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 What are Interpenetrating Lattices
 Why lattices?
e Classical geometry from Euclid and Kepler
* Design possibilities

-

* Interpenetrating Lattice Experimental Demonstrations REZLBRRAS
* Electrical properties LIRS, ) XX
: ) S EEE KEXRXAS
* Composite behavior & X
* Fracture toughness
e Polymer like behaviors

* Potential Applications and Future Work
* Vibration
* Interpenetrating nanolattices
* Interpenetrating structures




Why Use Lattices?
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1. Lattices can give you properties not found in bulk materials
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2. Lattices expand the range of effective properties available to your printer
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Single vs Multi Component Lattices .

* Previous lattices are single e What if we weave one lattice through
continuous bodies the voids of another?

MutiMaterlal  We can still use different topologies,
materials and length scales
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Construction Rules .
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Reciprocal Lattices -
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wo Body Lattices

* Gap between lattices depends on the
density (strut diameter) of each lattice

* The only new manufacturing constraint is
minimum feature gap
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* Topology is independent of material and size

Polyjet Multi-Jet Fusion Laser Powder Bed Fusion Multiphoton Lithography
(Objet J826) (HP 580) (ProX DMP 200) (Nanoscribe GT)
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Interior Lattice Configurations
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Interface Controlled Behavior —
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Resistivity (2

107°
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e Lattice arraignments controls
interface interactions

* |Interfaces offer new behaviors

* Highly stress sensitive resistivity

Applied Stress (MPa) 11



Damage Sensing e

* Plastic damage can be assessed in real time, or passively after the fact
 Structural components can double as unpowered sensors
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Thermal Insulation .
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Composite
Behavior
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Fracture Toughness

* Two lattices = Two cracks = reduced crack tip singularities
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Fracture Toughness e
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* Interpenetrating lattice shows tremendous toughening as the cracks separate

All Lattices
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Damage Progression ) G
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Toughening Mechanisms i
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Break The Symmetry

* Reciprocal lattices are defined
by strict symmetry rules
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* Breaking the symmetry rules
explodes the design space
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Non-Reciprocal Lattices

Simple tetragonal at 0° 4 BCC cells inside Positive and Negative 8 fold Symmetric BCC
Simple tetragonal at 45° single cubic cell Poisson's Ratio & amorphous “lattice”

3D FCC/Octet

0D spheres BCC: Connectivity=8, Fiber: Connectivity =2

Boyce, 2020, US Provisional Patent 62989288



Sliding Interpenetrating Lattices

* Quai plasticity results solely from friction
* Negative stiffness/multi-stable behavior

35
).3 F
@ 1
S25¢
©).2 |
AL &
N——— XA 215t
920,029, SO A
O 4 4 o |
O D) b3 -
94%°, AR wm)lf
59,99 I
999 ) 4) 4 [

OOOC IR

> ¢ DG :
0% %" » /
" 0

Effective Strain (%) 21



Sliding Interpenetrating Lattices

* Friction is a much more sustainable/re-usable than plasticity or fracture
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Vibration Isolation @i (A G

* Vibrations are isolated by interfaces and damped by friction
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Nano Scale Inter pen etratin g Lattices A

 Surface effects become more significant at the
nano scale

xxxx

* Interpenetrating lattices should show a stronger

size effect
Nano-Pilar compression
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Interpenetrating Structures

e Two interpenetrating structures
can occupy the same space
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« Adds a new dimension to 3D =0

design space
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Future Possibilities

Rubbery

* Multi-Material interpenetrating lattices
* Chemical and Electrical applications

 Architected polymers/insulators

* Electrostatic actuators-metallic muscles
* Electrolytic reactors, batteries, fuel cells
* Dynamic filters

\ Brittle

Vero White

Lyncee Tec:
https://www.lynceetec.co
m/mems-actuator/#tab-2
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Future Challenges D (A G

* New designh space, new variables, more unknowns

* Modeling lattices is hard
A 5x5x5 FCC lattice has 3600 struts

Topology optimization

using homogenized Lattice substitution via Final Printed Part
properties conformal meshing
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Effective Stress (MPa)

* New/Improved properties can be achieved by interpenetrating lattices

* Interpenetrating lattices can be printed in any material by nearly any printer
 We have shown Polyjet, LPBF, and Lithography examples

* Huge new design space
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