for different types of models will vary by model:

o Mathematical models develop equations that will be solved, typically as a function of time
(e.g. traffic might be modeled with a Poisson arrival rate distribution to calculate the
expected number of packets arriving in a particular time step).

o Simulation models use discrete event network simulators, which often have simulation
examples and model libraries (e.g. with different routing protocols, network traffic,
etc.) that can be used as building blocks; however, the configuration of the simulation
must typically be customized for the scenario of interest to the study.

o Ewmulation models bear some similarity to simulated models, but the actual software
components and virtualized hardware components (e.g. routers, servers, workstations,
NIC cards, etc.) must be explicitly identified. The emulation platform we used for
SECURE was minimega [17]. Below we specify steps that are fairly general and
need to be customized for a particular emulation platform and experiment.

1. Define or import the topology
ii.  Develop the application components, if needed
ii.  Define the experimental behaviors that will be investigated
iv.  Develop a data collection strategy
v.  Set up and verify the configuration
vi.  Obtain the resources to run the model

4. Validate the model. Compate the model to higher fidelity representations and/otr to
independently developed models of similar fidelity, to assess the degree of agreement between
your model and the benchmark. Choose the comparison metrics that best expose the statistics
of interest (e.g. differences due to virtual machine artifacts). A high-fidelity model (e.g.
simulation or emulation) should ideally be benchmarked against an actual physical system, as
in [24]. However, lower-fidelity models (e.g. mathematical) might be benchmarked against
higher-fidelity models. Any large and/or systemic differences between your modeled data and
the benchmark data should be investigated before the experiment progresses.

At present, there is no standard for benchmarking cyber emulations; the current best-practice is a
hierarchical validation, which occurs in stages, as shown in Figure 8-3. First, the components and/or
attack steps are validated individually, then larger groupings or components are validated, and then
the entire system is validated. Figure 8-3 depicts the validation of a cyber-attack model, but a similar
validation process could be applied to any kind of performance issue or behavior.
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Figure 8-3. Hierarchical validation for a cyber system, starting with validation of individual attack

steps at the bottom and proceeding to validation of the full attack at the top.

5. Define and run the experiment. Define the inputs/outputs for your model and specify them
in a configuration file for an experimental orchestrator (e.g. Scorch or Dakota [16]). Choose
an experimental design that will produce an appropriate list of input/output parameter

settings:

a.

Define the inputs that will be varied in the experiment and specify the distribution of
possible values for each input (e.g. discrete bandwidth values, uniformly distributed traffic
generation rates between uppet/lower bounds, etc.). Each input that will be varied in the
experiment should have a specification of its distribution in a parametric or empirical
distribution form.

Define the outputs that will be extracted from the experiment. These outputs can take the
form of detailed experimental data (e.g. packet captures and logfiles sent to an
Elasticsearch/Logstash/Kibana (ELK) data collection node [19]), and/or summarized
experimental outputs calculated within the experiment as it executes (e.g. the time at which
an intrusion detection system generates an alert).

Develop the experimental design. This can be done in a variety of ways [39, 36]. If the
number of inputs is small (1-5) and each input has only 2 or 3 levels, a full factorial design
can be run involving all combinations of input parameter levels. If the inputs are specified
with continuous distributions, Monte Carlo sampling or more efficient alternatives such
as Latin Hypercube sampling or quasi-Monte-Carlo space-filling methods can be used to
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generate samples. In each of these cases, the number of samples should typically be at
least 10x the number of input parameters.

Define the number of replicates per design point. At each point in the experimental design
space (e.g. input 1 is at value A, input 2 is at value B, etc.), it may be necessary to run the
model multiple times, where each model run is a replicate. If the model is deterministic
(e.g. running at one setting of parameter inputs always gives the same results), then it is
only necessary to run the model once per parameter setting. However, many cyber models
are stochastic due to slight variations in timings of processes and order of operation
executions. In this case, one setting of the parameter inputs should be run with replicates
to obtain statistics on the response for that parameter setting.

Run the model. Once the experimental design is identified, it produces a list of input
parameter settings at which the cyber model should be run. This list is given to the
experiment orchestrator (e.g. Scorch, Dakota). The next step is to run the cyber model at
these settings. For each parameter setting, the model may be run once or some number of
times (multiple replicates), depending on whether the model is deterministic or stochastic.

Analyze the experimental results. Use your data to generate a table (as an Excel spreadsheet,

a data structure in a Python analysis script, a table in Elasticsearch, a table in Minitab [20], etc.)

and organize the results (where the rows are each run of the cyber model, the first set of

columns are the input parameters, and the second set of columns are the outputs) for further

analysis.

a.

Verity results. Depending on the experimental design and the available benchmarks,
choose the most appropriate validation method (e.g. scatterplots of inputs v. outputs,
calculation of basic statistics on the outputs, etc.).
1. (Optional) If the values obtained in Step 6(a) are orders of magnitude different
from the benchmark values, revisit Step 3.
Assess convergence
1. (Optional) If the values obtained in Step 6(b) are orders of magnitude different
from the benchmark values, revisit Step 3.
Determine conclusions/insights. Employ statistical analysis methods approptiate to the
experimental design (e.g. main effects analysis for full factorial designs with discrete input
levels, correlation analysis, standardized regression analysis, and/or Sobol variance-based
indices for designs with continuous input distributions). Statistical tests (e.g. t-tests or
Kolmogorov-Smirnov tests) can be used to compare the results gathered from different
tests, scenarios, platforms, or emulators.

Document. Document your results comprehensively so that they will be fully useful and

reproducible for subsequent researchers.

a.

b.

Question(s). List the question(s) addressed in the study.

Methods. Define each step of the methodology, with enough detail that the study can be
easily replicated.

Analysis. Describe the analyses performed.

Results. Report the complete results, including tables of raw data.

Conclusions/Insights. Highlight the conclusions/insights gained from the study.
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9.

PROJECT METRICS

9.1. Publications & Presentations

A list of publications and presentations from the SECURE project is listed below. One special item
that we wish to highlight: a web-based Handbook has been developed to archive some of the research
concepts and results of SECURE. The Handbook was created in part from feedback from the

External Advisory Board. A goal of the Handbook is to highlight the SECURE project and results to
the external community.

9.1.1.  Papers completed

1.

10.

11.

12.

13.

Castillo, B. Arguello, G. Cruz and L. Swiler, "Cyber-Physical Emulation and Optimization of
Worst-Case Cyber Attacks on the Power Grid," 2019 Resilience Week (RWS), 2019, pp. 14-18,
doi: 10.1109/RWS47064.2019.8971996. SAND 2019-12468 C.

Pinar, Z. Benz, A. Castillo, W. Hart, L. Swiler, T. Tarman, “SECURE: An Evidence-based Approach
to Cyber Experimentation,” IEEE Resilience

Week: https://ieeexplore.ieee.org/document/8971976 ,

Vugrin, J. Cruz, C. Reedy, T. Tarman, and A. Pinar “Cyber Threat Modeling and Validation:
Port Scanning and Detection,” Proceedings of the 7th Annual Hot Topics in the Science of Security
(HoTSoS) Symposium.

Geraci, G., L.P. Swiler, J. Crussell, B. Debusschere. "Exploration of Multifidelity approaches for
Uncertainty Quantification in network applications." Proceedings of 3rd International Conference on
Uncertainty Quantification in Computational Sciences and Engineering in Crete, Greece, June 2019.
SAND2019-3274C.

Acquesta, L. P. Swiler, and A. Pinar ,“Time Series Dimension Reduction for Surrogate Models
of Port Scanning Cyber Emulations.”. SAND20-10617.

Geraci, G., Crussell, J., Swiler, L.P. and Debusschere, B. J. “Exploration of Multifidelity UQ
Sampling Strategies for Computer Network Applications.” International Journal of Uncertainty
Quantification, 2021. Pp. 93-118. DOL: 10.1615/1nt.].UncertaintyQuantification.2021033774.
SAND2021-1221].

Gabert, A. Pinar, and U. Catalyurek, “Computing Hierarchical Dense Structures on Dynamic
Graph Streams,” ACM Intl. Conf. on Web Search and Data Mining (WSDM) 2021

Tarman, T. Rollins, L.P. Swiler, J. Cruz, E. Vugrin, H. Huang, A. Sahu, P. Wlazlo, A. Goulart,
and K. Davis. Comparing reproduced cyber experimentation studies across different emulation
testbeds. USENILX 74#) Cyber Security Experimentation and Test (CSET) Workshop. Aug. 9,
2021. SAND2021-5696C.

Gabert, Y. Ozkaya, K. Sancak, A. Pinar, and U. Catalyurek, “EIGA: Elastic and Scalable
Dynamic Graph Analysis,” to appear in SC’21.

Gabert, A. Pinar, and U. Catalyurek, “Shared-Memory Scalable k-Core Maintenance on Dynamic
Graphs and Hypergraphs,” in IEEE ParSocial 2021.

Ozkaya, F. Balin, A. Pinar, and U. C atalyu'rek, SSGG: A scalable graph generation algorithm
to sample over a given shell distribution in Proc. IPDPS Workshops, W. Graph Learning,.
Stickland, J. Li, T.D. Tarman, L.P. Swiler. Uncertainty Quantification in Cyber Experimentation.
SAND2021-5710C.

Malashkhia, L. Swiler, A. Pinar, and Y. Wang, “A Robust Control Scheme for Time Delay
Switch Attacks,” to appear in AMSec'21 Workshop on Additive Manufacturing (3D Printing)
Security.
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9.1.2.  Papers under review

1.

10.

Arguello and E. Johnson and J. Gearhart, "A Trilevel Model for Segmentation of the

Power Transmission Grid Cyber Network.” SAND 2021-10208 O, submitted for journal
publication, also available as arXiv.2108.10958: https://arxiv.org/abs/2108.10958 and
Optimization Online: http://www.optimization-online.org/DB HTMI./2021/08/8562.html
Outkin, T. Schulz, T. Tarman, P. Schulz, A. Pinar. Defender Policy Evaluation and Resource
Allocation against MITRE ATT&CK Data and Evaluations, submitted for journal publication.
Johnson and S.S. Dey, "A scalable lower bound for the worst-case relay attack problem on the
transmission grid," submitted for journal publication, available at arXiv.2105.02801. SAND
2021-10211 O.

Ozkaya, A. Pinar, and U. Catalyurek, “TRIGGER: TempoRal Interaction Graph GenEratoR,”
submitted for conference publication.

Cheramin, J.Cheng, R. Chen, and A.Pinar, “Data-Driven Robust Optimization Using
Scenariolnduced Uncertainty Sets,” submitted for journal publication.

Vugrin, E. and S. Hanson, J. Cruz, C. Glatter, T. Tarman, and A. Pinar. "Detection of
command and control traffic: model development and experimental validation." Submitted for
conference publication.

Hanson, S. and G. Cruz. “SCORCH User Guide.” In preparation as a SAND report, 2021.
Gabert, A. Pinar, and U. Catalyurek, “Coreness to Cores: Batch Dynamic Algorithm to
Efficiently Find k-Cores,” submitted for conference publication, submitted for conference
publication.

Emma Johnson, Santanu Dey, Jonathan Eckstein, Cynthia Phillips, John Siirola, “A Covering
Decomposition Algorithm for Power Grid Cyber-Network Segmentation,” submitted for
journal publication.

She’ifa Punla-Green, John Mitchell, Jared Gearhart, William Hart, Cynthia Phillips, “Shortest
Path Network Interdiction with Asymmetric Uncertainty,: submitted for journal publication.

9.1.3. Technical Presentations

1. Tom Tarman, SECURE overview, Texas A&M University,. December 2018

2. Ali Pinar, “SECURE: An Evidence-based Approach to Cyber Experimentation,” IEEE
Resilience Week, October 2019

3. Bryan Arguello, “Cyber-Physical Emulation and Optimization of Worst-Case Cyber Attacks
on the Power Grid,” IEEE Resilience Week, October 2019. SAND 2019-12468 C.

4. Tom Tarman , “Cyber Experimentation,” University of Texas at San Antonio, March 2019

5. Bryan Arguello, “Talk: Bilevel Optimization of Cyber Physical Models for Power Grid
Resilience,” INFORMS Annual Meeting, October 2019. SAND 2019-12885 C.

6. Laura Painton Swiler, “Uncertainty Quantification in Cyber Emulation,” INFORMS Annual
Meeting, October 2019

7. Eric Vugrin, Gerardo Cruz, Christian Reedy, Alexander Outkin, Vincent Urias, Thomas
Tarman, “Cyber Threat Modeling And Validation,” INFORMS Annual Meeting, October
2019

8. Ali Pinar, “Rigorous Cyber Experimentation for Security of Cyber Physical Systems,"
INFORMS Conference on Security, February 2020.
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9. Bryan Arguello, Emma Johnson, Jared Gearhart, “A Trilevel Cyber-Physical Power System
Network Segmentation Model,” INFORMS Annual Meeting, November 2020. SAND 2020-
11077 C.

10. Bert J. Debusschere, Gianluca Geraci, John D. Jakeman, Cosmin Safta, and Laura Swiler,
“Polynomial Chaos Expansions for Discrete Random Variables in Cyber Security Emulytics
Experiments”, SIAM CSE 2021 (virtual), March 1, 2021. SAND 2021-2270 C.

11. Tom Tarman, Comparing reproduced cyber experimentation studies across different
emulation testbeds. USENIX 74th Cyber Security Experimentation and Test (CSET) Workshop.
August 2021.

12. Ali Pinar, “Cyber Security: A new frontier for computational science and engineering,”
Institute for Mathematics and its Applications IMA), U. Minnesota, February 2021

13. Ali Pinar, “SECURE: An Evidence-based Approach to Cybersecurity,” 2019 Graph
Exploitation Symposium, MIT Lincoln Labs, MA, April 2019.

14. Ali Pinar, “Rigorous Cyber Experimentation for Science of Security,” Lab Research
Technical Exchange, May 2021.

15. Bryan Arguello, Jared Gearhart, Emma Johnson, Santanu Dey, “Trilevel Programming for
Network Segmentation of Power System Cyber-Physical System,” INFORMS Annual
Meeting, October 2021. In R&A.

16. Emma Johnson, Santanu Dey, “A Scalable Lower Bound for the Worst-Case Relay Attack
Problem on the Transmission Grid,” INFORMS Annual Meeting, October 2021. SAND
2021-11154 C & SAND 2021-11196 V.

17. Ali Pinar, “SECURE: Science of Security by Rigorous Experimentation,” October 2021

18. Ali Pinar, “Principled Methods for Quantified Security for High-Consequence Cyber
Physical Systems,” Workshop on Military Communications, December 2021.

9.2. Conference & Workshop Organization

Despite the limitations imposed by the COVID-19 pandemic, our work has been presented in many
conferences and workshops and the team members have contributed to organizations of these
meetings in leadership roles. Of note here, is the Cyber Experimentation and Science of Security
Workshop (CESoS’21), which will be held in November 2021. This planned workshop will bring
together leading researchers in the field and will give Sandia the opportunity to present the SECURE
work and introduce its new SCIRE institute: “Sandia’s Cyber security Institute for Rigorous
Experimentation.”

9.3. Mentoring and Training

SECURE is an interdisciplinary project. Cross-training team members on other disciplines to form a
well-functioning team has been a big part of our effort and a bigger part of our success. We believe
this interdisciplinary culture built under SECURE will have an enduring effort at the Lab.

The team comprised eight early career staff and many more senior researchers stepped in for higher
roles. The project also supported dissertation studies of 3 PhD students. Two of these students are
already Sandians and we are optimistic that the third will join Sandia upon graduation.

57



94. Team Building & Partnerships

The project helped with building many external partnerships. In addition to connecting with many
individuals, we expect that our partnerships with Georgia Institute of Technology, Texas A&M
University, University of Southern California Information Sciences Institute, and University of
California at Davis, as well as at Pacific Northwest National Laboratory and other national
laboratories, will be long-lasting productive partnerships which can position Sandia as a leader in
rigorous cyber experimentation.
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10. SUMMARY AND PROJECT LEGACY

Judgments about the security of high-consequence cyber systems require hard evidence, quantified
uncertainties around the evidence, and rigorous experimental methods to produce that evidence. The
SECURE Grand Challenge LDRD project was proposed to address a significant cybersecurity
experimental gap between rapidly maturing testbed technologies (e.g. minimega, DETER, amd
cloud computing technologies) and emerging R&D in the “science of cybersecurity” [3,6,15]. This is
work is not being performed elsewhere, and is appropriate for Sandia National Laboratories to pursue,
based on its multi-decade heritage as a nuclear weapons engineering laboratory responsible for the
HPC codes and simulations that inform decisions regarding high-consequence nuclear weapon
systems.

The inspiration behind our approach is the success and impact of computational science and
engineering (CSE), specifically on Sandia’s nuclear stockpile stewardship mission, and broadly on the
scientific community. Cyber experimentation can provide the predictive capability as the scientific
computing models do for physics-based systems, and thus there are a lot of parallels that we can draw
inspiration from. However, cyber systems are much different than physics-based systems, due to lack
of closed-form equations, discrete nature of systems and extreme nonlinearities. Due to these
differences, we cannot expect traditional CSE methods to work well on cyber systems; we promised
to invent new methods that can provide similar capabilities for cyber systems.

SECURE successfully delivered on this promise. The SECURE external advisory board (EAB)
acknowledged that SECURE addressed this important niche with rigor, and that only a national
laboratory could credibly take on this challenge. As evidence of the success of SECURE, several
“firsts” were realized during this project, including:

e Multifidelity uncertainty quantification in a cyber experiment context.

e The development of an integrated software package (PAO) for expressing and solving
adversarial optimization models.

e End-to-end cyber exemplars that integrate emulation, modeling, and uncertainty
quantification to rigorously analyze cyber security problems.

e Developed methodology for tri-level interdiction, allowing tractable solutions for optimal
segmentation at large scales

e Developed automated methods to import synthetic (and potentially real) cyber power grid
topologies into SCEPTRE experiments, enabling scaled studies.

e Developed integrated workflow of orchestration (Scorch), design of experiments (Dakota),
and emulation (SCEPTRE) to enable rigorous cyber experimental studies.

e Use of optimization to focus (computationally) expensive emulation experiments on optimal
parameter regimes. For example, optimal segmentation was paired with emulation to identify
optimal topologies and adversary scenarios.

e Development of a novel telemetry-based verification approach for emulation-based testbeds,
inspired by previous work with the Mininet experimentation environment [13].
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Polynomial chaos expansions over “mixed” discrete and continuous variables in a cyber
experiment context, enabling efficient sensitivity analysis.

Use of statistical tests at each time step of an experiments with large number of experimental
replicates to carefully assess similarity between cyber experiments run on different emulation
testbeds or to perform emulation vs. physical testbed comparisons.

Applied Markov modeling as an integrated framework for end-to-end integration of attack
success probabilities at each step. We extended it to analyze attacker/defender capabilities as
well as to incorporate information from both MITRE ATT&CK framework and emulations
in the following ways:

a. Understanding attack evolution over time and handling time-unbounded
attacks,

b. Using the Markov model as good approximation of system security, even if
one doesn’t know attacker strategies,

c. Allowing single- and muli-step attacks within an integrated framework

In addition, several important observations about rigorous cyber experimentation were encountered
during this project, including:

Verification efforts helped find very subtle bugs when deploying emulation experiments on
large numbers of namespaces on one host.

Cyber experimentation is best conducted (in terms of efficiently generating statistics and
mapping the response space) when augmenting emulation models with results from other
models:

a. Mathematical modeling, where feasible, provides important insight into
attacker/defender dynamics, and provides a supplemental source of metrics
useful for cross-validation with emulation models and efficiently generating
statistics.

b. Likewise, discrete event simulation efficiently provides results that can be
highly correlated with emulation, making it useful for multifidelity studies.

c. While benefits can be gained from simplified system models, creating these
representations currently requires significant levels of collaboration between
modelers and cyber experts.

Emulation models have large inherent variability, even for fixed parameters. Including
parameter uncertainty further complicates analysis of these systems. This highlights the need
for methods like MFUQ) and efficient experimental designs.

Sensitivity analysis on attack chains is critical for providing quantitative (and sometimes
counter-intuitive) evidence to support defender investments.

Rigorous, quantitative attack analysis can expose counter-intuitive relationships between
attack success metrics (not always unique solutions; Pareto frontier), informing defender
decisions regarding tradeoffs in defensive investments.

Careful attention is required when translating information between models (mathematical,
emulation, Markov attack model, etc.)
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The impact of SECURE goes beyond these individual contributions. SECURE demonstrated how we
can bring rigor into cyber experimentation, an elusive goal that has been chased by many for a long
time. We built our analyses on reproducible processes, verified experiments, and validated models.
Our algorithms provide provably accurate results, state-of-the-art statistical analysis, and take into
account the underlying uncertainties. As a result, we can objectively assess and quantify security. We
claim that quantifiable security measures will be a game-changer in cyber security.

While SECURE has drastically advanced the state of the art, we recognize there is a long way in front
of us. We aim to pursue this line of work through externally funded research, new internal
collaborations, and external partnerships with academia and other national laboratories. To this goal,
we are starting a new institute Sandia’s Cyber security Institute on Rigorous Experimentation (SCIRE).
This institute will enable continued interdisciplinary collaborations across Sandia, connect us with the
external researchers, strengthen Sandia’s position as a leader and visionary in rigorous cyber
experimentation. What has started under SECURE will continue under SCIRE, and SECURE’s legacy
will live on.

We started the project by drawing inspiration from CSE. And we are ending the project having
demonstrated that rigorous cyber experimentation can be a pillar of the science of cyber security, just
as CSE is a pillar of science.
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APPENDIX A. COMMAND AND CONTROL (C2) CASE STUDY

A.1. Overview

Over the last few decades, a variety of emulation tools have been developed to perform cyber
experimentation. Despite this progress, relatively little attention has been devoted to developing
methods that ensure the quality of experiments based on these capabilities. In this article, we
demonstrate how the mathematical modeling, verification, validation, and uncertainty quantification
methods, developed under SECURE, can be used in combination with emulation modeling to
perform rigorous experimentation for a Command and Control (C2) cyber-attack. To our knowledge
this exemplar demonstrates a level of experimental rigor and detail that has not been previously done
for this kind of case study.

Recall that the full end-to-end exemplar studied in SECURE considers a multi-stage attack in which
an attacker attempts to access a power utility’s cyber control network and ultimately disrupt operations
by causing load shed using the attack stages shown in Figure A 1. Here we focus on the second step
where an attacker aims to maintain C2 communications between an infected host and C2 server in
order to pivot to other hosts and/or the ICS network. To counter this, the system owner uses an
intrusion detection system (IDS) to identify malicious C2 traffic and take steps to remediate the
infection to prevent disruption of physical operations.
Plvotto

engineering
workstation Run CRASH

|D vulnerakle RTUs Achieveloss
ofload

Initial infection

Command and
control

Figure A 1. Multi-stage attack considered by SECURE

The goals of this study fall into the following two categories: application objectives related to analyzing
malicious C2 traffic in a cyber system and SECURE research objectives related to methods for cyber
experimentation. Given this, we consider the following:

e Application objectives:
o How long does it take to detect a C2 channel?
o How does background traffic affect detection?
o  Which factors have the largest impact on the performance of an IDS system?
e SECURE research objectives:
o What emulation capabilities are required to adequately represent this scenario?
Can we develop an approximate mathematical model of the emulation to analyze this
scenario?
How can we validate the math model against the emulation?
What is the benefit of 2 math model?
Can the emulation and math model be used in conjunction to support analysis?

A.2. Analysis Scenario

In this study, we focus on detecting C2 malware traffic within the enterprise network portion of an
electrical power utility. Figure A 2 illustrates the system being analyzed. We assume that one or more
hosts within the network have been infected and are communicating with an external C2 server. The
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internal network contains both benign and malicious network traffic, all of which is sent through a
single router and switch. An IDS that monitors traffic to and from the network. The IDS performs
packet inspection and issues an alert if the contents of an individual packet appears suspicious,
according to one or more of its rules. We assume that it is possible that benign traffic may cause the
IDS to issue an alert (i.e., a false-positive). In instances where there are large packet flow rates, the

IDS may not have sufficient capacity to scan all packets [1]. In this case, unscanned malicious packets
will still reach their destination without causing an alert.
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Figure A 2: Notional C2 exemplar system representation

For this study we analyze C2 communication from the Emotet malware and its detection by the Snort
IDS. Emotet was first discovered in 2014 as a banking Trojan. Since its initial discovery, Emotet has
infected more than 1 million computers and caused hundreds of millions of dollars in damage [2].
Most antivirus and IDS programs have some sort of mechanism to detect an Emotet infection. For
the Snort IDS alone, dozens of rules have been written to detect Emotet.

Though this study is motivated by and focuses on specific Snort and Emotet features, the work
discussed below is not unique to this IDS or malware. Rather, we believe the capabilities presented
below could be generally applicable to any IDS and malware combination in which the IDS generates

alerts based on individual packet inspection. Consideration of different IDSs and alerts would merely
require alternate parameterizations.

Given the goals of the attacker and the defender, the key Quantities of Interest (Qols) are the alert
rates (i.e., number of alerts issued at a point in time) for both malicious and benign traffic, under
various network, attack, and IDS configurations. We recognize that issuance of an alert does not
necessarily equal detection; detection generally requires a combination of alerts and human recognition
that the alerts are indicative of a problem. Modeling the human element of detection is beyond the
scope of this work, so, instead, we assume that a detection occurs when a large enough number of
alerts are issued that network administrators would reasonably determine that the anomalous traffic is

malicious. Hence, the primary focus of this work is accurately modeling alerts over time and not
establishing detection thresholds.
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The remainder of this article provides an overview of how the SECURE experimentation
methodology was applied to the C2 malware problem. The following summarizes the process that we
used to analyze the C2 problem. For each of steps described, detailed tutorials and technical
documentation are also available.

1. Emulation model development: Create a high-fidelity "ground truth" model using emulation.
Emulation model verification: Build confidence that the emulation models are working as
intended.

3. Mathematical model development: Create a low-fidelity statistical model surrogate for the
emulation model.

4. Mathematical model validation: Assess the validity of the low-fidelity model using statistical
tests for discrete, time-series data to ensure that the inexpensive mathematical model can be
used as a proxy for the more costly high-fidelity emulation model.

5. Analysis and Uncertainty quantification:

1. Efficient sampling: Use Polynomial Chaos Expansion (PCE) to efficiently sample the
input parameter space using the mathematical model to identify which input
parameters have the largest effect on the Qols.

2. Multi-fidelity uncertainty quantification: Integrate results from low- and high- fidelity
models to improve the accuracy of the Qols with minimal experimentation costs, for
the key parameters identified using PCE.

A.3. C2 Emulation Environment

We model the C2 environment using emulation, a capability primarily used to model distributed
communication networks. As the name implies, emulation models aim to replicate high-level
functionality of target networks using emulated hardware components. Abstraction of the hardware
layer serves to facilitate implementation of these “logical network replicas™ at reduced costs. A typical
emulation environment consists of a set of virtual machines that are networked together using virtual
switching. The entire environment is supported by a cluster of hardware servers. Emulation
environments serve a variety of purposes such as testing, evaluation, training, and experimentation.
Because of their heavy use of virtualization, large network environments can be deployed, torn down,
and redeployed to an original state with relatively little effort. This makes emulation environments
particularly well-suited for repeatable and reproducible experimentation of distributed communication
networks. There are several tools available for creating, deploying, and managing emulation
environments, including two created at Sandia National Laboratories: minimega and SCORCH.
Sandia's minimega tool is used for launching and managing virtual machines locally or across a
cluster. SCORCH is an automated scenario orchestration framework for emulation-based models that
utilizes minimega to deploy and instrument experiments.

We created the emulation model for this study using minimega and SCORCH. The environment
model is comprised of the following primary components, as shown in Figure A 3: a malware traffic
generator (attacker), an IDS (defender), and the background traffic generator (environment). Each
component has parameters that can be adjusted and tuned for various experiment iterations. The
malware traffic is generated via custom Python code that enables researchers to modify the message
features, size, and frequency of the generated packets. Rather than represent each machine with an
individual host, we use a single device to generate “aggregate traffic” representative of the total traffic
we would see from multiple hosts. For this scenario, the malware traffic generator is calibrated to
mimic the packet structure of the Emotet malware message format, encrypted structure, and C2 timing
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(using the 2018/2019 variant of Emotet). The signatute of the Emotet network traffic has been
previously researched and captured in detection rules [2,3]. Snort is used as the IDS and implements
Emotet-specific detection rules to alert on Emotet-based packet signatures. The IDS component can
be tuned for different detection algorithms/rules, memory availability, and processing speed. To
increase the scenario's fidelity and provide a realistic network for experiments, background packets
are created and sent from a client to a server via a custom Python script. The background traffic
message format, packet size and frequency can be modified per experiment.

Detactor (Snort) | <
& s, Background Client
Traffic Server Mirrored Pon
™ Malware Client
Virtual Switch

Figure A 3: C2 Exemplar Emulation Environment

For this study, we focus on the parameters shown in Table A 1. These parameters can be binned into
tour groups. The general parameters describe basic parameters of the test environment. The IDS
parameters define the capacity and characteristics of the 1IDS. The background traffic parameters specity the
intensity of the background traffic and the false-positive rate. The malicious traffic parameters specify the
intensity of the malware traffic and the false-negative rate. For each of these parameters, we indicate
the value or the range of the values that the parameter can take. For those values that are uncertain,
we assume they follow a continuous or discrete probability distribution, as indicated in the
Distribution column. Even for this relatively modest sized problem, many parameter configurations
can be explored. Note that some of parameters listed in Table A 1cannot directly be controlled in the
emulation environment, as specified in the Comments column.

Table A 1. Key variables of interest for the C2 study.

Parameters Units Value |Distribution Comments

General
Parameters

Variable type: input parameter

Total number of . . Basis: selected to represent
. No units |10 Fixed " " .
workstations moderately" sized portion of a

corporate network

Variable type: observed quantity
Basis: packets observed in the

Average packet Butes 150- Continuous experiments had an average size of

size y 250 uniform 200 bytes in experiments; +/-50 bytes
is selected to permit variability across
experiments
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IDS Parameters

Snort capacity

Bytes per
second

1e5,
2e5,
5e5, or
le6

Discrete with
equal
probability

Variable type: input parameter to

emulation model

Basis: selected to represent
"moderately" sized portion of a
corporate network

Number of CPUs

No units

Fixed

Variable type: input parameter

Basis: expert judgement and known
hardware configurations

Number of CPUs

to maximize Snort

No units

1-8

Discrete with
equal

probability

Variable type: input parameter

Basis: positive integers bounded by
total # of CPUs

CPUs running
other (non-Snort)
processes

No units

0-7

Discrete with
equal

probability

Variable type: input parameter

Basis: positive, integers bounded by
total # of CPUs

Drop rate
multiplier

No units

0.9-1.1

Symmetric
continuous

triangular

distribution

Variable type: observed quantity

Basis: expert judgment used to assess
the actual drop rate, which could be
+/- 10% difference from the
calculated rate

Background
Traffic
Parameters

Variable type: input parameter
Basis: 100 pps per host (with 20 hosts)

results in 2000 pps for total traffic.
This amount represents the upper

limit on the traffic generatot's capacity
and is comparable to (and may exceed)
congested TCP traffic conditions used
in other IDS evaluation literature (e.g.,
[4] and [5]).

The lower bound was selected to
represent a minimal level of traffic for
evaluation.

Packets
per sec

Benign traffic per
host

Continuous log-
uniform

5-100

Variable type: input parameter

Basis: expert judgment because
published values were not available;
selected values are relatively small to
indicate the small probability that the
Emotet signature would occur due to
spurious conditions

Fraction
of le-5-
packets le-3

per sec

Fraction of benign
packets with
Emotet signatures.

Continuous log-
uniform
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Variable type: observed quantity
Basis: we observed an average
Detection rate for detection rate of 0.95 when we used
signatures in . the Snort rule to evaluate actual
. . 0.9- Continuous
regular, benign No units . Emotet traffic packet captures (pcaps)
o 0.99 uniform . .
traffic (if signature and simulated Emotet traffic in
is present) emulation experiments; range was
expanded to 0.9-0.99 to permit
variability across experiments
Malicious Traffic
Parameters
Number of Discrete with | Variable type: input parameter
infected No units | 0-10 equal Basis: non-negative integer, bounded
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AA4. Emulation Verification using Telemetry

An important aspect of using emulation is verifying whether the emulation environment is working
as intended. For this study, we approach the verification problem using the same strategy that was
employed in the SCADA study. The core idea of this approach is to monitor performance metrics
while intentionally stressing the emulation environment to identify potential issues. This monitoring
process is called telemetry [6-9], which includes metrics like server load and availability, disk space
usage, memoty consumption, performance, etc. Though many aspects of the emulation could be
verified, we focused on determining whether sufficient virtualized resources are available to support
the scenario because insufficient resources can cause experimental outcomes to be unrepresentative
or incorrect.

In this study, we run the C2 scenario under various levels of over-subscribed resources. We start with
a baseline scenario where there is only one namespace running on a physical host. We then consider
four scenarios where an increasing number of namespaces (2, 5, 10, and 20, and 40) are run in parallel
on the same physical host. In this case, analysis of Qols and telemetry data indicates that resources

70



were being oversubscribed with the 20 and 40 namespace cases. The collected telemetry showed a
clear point where resources were oversubscribed. Further research is needed to develop general
methods for verification of emulation models.

A.5. Mathematical Model

Emulation testbeds provide a safe, high-fidelity environment for conducting cyber experiments.
However, since these testbeds run real software and protocols, the experiments typically need to be
executed in real-time. This can be time-prohibitive in instances where:

e Scenarios evolve over long time periods.

e Analyses include features of the system may be unknown or vary, or in which the analyst
aims to characterize a potentially wide range of possible outcomes.

e Analyses consider stochastic behaviors and thus require many experiments to suitably
characterize the relevant statistics.

Given the potential number of parameter setting that could be explored (see Table A 1), we developed
a low-fidelity statistical model that can be run significantly faster than the real-time emulation model.
The model can be most easily described through an analogy, as depicted in Figure A 4. Consider a
water contamination sensor system that receives flows from various sources across a water
transportation network. The flows may contain benign or beneficial matter like fluoride (normal
network traffic) and also toxins like lead (malicious C2 messages). Water containing both good and
bad matter flows into a reservoir tank and passes through a filter (IDS) that removes the toxic particles.
The "cleaned" water is then distributed throughout the system. The filter may fail to catch some
portion of the toxins (false negatives); it may also remove benign materials (false positives). The
filtration system is rate-limited and has a finite reservoir capacity (memory). If the inflow rate exceeds
the capacity of the sensor system, a bypass valve is activated, permitting the unfiltered water to
circumvent the filter and pour directly into the system without filtration. See [11] for a full description
of the mathematical model.
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Figure A 4. Mapping between water filtration and intrusion detection systems.
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The mathematical model of the IDS builds on the flow/filter concepts to represent network traffic as
an influx of packets from various hosts (flow) and the detection of C2 traffic by an IDS (filter). Most
of the hosts are not infected with the malware, so the packets in their traffic is benign. Some hosts are
infected by malware and generate packets that contains malicious C2 traffic. All packets are routed
through a device running an IDS, whose signature-based rules act as a filter: if the rule identifies the
malware signature from a malicious packet (true positive), the IDS issues an alert. Detection of
malicious traffic is not perfect, so some malicious packets pass through without an alert being issued
(false negative). In some instances, the IDS may issue an alert for a benign packet (false positive), but
most benign packets result in no alert (true negative).

The IDS is rate-limited in its capacity to process network traffic (i.e., the IDS has a threshold measured
in packets/bytes per second) within a set time period. Hardware characteristics (e.g., number of CPUs,
memory available), software features (e.g., types of detection rules being used by the IDS, computing
requirements for individual rules, number of rules being used, degree of parallelization), and the
number of other processes being run on the device (and computational requirements for the
processes) all affect the IDS’s capacity. In the most extreme cases (when network traffic rates far
exceed the IDS’s capacity), the IDS may eventually stop issuing alerts altogether until the memory
buffer is cleared. In these instances, all packets will pass to their destinations without being inspected
by the IDS, including any malicious C2 packets; because they are dropped, alerts are not generated for
these packets, resulting in universal negatives (false and true).

The mathematical model integrates these concepts into a probabilistic, discrete-time representation to
describe the C2 traffic and detection by the IDS. The key model inputs include:

e Packet arrival rates at the IDS for both benign and malicious traffic

e True and false positive rates (on a per-packet basis) for the IDS’s signature-based rule

e Average packet size

e DS capacity
When specific values are assigned to these inputs, the model produces the following two primary
outputs: the average number of alerts that are expected over time (Figure A 5), and the probability
that at least N alerts will be registered by a point in time (Figure A 6). Results can be produced for
non-rate limiting (Figure A 5 and Figure A 6) and rate-limiting scenarios (Figure A 7). Observe that
in the latter case, the number of alerts levels off as the IDS reaches capacity. The total alert results can
also be separated into false positive alerts and true positive alerts.
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Figure A 5. Average number of alerts over time, for the emulation and mathematical models (non-
rate limited case).
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Figure A 6. Probability of having at least k alters by time period 16, for the emulation and
mathematical models (non-rate limited case).
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Figure A 7. Average number of alerts over time, for the emulation and mathematical models (rate
limited case). Note how the number of alerts levels off.

A.5.1. Comparison of Mathematical Model and Emulation Model Results

The mathematical model is validated against the results generated by the emulation model. Figure A
5, Figure A 6, and Figure A 7 show the results for both models. For these particular results, a visual
inspection shows a strong level of agreement between the two models, with the mathematical model
results generally falling within the 95% confidence intervals of the mean value from the emulation
model results. The data generated by the emulation model is both discrete (number of alerts triggered)
and time-series (number of alerts per time-step). For example, a particular run might have 0 alerts
triggered in the first second, 3 alerts after 5 seconds, and 7 alerts after 10 seconds. After enough of
these emulation runs are collected, we can generate a cumulative distribution function (CDF) at each
time step on the number of triggered alerts. In other words, we have a curve representing the
probability that more than £ alerts are generated by a given point in time. We compare the CDFs from
both models using a more rigorous, statistical approach than visual comparison. We do this by using
the Kolmogorov-Smirnov (K-S) test, a standard statistical test for comparing two distributions. Figure
A 8 shows an example of the model and experimental CDF curves at time period 9 for a particular
C2 scenario.
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Figure A 8. Comparison of the emulation and mathematical models CDFs for the probability of
exceeding a given number of alerts by time period 9.

Using the K-S test, we can calculate a p-value for each time period, as shown in Figure A 9. Observe
that for time period 9, the p-value is about 0.2. A high p-value indicates that the null hypothesis, that
the two CDFs are statistically similar, cannot be rejected. While the p-value dips around time period
9, it is still above 0.1 even at its lowest point. Given this, we would not reject the null hypothesis in

this example.
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Figure A 9. p-values for the K-S by time period.
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In addition to the results shown above, we have compared the emulation and mathematical model
results across a variety of parameter combinations. Though the results may not be perfectly identical,
the combination of visual inspection and statistical comparisons provide confidence that the
mathematical model is a reasonable proxy for the actual system and that it can provide reasonable
estimates of alert statistics for the C2 scenario under consideration.

A.6. Analysis and Uncertainty Quantification

Given the high- and low- fidelity models, we next focus on uncertainty quantification (UQ) to
understand how uncertainty in the input parameters propagates to the Qols. We do this using two
analysis methods: polynomial chaos expansion (PCE) and multi-fidelity UQ (MFUQ). We first use
PCE to screen the 12 uncertain parameters shown in Table A 1 to determine which parameters are
the most important for more detailed study. The screening is done using the low-fidelity mathematical
model to avoid the computational costs of using the emulation model. Once the key parameters are
identified, MFUQ is used to analyze the Qol using a combination both models.

A.6.1. PCE Sampling

In the UQ community, Qols are commonly represented as a polynomial function of the uncertain
inputs; this approach is referred to as a Polynomial Chaos Expansion (PCE) of the Qol. Provided that
a Qol is a smooth function of the inputs, the smoothness in the polynomial representation can give
an accurate representation with fewer samples than would be required with a Monte Carlo (MC)
approach. Once a PCE is constructed, it can be used to determine the mean, variability, or other
moments of the Qol. PCEs can also be used to perform a Global Sensitivity Analysis (GSA) of the
Qol with respect to each of the inputs. In other words, it can tell us which inputs contribute the most
to the variability in the output.

One of the challenges of applying the PCE approach to cyber security experiments is that many of
the input variables are discrete. For example, the number of infected nodes on a network, the number
of CPUs on the host that runs an IDS, or the nominal network bandwidth of the node connections
are all discretely valued. Therefore, we employ PCEs that have been tailored to discrete random
variables and their probability masses. These tools have been implemented in PyApprox, a Sandia
open source software package for uncertainty quantification [10].

We applied this approach to the Qols of total alerts and false positives at time period 5, for the
parameter distributions as in Table A 1. This corresponds to a case with 12 uncertain parameters, 5 of
which are discrete in nature. A third order PCE was trained on random samples of the Qol that were

obtained with the C2 math model. Table A 2 shows the main effect indices for both Qols for the 12
uncertain parameters.
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Table A 2. Main effects from PCE analysis for the number of total alerts and false positives at time

period 5.
Parameters Total Alerts, False Positives,
t = 5 sec. t = 5 sec.
Number of infected workstations 0.87 0.00
Fraction of benign packets with Emotet signatures 0.00 0.51
Benign traffic per host 0.01 0.20
Malware traffic per infected host 0.05 0.00
Fraction of malware packets with Emotet signatures 0.03 0.00
Snort capacity 0.01 0.01
Other CPU Processes 0.01 0.00
Number of CPUs to maximize snort 0.00 0.00
Average packet size 0.00 0.00
Detection rate for signatures in benign traffic 0.00 0.00
Detection rate of signatures for malware traffic 0.00 0.00
Drop rate multiplier 0.00 0.00

Based on these results, the main parameter that impacts the value of total alerts is the number of
infected hosts, with lesser contributions from the amount of malware traffic per infected host and
the fraction of malware packets that show the Emotet signature. The number of false positive alerts
is most sensitive to the amount of benign traffic per infected host and the fraction of benign traffic
packets that show the Emotet signature.

A6.2. Multi-Fidelity UQ

Next, we explore the use of MFUQ to make optimal use of the emulation model which has high
fidelity but is expensive to run and the lower-fidelity mathematical model which can be evaluated
quickly. MFUQ estimator is built starting from the single fidelity MC results (Qminimez,) and adding a
weighted unbiased term which involves the lower-fidelity math model (Qma). The benefit of this
additional term is that it can reduce the variance of the Qol (see [12] for the technical details of this
approach). Using this approach many samples from the low-fidelity mathematical model can be
combined a relatively small number of high-fidelity emulation model results to decrease the estimator
variance and obtain more accurate and reliable statistics, with reduced computational costs.
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Figure A 10. C2 MFUQ estimator.

Based on the screening results from the PCE analysis, we focus on the five parameters shown in Table
A 3. A total of 40 samples of these parameters was used for this study. The emulation model required
18 hours (plus additional processing time) to perform a total of 400 emulation runs (the 40 unique
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parameter combinations with 10 iterations each). In contrast, the mathematical model required less
than 1 second total for all 40 of the parameter combinations (0.4 s for all the samples). We note that
the mathematical model is able to provide statistics for the Qol without being affected by any
stochastic noise; therefore, we will compare the average from 10 emulation model replicas with the
values from the mathematical model.

Table A 3. Key parameters of interest for MFUQ study

Parameters Varied in Experiment Units Value Distribution
Aggregate Benign traffic rate feacckets PEE1100-3000 Continuous log-uniform
Fraction (.)f benign packets with No units le-5 to 8e-4 Log-uniform
Emotet signatures.
Packets per .
Aggregate malware traffic rate cec 10-20 Uniform
Fraction Qf malware packets with No units 0.01.0.025 Uniform
Emotet signatures
RAM assigned to the 1 CPU running Mbvtes 128, 256, 512, | Discrete with equal
SNORT y 1024 probability

For this study, we consider the total number of alerts at time periodsl, 5, and 10. We begin by
performing a pilot study to compare the total number of alerts generated from both models. From
Figure A 11, we note that the correlation between both models is high, as confirmed in Figure A 12
which shows the estimated squared correlation between the models at the time steps considered.
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Figure A 11. Scatterplots of total number of alerts at timesteps 1, 5, and 10 for 40 parameter
samples for the emulation and mathematical models.
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Figure A 12. Correlation squared between the emulation and mathematical models at time steps 1,
5, and 10.
From the pilot study, it is possible to estimate the variance of the number of alerts, which is reported,
along with the coefficient of variation, in Figure A 13. We note that the variance of the number of
alerts increases with time (as expected), and that the coefficient of variation (defined as the ratio
between the standard deviation and the mean) approaches a value of 92%. By leveraging this
information (relative to the computational costs of the two models and their correlation), we obtained
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the optimal number of mathematical model replicates that would be required to minimize the
estimator variance for a fixed number of emulation model experiments. Due to the increase in variance
with time, the most restrictive condition is obtained for the time of 10 seconds. At this time, the
optimal estimator is obtained by using a total of 86840 mathematical model samples. By adding
samples to the original 40 samples from the emulation model, we obtain an estimator with a total cost
of 40.53 equivalent emulation model runs. It follows that we can reduce the variance of the estimator
by only adding a fraction of the cost of a single emulation model run (0.53).
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Figure A 13. Variance (left) and coefficient of variation (right) for the total number of alerts.

In Figure A 14, we report the mean number of alerts and the associated 99.7% confidence interval for
the MFUQ) estimator and the single-fidelity MC estimator. From the experiments, we can also evaluate
the estimator variance, which was used to calculate the confidence intervals. We note that the variance
reduction that the MFFUQ estimators attains increases with time since the Multi-Fidelity estimator can
maintain a high variance reduction with respect to MC, thanks to the increasing correlation between
the models. The single MC estimator is not able to compensate for the increase in variance over time,
and consequently, its confidence intervals grow more rapidly with progressively less accurate
estimation for the mean number of alerts.
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Figure A 14. Prediction of mean number of alerts and associated confidence interval for single
(MC) and multi-fidelity (MF) estimators.
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A.7.

Conclusions

This exemplar demonstrates how the capabilities developed under SECURE can be used to support
rigorous cyber experimentation. Specifically, it shows:

A.8.

@

— = O 00 I

12.

How experiments and metrics can be used to verify the behavior of emulation models.

How to develop low-fidelity models to approximate high-fidelity models and how to validate
the outputs of these models.

How UQ methods can be used to efficiently explore input and output uncertainty.

How high- and low-fidelity models can be combined to effectively utilize the
experimentation budget.
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APPENDIX B. SCANNING AND DETECTION CASE STUDY

B.1. Overview

This section discusses scanning for vulnerable RTUs (remote terminal units) and the detection of
scanning activity within the SCADA network. This activity is part of the end-to-end threat scenario,
depicted in the purple box in Figure B 1.

240/2000 node MF
Optimal
segmentation
Optimal
segmentation/MF

Optimal IDS
Malware C2f
detection
Optimal IDS/C2
Verfication

+ SCEPTRE/
PowerWorld
*  N-kstudy

Verification

Fivot fo
engineerng
Initicl infecfion workstation Run CRASH
L] [ ] L] [ ] [ ] [
Command and 1D vulneratle RTUs Achieve loss

cantrol of lood

o i +  Assess CRASH on RTUs
i . +  Attacker strategies

Figure B 1. SECURE end-to-end threat scenario, with SCADA network studies highlighted

In this scenario, when the attacker lands on an engineering workstation in the power grid control
center, it doesn't know the IP addresses of RTUs that are vulnerable to the CRASHOVERRIDE
malware, so it must scan for them. However, as the attacker is scanning, the defender is monitoring
SCADA network traffic and examining it using an intrusion detection system (IDS). One method used
by IDS to detect scanning activity is to look for network packets that might indicate such activity, and
when these packets are received with an intensity above a certain threshold, the IDS signals an alert.
This detection approach guides an attacker's strategy: it can attempt to run slowly "below the radar"
of IDS detection (at the expense of launching its attack later), or it can run quickly (at a higher risk of
detection).

The following sections describe the mathematical modeling, the ns-3 simulation, and the emulation-
based experimentation that were applied to model this step in the attack timeline.

B.2. Scenario

The scenario addressed in the emulation, simulation, and mathematical models assumes the attacker
uses Nmap to scan for vulnerable RTUs, and the defender uses Snort (with the sfportscan module) to
detect scanning activity. Both tools were selected for these models because they are commonly used,
open source, and familiar to the experimental team. In particular, the fact that these tools are open
source means that the experimental team can better understand how these tools work "under the
hood," which is especially important when developing simulation and mathematical models. However,
it's important to emphasize that, although these specific tools were selected for the studies, the
methodologies (and, in some cases, the results) are generalizable to other scanning and IDS tools.
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B.3. Topology

The topology studied in the emulation, mathematical, and simulation models is shown in the following
Figure B 2.
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Figure B 2. Notional SCADA network topology for scanning/detection study

This topology (which does not reflect a particular real-world SCADA/ICS network, but is meant to
be representative), consists of the following components:

. An engineering workstation in a control center network that represents the attacket's current
location, from which it scans the SCADA network for vulnerable devices;
. A router that separates the control center IP subnet from the SCADA network IP subnet;
. An IDS that listens to all traffic on the SCADA network IP subnet;
. 8 SCADA substations, all on the same IP subnet; and
. 24 hosts, distributed across the SCADA substations, configured as follows:
o) 4 hosts are vulnerable to CRASHOVERRIDE,
o 8 hosts are not vulnerable, but are discoverable,
o) 12 hosts are neither vulnerable nor discoverable.
B.4. Nmap

As described earlier, in our modeled scenarios we configure the attacker node to use Nmap to scan
for and find vulnerable nodes. Nmap performs its scan using the Transmission Control Protocol
(TCP) connection establishment protocol to look for active IP addresses with open ports, as shown
in the following Figure B 3:
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Figure B 3. Nmap protocol operations while scanning open, closed, and filtered hosts

In our scenarios, we model "vulnerable” hosts (see previous section) as hosts that have a particular
port in the "open" state, which represents a vulnerable application. When Nmap scans a host on an
active IP address with an open port (i.e. an application listening on that port), Nmap sends a TCP
SYN (synchronization) packet to that host IP/port combination, and the host responds with a
SYN/ACK (acknowledgement). Normally the initiator would acknowledge the connection with a
third message, ACK; however, Nmap does not want to maintain an open connection, so it responds
with an RST (teset). If Nmap receives a SYN/ACK from a remote host, then it knows two things:
that the IP address is valid, and that an application is listening on that port.

Our scenarios model non-vulnerable but discoverable hosts as hosts that have that particular port in
the "closed" state (meaning that these hosts are not running the vulnerable application). When Nmap
scans a host on an active IP address with a closed port, Nmap sends a TCP SYN packet to the host
IP/port combination, and the host responds with a SNY/RST message. Therefore, if Nmap receives
a SYN/RST from a remote host, it knows that the IP address is valid, but there is no application
listening on that port.

Hosts that are neither vulnerable nor discoverable are modeled as hosts with the IP address/port
combination that are "filtered." In this case, when Nmap sends a TCP SYN message these hosts, there
is no reply back to the Nmap host, meaning that the host either does not exist, or chooses not to
reply.

Intrusion detection systems (IDS) will obsetve these connection request/response packets and use
them to determine whether a scanning attack is occurring, as described in the next section. To counter
IDS, Nmap has a couple of command line configurations that can be used. To reduce the scanning
traffic intensity, Nmap allows the user to increase the delay between scanning probes (the “delay”
parameter) and decrease the number of hosts that are probed in each attempt (the “host group”
parameter). By default, Nmap scans hosts in sequence by IP address; however, that approach could
tip off an IDS, so Nmap has a command line parameter to randomize the sequence in which the hosts
IPs are probed.

In our studies, we varied parameters related to attacker strategy (i.e. “fast” vs. “slow”) and randomness
(i.e. “sequential” vs. “random”). In addition, we also configured our experiments to allow random
packet drop (.e. “no drop” vs. “drop”), to determine the effect of imperfect packet transfers on
results. The combination of the randomness order and random packet drop parameters are organized
into two formulations: a deferministic formulation (i.e. sequential ordering, no packet drop) and a
stochastic formulation (i.e. random ordering, random packet drop). The plots shown later in this section
show results from both formulations.
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B.5. Detection

Our scenarios assume intrusion detection using Snort (Ref. 2). Snort is a very flexible IDS framework
that uses signature definition files and rules to identify traffic as malicious. In this example we use the
“stportscan” rule to detect Nmap scanning traffic using the technique identified in the previous
section. As shown in Figure B 4, the sfportscan rule looks for SYN/RST traffic from "closed" (i.e.
non-vulnerable, but discoverable) hosts, which is indicative of a scanning attack. If Snort/sfportscan
counts five or more SYN/RST packets within a 60 second window, then it generates an alert. Our
models and scenarios consider two attacker strategies: a "fast" strategy where the attacker attempts to
discover as many vulnerable nodes as quickly as possible, and a "slow" strategy where the attacker
attempts to stay within the 5 SYN/RST packets within a 60 second threshold. The results shown later
in this section account for both strategies.
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Figure B 4. Snort “sfportscan” rule
B.6. Tools

B.6.1. Mathematical model

We developed a mathematical model to assess the port discovery process. The model describes the
stochastic state transitions that occur within the Nmap protocol that occur over time during the
scanning process. This mathematical model is described in detail in (Ref. 1) and summarized below
and in Figure B 5:

1. The model states (illustrated in Figure B 5) are defined by the progress that Nmap makes
scanning the nodes. The initial state at time O (indicated in the state on the far left of Figure
B 5) contains key model parameters provided to the model. Each state consists of three lists
that track the nodes that have yet to be scanned (topmost list in the state figure), the nodes
that are being actively scanned (middle list), and the nodes that have already been scanned
(bottom list). Furthermore, the color of the dots in the lists indicates the scanned nodes'
status - magenta for filtered (inconclusive), green for closed (secure), and red for open
(vulnerable). All nodes begin in the first "To Scan" list in the initial state.

2. The model describes the transition from the initial state to subsequent states (in the second
column in Figure B 5). The transition probabilities Pr{# filtered, # closed, # open} are
determined by the number and type of nodes that have yet to be scanned and the probability
that combinations of nodes are selected for scanning,.

3. The third step the model consists of a third set of states (third column) that describe which
nodes have been discovered (i.e. TCP SYN/RSTs occurred) and which ones timed out. The
transition probabilities are conditioned on the current (second) state and depend on which
nodes have been discovered so far. That is, the transition probability is Pr{#
filtered_to_scan, # closed_to_scan, # open_to_scan | # filtered, # closed, # open}

4. If timeouts occurred, steps 2 and 3 are repeated.

5. Steps 2-4 are repeated until all nodes are moved to the Scanned list.
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The steps in the model are implemented to effectively create a probability tree that lists the
probability of discovering open, closed, and filtered nodes at each time step.
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Figure B 5. Mathematical state transition diagram

We use the model results to compute the statistics of port discovery. Figure B 6 shows the open port
discovery process. The magenta stars represent the mean number of open ports discovered, as
calculated with the math model. The blue line represents the mean number of open ports discovered
from 1000 runs of the minimega emulation model, and the dashed black lines represent the 95%
confidence intervals on the emulation means. The plot shows the mathematical results tracking the
mean of the minimega runs and falling within the 95% confidence interval of these runs. This
agreement validates the predictive value of the mathematical model, which, for small topologies, can
run more quickly than the emulation model, making it more suitable for more widely evaluating the
effect of configuration parameters (e.g. host group size and delay) on the results.
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The model results were also processed to determine when and if detection would have occurred using
the logic in the Snort sfportscan algorithm. These times were compared against the detection times
that were experimentally determined using the minimega topology. The mathematical results,
shown in Figure B 7, also closely track the results from the emulation runs and, again, validate the
mathematical model's predictive ability.
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Figure B 7. Detection times

B.6.2. ns-3

Ns-3 (Ref. 3) is a discrete event simulator that is used for network simulation and has an extensive
model library for various network links, devices, and applications. Because it is a simulation, the
components are abstracted objects and it does not run real implementations of applications and
protocols. However, ns-3 simulations can run much more quickly when compared to emulations
because discrete event simulations are event-driven rather than time-driven and can run faster than
real time. This makes an ns-3 simulation particularly useful for serving as the low fidelity model in
multi-fidelity modeling studies because it is much more efficient, and if implemented correctly, well
correlated with emulation runs.

The Nmap ns-3 model developed in this work implements two major components - a topology and
an Nmap application simulation model. The topology, shown in Figure B 8, corresponds to the
SCADA network topology described eatlier, but is different from the emulation model topology in a
couple of ways:

e The ns-3 simulation topology has each SCADA device on its own subnet:
This design choice is an artifact of how the example ns-3 star topology code does subnetting,
and should not appreciably affect packet timings and results. Nevertheless, it does affect
scalability of the topology because the subnetting schemed used in the model only allows up
to 255 subnets (and with one host per subnet, 255 hosts).
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e Different mechanisms are used to implement closed and filtered nodes:
Whereas the emulation uses iptables filtering to implement closed and filtered nodes, the ns-
3 model does not install a packet sink on closed nodes, and causes Nmap to scan unused IP
addresses for filtered nodes.

Open node:

D o Closed node

NMap scanning node:

Filtered node:

Figure B 8. ns-3 model for scanning/detection

The Nmap application running on the scanning node functions similarly to the real Nmap application
running in the emulation. Also, the ns-3 model implements packet dropping using a similar mechanism
that is used in the emulation model.

B.7. Emulation experiments using Scorch

The name SCORCH comes from the terms SCenario ORCHestration. It is primarily an automated
scenario orchestration framework for emulation-based models, where a scenario is a specification of
high-level experimental behaviors for a given experimental goal. Concretely, SCORCH is implemented
as a python package that interfaces with minimega to run experimental scenarios on and collect
data from emulation-based models (EBMs) managed by minimega.

At a high-level, basic SCORCH usage is as follows. First, a scenario configuration file is created that defines
a scenario (experimental behaviors), model parameters, and output parsing. This file describes the
“what” of the experimental scenario. The scenario is defined in terms of modular scenario components
which represent re-usable experiment primitives. The code implementing components describes the
“how” of the experimental scenario.

Secondly, a minimega topology is deployed on a hardware cluster (or single machine). This is the
EBM to which the experimental scenario will be applied. This step highlights a degree of separation
between structure and function of the experiment. The minimega topology represents the structure
of the experiment while the SCORCH scenario represents the function. This separation enables
efficiency in experimentation by, for example, enabling the user to apply the same scenario to a variety
of topologies without the need to re-create the scenario for each topology, or enabling the user to
apply a variety of scenarios to the same topology without having to tear down the topology.
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In this study, the SCADA network topology is deployed within minimega where each virtual
machine (VM) receives the necessary software and model parameters to execute the
scanning/detection scenario. For example, the scanning VM includes Nmap and a list of parameters
such as: number of IP addresses and ports to scan, specific port number to scan, time to wait between
scans (delay), etc. This set is subsequently used to scan the SCADA network. Each time a port is
scanned, the metadata associated with the scan is logged to an Nmap.out file. To counter the
adversarial scanning VM, the detector VM runs snort and its configuration parameters capable of
sensing the syn packets used in Nmap probing. If snort notices a packet that aligns with criteria in one
of its rules, it will signal an alert and append all such to an alert file. During this reciprocal exchange,
tcpdump captures all traffic on the network by way of a port mirror residing on the minimega virtual
LAN hosting the SCADA network. This data is saved as a PCAP file.

B.7.1. Data collection

Input/output to and from the live virtual network is handled by the individual components as
facilitated by the framework. Here, the minimega command and control agent, miniccc, handles the
data input and output process, in tandem with the snort, tcdump, and filebeat components. During
SCORCH execution, the Nmap and snort components call miniccc to signal that their respective
model parameters and other supporting data, be added to the model. This occurs during EBM setup,
where miniccc copies the data from the hardware cluster node to the respective VM within the
minimega topology. After the experiment has completed, each component initiates an exfil process
where it again calls the miniccc agent to extract any logging data accrued by Nmap, snort or tcpdump.
This data is then written to the host cluster node for analysis. If enabled, SCORCH interfaces with
Filebeat to push the collected experimental data and artifacts to a specified Elasticsearch server.

Following data collection, post processing scripts run against the PCAP and snort alert files to derive
the time delta (in seconds) between the 1st packet captured and the 1st alert instance captured, for
every Nmap portsweep occurrence. If any time format discrepancies exist between the PCAP and
alert file, the scripts will convert the packet time to reflect seconds since Unix epoch time (Jan 1,
1970). Once the initial alert time values have been calculated, the post processing scripts aggregate
the initial alerts times for every experiment and log to a metrics.txt file. This is done for each snort
sensitivity level (low, medium, high).

B.8. Experimental methods

B.8.1. Experiment reproduction

Reproducibility is essential to science because it ensures results are not biased according to overt or
hidden desires for a particular outcome. The SECURE team, working with our collaborators from
Texas A&M University (TAMU), wanted to see understand the degree to which the results published
in (Ref. 1) can be reproduce by a research team that did not contribute to the original paper. In the
process of reproducing this study (which is described in detail in Ref. 4), the team not only considered
the methods for reproducing the results, but also the metrics by which the results from Sandia and
TAMU should be compared. The comparison metrics used during this study were:

e t-test: the t-test is a widely-used test for determining if there is a statistically significant
difference between the means of two data sets,
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e Kolmogorov-Smirnov Test: the KS-test is a non-parametric statistical test for equality of
distributions, based on the maximum difference between the cumulative distribution
functions (CDFs),

e Area Test: the area test also compares CDFs, but accounts for the entire difference between
CDFs rather than the maximum difference, and

e Relative Hausdorff Distance: originally developed for graph analysis, the Relative Hausdorff
Distance can also be used to compare distributions

The plots in Figure B 9 show the application of these metrics to compare Sandia and TAMU port
discovery results in the case where there is no added randomness (i.e. deterministic formulation):
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Figure B 9. Port Discovery Statistical Test Results for Deterministic Case
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The results above show perfect agreement between the Sandia and TAMU results, as evidenced by all
four metrics, indicating that TAMU correctly set up the experiment for the deterministic
formulation. The plots in Figure B 10 show the application of these metrics to compare Sandia and
TAMU port discovery results in the case where there is there is added randomness in the Nmap search
order and in packet loss (i.e. stochastic formulation):
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From these comparisons we find that the KS Test shows good agreement between the Sandia and
TAMU results, as evidenced by the p values > 0.05. The Area Metrics for all cases also show good
agreement as evidenced by the consistently low area values. However, we find that the Relative
Hausdorff metric does not seem to be a suitable metric for comparing results, as seen in the plots
above.

B.9. Verification

An important part of using emulation is verifying whether the emulation environment is working as
intended, also called verification [Ref. 5]. Part of verification involves software testing and quality
assurance. A unique aspect of cyber emulation involves assessing the performance of the emulation
running in the virtualized environment and determining whether there are sufficient resources to
properly handle the scenario that is being run. If there are not, the virtualized components may
produce experimental artifacts and behavior that result in the experimental outcomes being
unrepresentative or incorrect.

Under SECURE, we focused on determining whether there are sufficient virtualized resources to
support the emulation experiment and whether we can identify metrics that indicate when the results
of an emulation experiment are unreliable. We refer to these metrics as telemetry metrics, following
the usage of this phrase from Microsoft [6], Google [7], Intel [9] and Sumo Logic [9]. We studied
telemetry metrics such as system load and CPU utilization relating to the performance of virtual
machines which ate used in the scanning/detection scenatio and the physical machine hosting that
study. We ran experiments with various levels of over-subscribed resources.

In these experiments, we purposefully put more and more strain on the physical resources available
to the emulation experiments. We accomplished this by forcing the physical host to do more and more
work in parallel through the concept of a namespace, which is an isolated copy of the experiment
environment running on its own VLAN. For the purposes of this study, we ran several iterations of
the same experiment with increasing numbers of parallel namespaces. By increasing the number of
namespaces, we hoped to reach a point of resource over-subscription, where the results of the
experiments run are affected by emulation artifacts caused by this over-subscription. We saw evidence
of oversubscription at 20 namespaces and greater [Ref. 10].

We found that statistical tests such as the Tukey multiple mean comparison test was useful to identify
anomalies in results as we increased the number of parallel namespaces running in the experiments.
For scanning/detection, as we increased namespaces, we found that the alert time distributions shifted
upward and became much more diffuse with longer tails. We also found that the telemetry metrics of
system load and throughput were effective at filtering out replicates which had statistically significantly
different results than the baseline case with one namespace [10].

B.10.  Validation

Validation is the process of verifying that the model is correct with respect to the questions that it is
intended to answer. Validation can be done in several ways; it can be performed on multiple models
and compared (i.e. cross-validation), and validation experiments can be conducted in physical testbeds
and compared with models. In the SECURE project we performed two different kinds of physical
experiments and compared the results with the minimega scanning/detection model:
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1. Validation experiments on physical hosts in the Sandia Carnac cluster. The physical hosts
used for these experiments were all identical, but configured differently to assume different
roles in the validation experiment, and

2. Validation experiments using physical and virtual devices in the Texas A&M testbed.
Physical relay devices were used to model vulnerable hosts (open ports) in the scanning
detection scenario, however, due to limited numbers of physical devices, closed ports were
modeled using the CORE virtual machine testbed, and filtered devices were modeled using
tirewall rules in the network switch.

The Carnac validation experiments utilized the same software (applications and operating systems)
that was used in the minimega virtual machine-based experiments. The primary differences between
the minimega and Carnac experiments were 1) minimega used KVM-based virtual machines
whereas the Carnac experiments were run on physical hosts, and 2) a few configuration differences
due to differences in networking between the virtual and physical experiments. We found the port
scanning and Snort detection time results between the minimega and Carnac experiments matched
up very well.

The Texas A&M University (TAMU) physical testbed experiments used a mixture of physical and
virtual hosts in order to achieve the scales that were needed to conduct the validation experiment. The
TAMU team used four field devices to implement vulnerable hosts with open portts, eight virtual
machines running in the CORE virtual testbed environment to represent secure hosts with closed
ports, and used firewall rules in the network switch to represent 12 secure hosts that are filtering
inbound TCP connection requests. The TAMU physical testbed configuration used the same scanning
and detection software used in the minimega experiment, however, because the TAMU testbed was
very different from the minimega testbed, a number of custom scripts were written to orchestrate
the experiment and collect data. These scripts required some amount of debugging, resulting in some
back-and-forth between the Sandia and TAMU teams to make sure the physical experiment was
producing correct validation data. Due to limitations in available time, the two teams were able to
validate port discovery but did not have an opportunity to assess validation with respect to detection
times. Detailed port discovery validation data are presented in Ref. 11.

B.11. Optimal segmentation

Network segmentation is a strategy used by the network designer to limit the scope of what an attacker
may see if they are able to achieve a malware presence on the network. However, network
segmentation has costs and constraints on the network design - too much segmentation will incur
excessive costs and exceed the defender's budget. Therefore, a tri-level optimization formulation was
developed to account for 1) network designer's budget, 2) attacket's budget (in terms of the number
of networks that the attacker can compromise), and 3) the network operator's response to an attack
(e.g. re-dispatching generation resources to loads). This optimization model and results are
documented in Ref. 12.
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APPENDIX C. SCADA NETWORK/POWER GRID IMPACTS

C.1. Overview

This section demonstrates how the methods developed under SECURE can be used to analyze the
power grid impacts of the larger attack chain. Recall that the full end-to-end exemplar considered
under SECURE describes a multi-stage attack in which an attacker attempts to access a power utility’s
corporate enterprise network, pivot to the ICS network, identify vulnerable RTUs, run the
CRASHOVERRIDE malware and ultimately disrupt operations by causing load shed. The focus of
this article is the power grid impacts caused by the CRASHOVERRIDE malware.

C.2. CRASHOVERRIDE

CRASHOVERRIDE was malware designed to attack power grids and was used in the 2016 cyber
attack on the Ukrainian electric grid. Unlike the previous attack on the Ukrainian grid in 2015 in which
attackers manually switched off power to electrical substations, the CRASHOVERRIDE attack was
fully automated and could perform attacks much more quickly and with less preparation. Once the
malware had infected the system, CRASHOVERRIDE could launch four payload modules. This
study focuses on the module that communicates directly with grid equipment and switches breakers
within the power grid. https://www.dragos.com/resource/crashoverride-analyzing-the-malware-
that-attacks-power-grids

In power systems, field devices (such as relays, RTUs and PL.Cs) monitor and control the power grid.
CRASHOVERRIDE understands how to enumerate and discover the inputs and outputs to field
devices and leverages this to open circuit breakers in the power system. Additionally,
CRASHOVERRIDE can force the field devices into an infinite loop thus continually opening the
circuit breakers even if operators are dispatched to re-close them.

In our multi-stage attack, Nmap is used to scan the network for vulnerable RTUs.
CRASHOVERRIDE will then target only those RTUs and open the breakers associated with those
RTUs. The power grid impacts of this CRASHOVERRIDE attack will highly depend on the
identification of vulnerable RTUs.

c21. CRASHOVERRIDE Configuration

CRASHOVERRIDE modules were designed to be used with configuration files specifying various
parameters of the attack. This section focuses on the configuration associated with the module that
targets the protocol payload. In this configuration, a set of stations are specified for an attack. Each
targeted station has the following configuration options:

e target ip - specifies the IP address of the targeted field device

e first action - specifies the first action (on or off) used to switch grid components

e change - specifies whether to continually toggle power grid equipment (1) or only change
once (0)

e interval - specifies the time interval in between toggles

C.3. TAMU Topology

Power grid impact experiments were all performed on a synthetic cyber-physical topology of the Texas
power grid developed by Texas A&M University's (TAMU) Cyber Physical Resilient Energy Systems
(CyPRES) project. https://cvpres.engtr.tamu.edu/test-cases
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This topology consists of both cyber and physical components. The cyber model shown in Figure C
1 has three main sets of components: (1) balancing authorities, (2) utility control centers, and (3)
substations. The primary and secondary balancing authorities are responsible for managing the flow
of electric power among the utilities. The utility control centers are responsible for monitoring multiple
substations and contain networking equipment, a demilitarized zone, and SCADA software. The
substations are responsible for monitoring and controlling the power grid and contain networking
equipment, relays, as well as corporate devices such as PCs, security cameras, phones, and card readers.
The relays in each substation are mapped to busses and branches of a synthetic 2000-bus power model
of the Texas grid shown in Figure C 2. Overall, this topology contains 2 balancing authorities, 150
utility control centers, and 1251 substations.
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Figure C 1. TAMU cyber topology

98



Figure C 2. 2000-bus power model

C.4. Power Grid Impact Studies

The CRASHOVERRIDE malware and the TAMU topology were used for two main studies: an
uncertainty quantification study and an optimal segmentation study.

C.4.1. uQ Study

A workflow was developed for the UQ study that leverages both traditional UQ tools and emulation
tools. Dakota provides a means to sample CrashOverride parameters and generates a CrashOverride
configuration file. For each sample of parameters, Scorch then injects the new CrashOverride
configuration file into the SCEPTRE experiment, runs the CrashOverride malware in SCEPTRE,
collects physical process data from the power model, and then resets the SCEPTRE emulation.
Dakota then chooses the next sample and the process repeats. The data is then post processed and
can then be further analyzed.

The UQ study was performed on a small subset of the TAMU topology consisting of 1 balancing
authority, 2 control centers, and 11 substations. All protections on relays in the topology were disabled
so that the effects of CRASHOVERRIDE could be clearly identified. 800 experiments were run
sampling the parameters in Table C 1. The overall timing of each experiment was 150s; the first 30
seconds of each experiment was normal operations. CRASHOVERRIDE was executed at the 30s
mark and was run for an additional 2 minutes. The physical process data was post-processed to
calculate loss of load for each experiment.

Parameter Values

target ip | set of 49 relay IPs

first action [off]
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change [0, 1]

interval | [10, 11, 12, ..., 60]
Table C 1. Parameters of UQ Study 1

Figure C 3 shows results of the UQ study. Each point on the plot shows the loss of load results for a
single experiment. The red line shows the mean regression line. the green line shows the median
regression line while the black lines show the regression lines for the 0.05, 0.1, 0.25, 0.75, 0.9, 0.95
quantiles respectively.
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Figure C 3. UQ Experiment Results with Quantile Lines for Normalized Loss of Load

For a given number of RTUs out (such as 4), there is a huge spread in the loss of load based on which
four RTUs are targeted. This variance makes it hard to get a good regression model: the regression
captures the mean trend but does not capture the variance well. If we instead look at the quantile
regression lines, there is a better trend than with the mean regression line. Each quantile regression
also gives us an analytic formula for a tail probability of normalized loss of load. For example, the
95th quantile = 440.18+27.10*RTUs_out. This formula can be used in end-to-end CRASH studies,
where we want to couple upstream attack uncertainties to a tail probability loss of load (instead of
wofrst case).

Future studies are planned, to increase complexity of the model by scaling the size of the topology as
well as reimplementing the relay protections. However, due to the large variability of results present
in the small topology, future work will first include more analysis of the current results such as worst-
case analyses.

C.5. Segmentation Study

The second study using the TAMU topology and CRASHOVERRIDE malware was a segmentation
study. The optimal segmentation work determined optimal segmentation of a network using
mathematical optimization. This study applied the mathematical results to the TAMU topology and
investigated the impacts the CRASHOVERRIDE malware would have on this new, segmented
topology. We hypothesized that using the mathematical results would decrease the impact of the
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CRASHOVERRIDE malware since optimal segmentation would force the attacker to pivot more
within the network to deliver the CRASHOVERRIDE payload to specific relays.

A workflow was designed that interfaces emulation with mathematical optimization for network
segmentation. The workflow starts with an initial SCADA network implemented in SCEPTRE. The
design of the topology (i.e. current network segments) is input to the mathematical optimization. The
mathematical optimization then does two things. 1) identifies the worst-case attacker on the original
topology and 2) identifies a new optimally segmented network topology along with the worst-case
attack for this new topology. The SCEPTRE topology is then updated with the new segmented
topology. Theoretically speaking, this is done by re-subnetting and applying new firewall rules.
However, for our example, we wanted to investigate the effects of the CrashOverride malware against
the optimal and non-optimal network topologies. So practically speaking, we investigated this by
simply changing the potential targets of CrashOverride based on the segmentation that came from the
optimization.

To gather results, the worst-case attacker (specific to each topology) was used to identify the set of
RTUs that CrashOverride would target. The CrashOverride malware was implemented and for each
topology, 100 experiments were run varying the other parameters of CrashOverride. Figure C 4 shows
results of this study. The results show that the optimal segmentation of the network lowered the
cumulative loss of load for the scenario.
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Figure C 4. Segmentation Results
Moreover, this study shows the value of coupling mathematical optimization with emulation.
Determining an optimal segmentation in emulation is usually SME driven and would require full
enumeration or brute force to determine a true optimal solution. This is infeasible in emulation so
practically heuristics would normally be used, but these do no guarantee an optimal or even near
optimal solution. By coupling the emulation with mathematical optimization, most of the burden is
done by the lightweight mathematical model.

Beyond this initial study, other questions we want to answer about this study are:

1. Can we use emulation to show that the mathematical result is better than SME design?
2. Can we use emulation to explore the robustness of the mathematical abstraction?
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Does the incorporation of other real-world parameters (such as scanning and detection
probabilities) affect the optimality of the segmentation?

What are the tradeoff costs between cost to implement segmentation versus benefit the
segmentation provides against an attacker?
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APPENDIX D. OPTIMAL SENSOR PLACEMENT MODEL

This appendix describes the optimal sensor placement model, which is a network interdiction model
that identifies where a defender should place intrusion detection systems (IDSs) in a cyber system to
minimize the probability that attackers can successfully achieve a given attack objective. For example,
an attack objective could be to cause a specific amount of load not served by the power grid.

This model combines four key elements to create a realistic representation of a cyber-physical system,
and attacker and defender behaviors. First, it uses cyber-attack graphs to represent the landscape
where attackers and defenders make decisions and interact. Attackers must move across these graphs
from the initial point of compromise to locations where they can produce a cyber or physical
consequence. At each step of the attack they will select subsequent actions so that the probability of
being detected is minimized. Second, it captures the constraints that defenders must consider when
installing IDS in a cyber network. Third, it uses threat information about known cyber threat groups
to model attacker behaviors. Finally, when applicable, it uses physical system models to ensure that
the attacks that occur on the cyber network produce the desired effect on the physical system.

This model uses bi-level programming to capture the interactions between the defender and the
attacker. The defender makes the first move by selecting which IDSs should be installed in the cyber
network and how they should be deployed. The attacker can see the defender’s decisions before
deciding which actions to take and will change their attack strategy based on where sensors are placed.
While the defender must move first, they are able to anticipate the attacker’s response to their actions
and incorporate that information into their decision. Bi-level programming makes certain assumptions
that are likely unrealistic in practice. For example, in its standard form it assumes that the attacker has
complete knowledge of the system that is being attacked. However, by assuming the attacker has
complete information the worst-case attacks can be bounded. This information can help cyber analysts
focus on the most important attack and defense strategies.

The remainder of this paper is organized as follows. Section D.1 describes the four elements of the
model in more detail. Section D.2 provides the details of the math model formulation and techniques
used to solve the model. Section D.3 demonstrates the application of this model to a small attack

graph.
D.1. Model Elements

This section describes the approach for modeling each of the four major elements of this model. A
common theme throughout each of these sections is to make the model as realistic as possible for
modeling and protecting cyber-physical systems.

D.1.1. Afttack Graphs

For this model, we use attack graphs to represent the “game board” where the attacker and defender
interact. Attack graphs were developed and first applied to cyber application in the 1990’s and various
methods have been developed for generating attack graphs [1,2,3]. In a cyber-attack graph, nodes
represent different states of the system. The state of system can include information that describes
whether an attacker has access to a component of the cyber system, their permission levels, and trust
relationships that exist between components. The edges represent the actions taken by the attacker to
move from one system state to another.
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D.1.2. Defender Model

The defender model describes the decision space available to the defender for installing and
configuring IDS. It consists of the defender’s objective, the available decisions, and constraints on
which combinations of decisions are allowable.

The defender’s objective is to minimize the likelihood that an attacker can achieve a given consequence
on the physical system without being detected. This is different that the objective functions employed
in many interdiction models that typically focus on minimizing the worst consequence that at attacker
can achieve. One advantage of focusing on the worst possible outcome does provide a bound on how
much damage the attacker could cause to the physical system. The disadvantage of this approach is
that the mitigation strategy for the worst-case scenario may not protect against other attack scenarios
that cause less damage to the system. Furthermore, attackers may have specific objectives in mind that
have a much smaller impact than the worst-case attack. Similarly, defenders may have a threshold for
system failure that is less than the worst-case attack. The approach employed by this model allows the
defender to define the threat and then determine the necessary steps to protect against it.

In this model, we consider two types of defender decisions for IDS. The first type is edge interdiction
decisions. These are binary choices indicating whether an edge on the attack graph should be
protected. Each edge is assumed to have a baseline probability of detection if no action is taken and
an increased probability of detection if the defender chooses to protect the edge. The second type is
enabling capability decisions. These are decisions that do not directly map to the attack graph but enable
one or more edge interdiction decisions. These types of decisions provide for more flexibility when
modeling the defender’s decision space. For example, if an IDS system includes a fixed and variable
cost component, an enabling capability decision can be used to represent the upfront acquisition cost
and edge interdiction decision variables can be used to represent the cost of interdicting each edge.

The model includes three types of constraints on the defenders IDS decision. The first is a cost
constraint that prevents the combined costs of all IDS decisions from exceeding the available budget.
The second is a constraint on the false alarm rate of a given protection strategy. False alarms consume
cyber analysts time, erode confidence in the system, and increase the likelihood that actual attacks are
missed, therefore it is desirable to keep the rate of alarms to a manageable level. Finally, the model
includes constraints that limit the burden that can be placed on users of the system due to IDS
placement. Disallowing users from performing certain tasks or onerous authentication requirements
make it more difficult for users to perform legitimate function, so a balance must be struck between
security and usability.

D.1.3. Attacker Mode/

We use the threat group information in the MITRE ATT&CK™ database as the basis for representing
the attacker behavior in this model [4]. ATT&CK contains a list of known cyber-threat groups. For
each group, it identifies the techniques that the group has been observed to use. When executing an
attack, the attacker is only able to use edges on the attack graph that are within their list of observed
capabilities. The only other constraint we place on the attacker is that they must execute an attack that
achieves at least the target level of disruption. The objective for the attacker is to select the attack with
the lowest probability of detection.

By using this threat information, we aim to limit the assumptions and data requirements for the
attacker. A common approach for modeling attackers in the interdiction literature is to assume that
capabilities of the attacker are limited by a knapsack constraint. This requires establishing a “budget”
on the attacker’s ability to acquire new capabilities and a “cost” for each capability under consideration.
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In practice, it is difficult to determine values for each of these terms. Given this, we favor the approach
of using only the techniques that these groups have been observed using.

One potential criticism of our approach is that the observed capabilities of these groups may not
represent their full set of capabilities. While this is likely the case, there are a few observations that
mitigate some aspects of this concern. First, the data in ATT&CK is compiled from many cyber
security groups around the world that monitor the various threat groups and report on the methods
they use. Second, even though threat groups have the advantage of being able to operate remotely and
in relative secrecy, they are still organizations that face many of the same challenges as any technical
organization. Learning new capabilities takes time and resources, and organizational momentum can
be difficult to change. Given this, it is more likely that organizations incrementally add or pivot to new
capabilities instead of fundamentally changing the way they execute attacks. In future work, we can
also consider an “N + K” extension to the model where attackers can acquire up to k additional
capabilities.

D.14. Physical System Model

The final element of the model is a representation of consequence on the physical system that would
result from a specific cyber-attack. Any attack that is selected by the attacker must meet or exceed the
threshold value for the consequence. Given this, the model needs some method for mapping a given
cyber-attack to damage on the system. For this model, we provide a generic structure for connecting
attacks to consequences. For example, certain edges on the attack graphs can be assigned a numerical
prize and the attacker can aim to collect enough of these prizes to meet the threshold value.
Alternatively, the system model can be separate optimization problem, e.g. an D.C. optimal power
flow (DCOPF) model, to calculate the consequence resulting from an attack.

D.2. Math Model

We formulate the math model as a bi-level interdiction problem. The first stage consists of the
defender and the second stage consists of one or more attackers. Let a € A represent each attacker
threat group. Given a specific cyber-physical system configuration and the capabilities of the different
threat groups, we let G represent the resulting directed attack graph where N and E represent the nodes
and edges, respectively. Each threat group a has an associated attack graph Ga & G where Na and Eqa
represent the nodes and edges that the group can include in their attacks based on their capabilities.

We assume that each of these attack graphs share a common root node s which represents the remote
station where attacks originate. We also assume that there are a set of terminal edges T C E that
represent connections between the cyber and physical system. Once the attacker traverses these edges
they can produce an effect on the physical system. The set Ta = Ea NT represents the terminal nodes
available to attacker a. Finally, we assume that there is at least one path between the root node s and
each edge t € Tafor each attacker a.

For each edge e € E there is a baseline probability re € (0,1] that attacker would evade detection if
they attacked that edge based on the existing security infrastructure. Let D € E represent the edges
that can be interdicted by installing an IDS. For each edge e € D there is a reduced probability of
evasion for the attacker ge € [0,re). We assume that these parameters depend only on the action
(attack) being taken and do not depend on the specific attacker performing the action. Therefore,
attackers who could use the same technique at the same step in an attack will share a common edge.
Since ATT&CK does not provide data on how stealthy each group is at evading detection we do not
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specify these inputs by attacker. If this data were available, parallel edges could be created to represent
different skill levels for the same type of attack.

The defender also has a set of enabling capabilities C that they can choose to invest in. These capabilities
do not directly impact the attack graphs but may be required before specific interdictions from the set
D can be selected by the defender. Let Pcbe the set of edges e that are enabled by capability ¢. The
binary parameter I£ takes a value of zero when capability ¢ just allows the associated edges e € Pcto
be mitigated, and a value of one when selecting capability ¢ forces the associated edges to be mitigated.
This model assumes that each edge mitigation is associated with at most one enabling capability.

The defender must ensure that the investments they select do not exceed their available cost budget,
false-positive rate threshold, and user impact threshold. Let B = {cost,false-positive,impact} be the
collection of the defender “budget” categories. For each category b € B there is an upper limit mp >
0. For each category b and enabling capability C and edge interdiction e € D there is an associated cost
cge = 0and cE, = 0, respectively. For the cost category the units of these parameters are dollars. For
false-positives it is number of events per some unit of time (e.g. false-positives per day). For the user
impact, the units are more subjective measurements of how much a given mitigation would impact
users (e.g. a 0 to 10 scale).

The defender sets a threshold v that represents the smallest disruption on the physical system that
they would like to protect against. The units for this term depend on the system being modeled. For
example, in the case of a power grid the units could be load not served. Given this, each attacker will
attempt to find a valid subgraph of Ga. A sub-graph is valid if it starts at node S, is connected, and
contains a subset of nodes T, € T, that generate a consequence of at least v on the physical system.
Let Gav © Ga represent the family of valid attack subgraphs for attacker a that meet or exceed the
threshold disruption v.

Let S € D represent the edges that the defender chooses to protect. The following function calculates
the probability that attack G € Gav evades detection, given a collection of interdictions S. The
probability of an attacker evading detection on different edges is assumed to be independent.

he(S) = (H r‘)( I1 %) (1)

o Te
eeld ecGnS

Let xZ and x¢ be binary variables that represent the edge and capability interdictions selected by the
defender, respectively. Given this, the probability of evasion, in terms of these binary variables, is
defined as follows.

E

ety = [T 11 (%)

ec ecGnD N €

The sensor placement math model is given below. The defender’s objective function is given by (3).
The aim is to minimize the probability that a collection of attackers will successfully execute an attack
that achieves a consequence of at least v. The defender can select a combination of enabling capabilities
and edge interdictions subject to the three “budgets” under consideration. The budget constraints are
modeled using a knapsack constraint (4). Constraints (5) and (6) connect the enabling capabilities to the
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edge interdictions. The first constraint is used when an enabling capability allows an edge to be mitigated,
whereas the second constraint forces the edge to be mitigated. Once an interdiction strategy has been
realized, each attacker then finds the best available attack Ga the maximizes their chances of evading
detection.

MiNgE 4c -m.a-:r:{?i.g(_;rE} ra€ A Gy € Gul (3)

s.t. Z sl + Z cerf <m, vbeB (4)
ceC e€D

28 >2F YeeCec P IF =0 (5)

e =2F VeeCeeP :IP =1 (6)

2P 2% € {0,1} (7)

D.2.1. Model Reformulation

The model in described by Expressions (3) through (7) is not conducive to being solved in the form
presented. In this section, a mixed-integer linear programming formulation of the model and
decomposition strategy is derived. Let 7 represent the probability that an attacker evades detection.
Given this, the defender’s decision model can be described as follows.

MiNgE z¢ & T (8)
s.t.
Z S al + Z cExb <m, vYbeB 9)
ceC ecD
S >2f VeeCeeP.: I =0 (10)
¢ =2 YeeCeeP 1V =1 (11)
7> ha(zF) Vae A G e Gy (12)
¥, 2% € {0,1}, 7R (13)

Towle and Luedtke have shown that (1) and equivalently (2) are supermodular set functions and that
the feasible region for this model can alternatively be defined using the set HGa, which is defined
below (see Proposition 2 [5]). The set HGa has been studied by several researches and can be described
by linear equalities [6,7]. This creates the potential to solve this model using a delayed constraint
generation strategy. The idea of this approach is to generate an optimal interdiction strategy x® " and
then solve an auxiliary problem to see if a new attack Ga can be found that violates Constraint (12)
for any of the threat groups. If such an attack can be found, new linear inequalities can be generated
and added to the master problem. Since Constraint (12) decomposes by threat group the auxiliary
problem for each of the threat groups can be solved in parallel.

Hg, = {(:J;F‘,ﬂ) c{0,}MPIxR:7> f?.(;u(:rE)}
(14)
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To leverage this, we develop the auxiliary problem as follows. Assume that there is a fixed interdiction
strategy SF. For a given threat group a, let ye be a binary variable that indicates that edge e is part of
attack graph Ga. Since a separate auxiliary problem can be written for each threat group, we drop the
index a from the notation. Let Ze represent the probability of evasion on edge e for the given
interdiction strategy SF, as shown below.

, e S
e={% " (15)
r., otherwise

The attacket’s objective is to find an attack G that maximizes the probability of evasion, as shown by
the objective below.

mar H Za (16)

ecls

This objective can be converted to a linear expression by taking the logarithm of the Za parameter, as
shown below.

max Z log(ze)ye (17)

EE‘EH

The following constraints ensure that the attack graph that is generated meets the requirements
described previously. For this model, assume that each edge t € T has a numerical “prize” peattached
to it. Constraint (18) is a covering constraint that requires that the attack graph that is selected by the
attacker must be able to generate at least the minimum reward v. Constraint (19) enforces precedence
relationships between attacks across the network. It states that an attack on an edge e defined by nodes
(L,k) is only allowed if one of edges that immediately proceeds edges e (i.e. an edge (j,I)) has been
attacked. Note: This formulation assumes the graph is directed and acyclic.

5.t
> peye = v (18)
ecTy,
Z Y(.4) = Y(i,k) ‘v’(a .I{‘} = EQ 11 € JH\TQ/S (19)
jE_"\-raZ(j.‘i:jEEu
ye € {0,1} Ve € E, (20)

If Za= 0 (i.e. the interdiction detects attacks with probability 1) the logarithm will be undefined. In
these instances, any edges that meet this condition can be removed from the network since the attacker
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should not want to pursue an attack that has no chance of succeeding. If all the sub-problems for each
threat group are not feasible without these edges, then the current interdiction strategy S is optimal.

Constraint (18) represents one strategy for ensuring that the generated attack is valid. One alternative
approach is to use disjunctions to define a collection of subsets of Ta that would meet the threshold
v, if disrupted. Let T? represent the set of sets of edges e € Tathat achieve the desired disruption. Let
j =1,...,|T?| be an index on this set and Yjbe an indicator that the set T{’ € T is active. Given this,
the constraint below can be used in place of (18) to ensure that a valid combination of edges is
attacked. This constraint does not force edges that are not part of a set ij to be equal to zero, though
this can be added if needed.

(2D

VAR
oy LYe=1 Ve € T}

For this initial version of the model, cuts of the form shown in Constraint (22) (from Nemhauser and
Wolsley [6]) are used. The function pg (S) represents the marginal difference in hc obtained by adding
a to S and is calculated as follows: p&(S) = hg (S N {a}) — hg(S). Researchers have noted that these
cuts tend to be very weak and present methods for deriving much stronger cuts [5,7]. These improved
cuts can be used in a future version of the algorithm.

7> ha(S) =Y pa(D/{a)(1—za) + > pE(S)za (22)

acs ac/S

D.3. Example

To demonstrate this model, consider the attack graph shown in Figure D 1. This graph contains 30
edges, 25 of which can be interdicted. The remaining 5 edges are reward edges. Table D 1 summarizes
the input for each edge. In this example, assume that the defender is concerned about attacks that
would produce a reward of at least 3 units for the attacker.

Figure D 1. Test case attack graph. Solid lines indicate attack edges. Dashed lines indicate reward
edges.

109



Table D 1. Input data for example network.

From To Interdiction Reward Baseline Interdicted
Node Node Cost Evasion Evasion
Probability | Probability

0 1 1.41 0.81 0.42
0 2 1.10 0.86 0.49
0 3 1.42 0.90 0.51
0 4 1.38 0.89 0.45
0 5 1.18 0.91 0.39
1 6 1.21 0.87 0.51
1 7 1.02 0.84 0.35
2 6 1.09 0.85 0.40
2 7 1.11 0.92 0.45
3 8 1.45 0.88 0.52
3 9 1.12 0.82 0.35
4 9 1.06 0.86 0.49
4 10 1.31 0.83 0.43
5 9 1.16 0.81 0.43
5 10 1.19 0.81 0.40
6 11 1.29 0.84 0.48
6 12 1.33 0.94 0.53
7 11 1.04 0.94 0.38
7 12 1.35 0.84 0.41
8 12 1.45 0.85 0.42
8 13 1.43 0.85 0.49
9 14 1.23 0.92 0.52
9 15 1.43 0.94 0.41
10 14 1.46 0.84 0.44
10 15 1.08 0.84 0.35
11 16 2.74 1 1

12 17 1.42 1 1

13 18 1.21 1 1

14 19 1.20 1 1

15 20 1.49 1 1

The baseline detection probably can be found by solving the attacker sub-problem with the baseline
detection probabilities. With no interdictions the attacker has a 62.9 percent chance of successfully
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executing the optimal attack without being detected. Figure D 2 shows the optimal attack in this
scenario. The edges selected by the attacker are shown in bold. This attack includes edge (11,16),
which is the most valuable reward edge, and the nearby edge (12,17). Note that there are no
combinations of two reward edges that produce a reward of at least 3 and do not include edge (11,16).

If this edge can be effectively defended, the attacker will have to attack three of the other edges to
achieve a reward of 3.

Figure D 2. Optimal attack with no interdictions (morr= 0.629).

Next, consider the case where the defender has a budget of 12. For context, the defender would
require a budget of 32 to protect all the edges in the network. In this case, the attacker has only a 14.0
percent chance of successfully executing the optimal attack. Figure D 3 shows the solution in this case.
The interdicted edges are shown in green and the edges that are attacked are in bold. Observe that in
this case edge (11,16) is no longer attacked. Furthermore, the selected interdictions appear to
emphasize protecting this edge since all paths to node 16 include two interdicted edges. This has the
effect of forcing the attacker to attack three edges to obtain the minimum reward.
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Figure D 3. Optimal interdiction strategy and attack for a defender budget b = 12 (morr= 0.140).
Interdicted edges are shown in green. Attacked edges are bold.
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Finally, consider the tradeoff between the level of investment made by the defender and the probably
that the attacker can evade detection. This was achieved by solving the model for all budgets between
0 and 32. Figure D 4 shows the probability that the attacker successfully evades detection as a function
of the available defender budget. Once the defender budget reaches 22, no additional reduction in the
attacker’s probability is possible. This type of result can help decision makes understand the tradeoffs
between cost and risk.
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Figure D 4. Optimal probability of evasion versus defender budget.
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Charles J. Hanley 8810 cjhanle@sandia.gov
Raymond H. Byrne 8813 rhbyrne@sandia.gov
Richard Griffith 8850 rogrif@sandia.gov
Lon Dawson 8851 ladawso@sandia.gov
Robert Leland 8900 leland@sandia.gov
John Zepper 9000 jdzeppe@sandia.gov
Marcus Chang 9300 mchang@sandia.gov
John Naegle 9300 jhnaegl@sandia.gov
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Name Org. Sandia Email Address
Zachary Benz 9310 zobenz@sandia.gov
Brian Gaines 9366 bgaines@sandia.gov
Vince Urias 9373 veuria@sandia.gov
Brian Van Leeuwen 9373 bpvanle@sandia.gov
Scott Stephens 9750 sasteph@sandia.gov
Technical Library 01977 sanddocs@sandia.gov
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