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The Grand Challenge of Biophysics

Can we predict the behavior of molecules at the atomic scale?
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Why is this a hard problem?

Quantum Mechanics. Even the best QM algorithms scale terribly.
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The Problem.

For far too many applications the point charge force field fails.

This is not surprising, given that this EXACT functional form was used in the very first MD
simulations of a biomolecule, back in 1977
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Plan for Today's Talk

1. Classical: HIPPO (Hydrogen-Like Polarizable Potential)

A. Why is a new force field necessary?

B. How HIPPO is different

C. Simulation results

2. Quantum: ab initio Simulations with Deep Learning

A. OutlookThe importance of the electron density

B. How Euclidean Deep Neural Networks can help 

C. Trained model results

3. Outlook
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The Problem: Point force fields fail for many kinds of biomolecules

Just one example: Current force fields fail to predict the structure of
a simple RNA tetraloop
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The Problem: Point force fields fail for many kinds of biomolecules
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HIPPO: Hydrogen-Like Intermolecular Polarizable Potential

Point Force Fields 
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ab initio SAPT
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HIPPO: Hydrogen-Like Intermolecular Polarizable Potential

HIPPO is able to reproduce the repulsion energy of drug-like interactions
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HIPPO Molecular Dynamics Simulations
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Outlook

o Current: Highly accurate simulations of water, ions and other small
molecules

o Future: Turn HIPPO into a full protein, DNA and RNA force field

( Find the code at Tinker and OpenMM
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Why can't we just do Quantum Mechanics?

o QM methods scale terribly!

o Best: N^3

o Worst: N^7

o Exact: exponential

Dead end

Current parallel capacity

0(n3)

o_

'07)
z
o_

0(n)
o

Current capacity 

System size (number of atoms n)



I: Intro II: The Grand Challenge of Biophysics III: HIPPO IV: ab initio Simulations w/ Deep Learning V: Outlook

14

Big idea: Use Deep Learning to predict electron densities
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i . The Hellmann-Feynman Theorem
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2. Euclidean Neural Networks

Tess Smidt
1111Z. 1/1
Mario Geiger
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Toy Example:Water Dimer

Hartree Fock calculation; 1 s + 1p on O and H auxiliary density fitting basis set

1 layer e3nn CNN; Max L = 3

IllrInput: Geometry
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Results for Water Clusters
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Current and Future Work

o Current:
oTraining neural network to predict densities of water clusters.

oPredicting electron densities of very large water clusters

oTraining neural network on databases of organic molecules (building
blocks)

o Future:
oForces!
oWith forces, we will be able to do ab initio molecular dynamics at the
biological scale!
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Outlook

A leap in accuracy for biomolecular simulations is available right now!

A. HIPPO dramatically improves the standard point model

- Full biomolecular simulations are in the works!

2. Quantum-accurate simulations are on the horizon

A. We are leveraging the power of the electron density

B. And the new technology of Euclidean Neural Networks

C. The potential result could shatter the "Quantum Scaling Wall"

•

1
1



I: Intro 11: The Grand Challenge of Biophysics III: HIPPO IV: ab initio Simulations w/ Deep Learning V: Outlook

21

Acknowledgements

Steve Plimpton

Aidan Thompson

Susan Rempe

Roseane Silva

(Washington University in St. Louis)

Tess Smidt

(Lawrence Berkeley National Lab)

Austin Ellis

(Sandia)

9w
LABORATORY DIRECTED

WRD RESEARCH & DEVELOPMENT

1
1
1


