
Contacting but not Connected:
Interpenetrating Lattices
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Why Use Lattices? C) SandiaNational
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1. Lattices can give you properties not found in bulk materials

2. Lattices expand the range of effective properties available to your printer
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Single vs Multi Component Lattices

• Previous lattices are single
continuous bodies
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• What if we weave one lattice through
the voids of another?
• We can still use different topologies,

materials and length scales
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Construction Rules

Johannese Kepler, Harmonices Mundi, 1619
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Reciprocal Lattices

Wigner-Seitz Cells

FCC or

Octet

Reciprocal Lattice

Metamaterials

Rhombic Dodecahedron (RD)
Tetrakis Cube
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Two Body Lattices

• Gap between lattices depends on the
density (strut diameter) of each lattice

• The only new manufacturing constraint is
minimum feature gap
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Reciprocal Lattices

• Topology is independent of material and size

Polyjet

(Objet J826)

Multi-Jet Fusion

(HP 580)
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Interface Dominated Energy Transfer

A
Thermal
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Interpenetrating Lattice Arrangements

AB

Exterior/boundary Lattice Configurations

AB
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Interior Lattice Configurations
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Interface Controlled Behavior
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• Lattice arraignments controls
interface interactions
• Interfaces offer new behaviors

• Highly stress sensitive resistivity

Applied Stress (MPa) 11



Damage Sensing 0 Sandia
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• Plastic damage can be assessed in real time, or passively after the fact

• Structural components can double as unpowered sensors
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Thermal Insulation

Superposition Dominated

Uniform gradient in

both FCC and RD
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Composite
Behavior
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Fracture Toughness

• Two lattices = Two cracks = reduced crack tip singularities
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• Interpenetrating lattice shows tremendous toughening as the cracks separate

All Lattices
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Damage Progression
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Toughening Mechanisms EjSandia
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• Two cracks crack bridging & friction distributed cracking
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Break The Symmetry

• Reciprocal lattices are defined
by strict symmetry rules
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• Breaking the symmetry rules
explodes the design space
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Non-Reciprocal Lattices

Simple tetragonal at 0°

Simple tetragonal at 45°

3D FCC/Octet

OD spheres

.440.- „of

4 BCC cells inside

single cubic cell

2D sheet Gyroid

2, 1D strut lattices

Positive and Negative

Poisson's Ratio
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8 fold Symmetric BCC

& amorphous "lattice"

BCC: Connectivity=8, Fiber: Connectivity =2

Boyce, 2020, US Provisional Patent 62989288



Sliding Interpenetrating Lattices

• Quai plasticity results solely from friction

• Negative stiffness/multi-stable behavior
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Sliding Interpenetrating Lattices
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• Friction is a much more sustainable/re-usable than plasticity or fracture
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Vibration Isolation 0 Sandia
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• Vibrations are isolated by interfaces and damped by friction
Response
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Nano Scale Interpenetrating Lattices

• Surface effects become more significant at the
nano scale

• Interpenetrating lattices should show a stronger
size effect
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Kiener, Nature
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Interpenetrating Structures

• Two interpenetrating structures

can occupy the same space

• Adds a new dimension to 3D

design space

Heat Sink
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Future Possibilities

• Multi-Material interpenetrating lattices
• Chemical and Electrical applications

• Architected polymers/insulators

• Electrostatic actuators-metallic muscles

• Electrolytic reactors, batteries, fuel cells

• Dynamic filters

Lyncee Tec:
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Future Challenges

• New design space, new variables, more unknowns

• Modeling lattices is hard
• A 5x5x5 FCC lattice has 3600 struts

Topology optimization
using homogenized

properties

Lattice substitution via
conformal meshing
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Summary
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• New/Improved properties can be achieved by interpenetrating lattices

• Interpenetrating lattices can be printed in any material by nearly any printer
• We have shown Polyjet, LPBF, and Lithography examples

• Huge new design space
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