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The Grand Challenge of Biophysics |

Can we predict the behavior of molecules at the atomic scale?
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Why is this a hard problem!?

Quantum Mechanics. Even the best QM algorithms scale terribly. ‘
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The Problem.

This is not surprising, given that this EXACT functional form was used in the very first MD

For far too many applications the point charge force field fails. |
simulations of a biomolecule, back in 1977 |
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Plan for Today’s Talk |

1. Classical: HIPPO (Hydrogen-Like Polarizable Potential) ‘
A. Why 1s a new force field necessary? ®
B.  How HIPPO is different |
C. Simulation results

2. Quantum: ab initio Simulations with Deep Learning

A. OutlookThe importance of the electron density
B. How Euclidean Deep Neural Networks can help

(. Trained model results

3. Outlook
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The Problem: Point force fields fail for many kinds of biomolecules |
Just one example: Current force fields fail to predict the structure of
a simple RNA tetraloop
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The Problem: Point force fields fail for many kinds of biomolecules
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HIPPO: Hydrogen-Like Intermolecular Polarizable Potential

Point Force Fields HIPPO
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HIPPO: Hydrogen-Like Intermolecular Polarizable Potential

HIPPO is able to reproduce the repulsion energy of drug-like interactions
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HIPPO Molecular Dynamics Simulations
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Outlook |

o Current: Highly accurate simulations of water, 1ons and other small
molecules

o Future: Turn HIPPO into a full protein, DNA and RNA force field

oFind the code at Tinker and OpenMM
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Why can’t we just do Quantum Mechanics? !
o QM methods scale terribly! ) Dead end
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! Big idea: Use Deep Learning to predict electron densities

CCSD(T)

Physics-Informed
Neural Network Model
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2. Euclidean Neural Networks
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Toy Example: Water Dimer

Hartree Fock calculation; 1s + 1p on O and H auxiliary density fitting basis set

1 layer e3nn CNN; Max L. = 3

L=0,1,2 L=0, 1 Output
Input: Geometry Convolution (s and p on each atom)

Ground Truth Trained Model after 100 steps

0.39
=0.06
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Results for Water Clusters
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Current and Future Work

o Current:
oTraining neural network to predict densities of water clusters.
oPredicting electron densities of very large water clusters

o'Training neural network on databases of organic molecules (building

blocks)

oFuture:
oForces!

oWith forces, we will be able to do ab 7nitio molecular dynamics at the
biological scalel
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Outlook

1. A leap in accuracy for biomolecular simulations is available right now!
A. HIPPO dramatically improves the standard point model
B. Full biomolecular simulations are in the works!
2. Quantum-accurate simulations are on the horizon
A.  We are leveraging the power of the electron density
B.  And the new technology of Euclidean Neural Networks
C. 'The potential result could shatter the “Quantum Scaling Wall”
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