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Structural metal foams... aka cellular solids

Aluminum Foam Sandwich (AFS) Panel Nanoporous Au
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Gold with only one fourth the
fracture toughness of glass!

Briot, Kennerknecht, Eberl, Balk, Phil. Mag., 2014 2



Modulus

•

Ln

Gibson and Ashby, Cellular Solids, 1997

10

YOUNG'S MODULUS

o GIBSON AND ASHBY 119821 PU 1P1
o GIBSON AND ASHBY 119821 PU 1F1
6 GENT AND THOMAS 119591 RL
v LEDERMAN (1971) RL
• GIBSON AND ASHBY 11982) PE
• GIBSON AND ASHBY 119821 PU1R1
-• BAXTER AND .10NES(1972I PS  
• PHILLIPS AND WATERMAN 119741 PU IR1
# MOORE ET AL 119741 PSA
CHAN AND NAKAMURA119691PS

0, BRIGHTON AND MEAZEY 119731 PVC
• WILSEA ET AL 1975 PU IR I
+ WALSH ETAL (1965) G
■ PITTSBURGH-CORNING119821G
• MAITI ET AL 11984o1 PM A

■ MAITI ET AL(1984o1PE

102 -,1) MAITI ET AL (1984 ol PU1r)
MAITI ET AL (1984o1 M r

# ZWISSLER AND ADAMS /
119831 G

• /:
CLOSED CELLS */ /

ck =0 6 / /

''/// A 4,*

=0.8----"'

Es

o

0

.

o
ocf3

•

•

1a2
RELATIVE DENSITY P7,0,

• Los Alamos
NATIONAL LABORATORY

3
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Foams are expected to Iose toughness as density decreases
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Gibson and Ashby, Cellular Solids, 1997
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►

• McINTYRE AND ANDERTON

-4  
10 

10
_3

FOWLKES (1974) PU IR) A =0.5mm

MAITI ET AL 11984 PMA .0.3mm
MORGAN ET AL (19811 G
ZWISSLEP AND ADAMS 119831 G
BREZNY AND GREEN (1989b)
IHPA,AZ.AMI

* xsK , 
  - 0.65 (
Oisiff Rs

(1979) PU 1 ISTED IN REF

Can we

10-2 10-1

RELATIVE DENSITY P'ps

• Los Alamos
NATIONAL LABORATORY

  EST 1,13  

Is 1 an upper limit???

architect?

5



An inspiring example: synthetic nacre
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Mother of pearl is mostly
brittle calcium carbonate.
How is it so tough???
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How do we improve a materials resistance to crack propagation?

Extrinsic Toughenina 

grain
bndging

4

fiber
bridging

behind crack tip

RO Ritchie, Int. J. Fracture, 1999

oxide
wedging

Intrinsic Toughening

cleavage
fracture

Lopmicrovoidalescence
•••••••

ahead of crack tip
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Extrinsic toughening mechanisms for brittle materials

• CRACK DEFLECTION

• MICROCRACK TOUGHENINGi

A(K) - E' f,, h

• TRANSFORMATION TOUGHENING.

A(K) - r. \in

• BRI1TLE FIBER/WHISKER TOUGHENING:
(crack bridging)

A(K)- (2f, E' f2 la.)1‘.2

• DUCTILE PARTICLE TOUGHENING:

A(K)-(CE' a y
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A simple proof of concept topology:
Periodic array of cylindrical holes in an "arrestor" orientation
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Limiting crack propagation in a brittle glassy polymer

Unmodified
3 mm

93% Dense... Four rows of cylindrical holes

3 mm

1
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Material: Stratsys Durus, Polypropylene-like UV-Cured Glassy Polymer
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Before Crack Growth Exx
0.016

Planes of cylindrical perforations
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Crack deflection, branching, pseudo-delamination
along planes of cylindrical holes a Los Alamos
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600% improvement in fracture toughness over base material
by adding air!
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Nanoporous Gold, 
Gc - 0.010 kJ/m2 density = 6.4 g/cm3
Briot...Balk, Phil Mag, 2014

Impact-modified Polypropylene 

Gc =2-5 kJ/m2
Li, Li, Tong, Polymer Testing, 1997

1 3Conway, et al, in preparation



Are lattices tougher than foams?
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Toughness vs Fracture Toughness
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The gyroid lattice: a triply periodic minimum surface

sin x cos y sin y cos z sin z cos x
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Why the gyroid?
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Al-Ketan, Rowshan, Al-Rub, Additive Manuf., 2018 17
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Different Building Direction 
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Crack deflection... : Los Alamos
NATIONAL LABORATORY
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The Gyroid architecture toughens by crack deflection...

Fracture surface of solid material: Fracture surface of gyroid architecture:
brittle UV-cured polymer, Verowhite

(e)

•
(f)

3 mm

same brittle polymer, Verowhite

(b)

.

3 mm

1 4
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Can we further toughen a gyroid by adding hierarchical porosity?
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Crack deflection by additional porosity

Unmodified gyroid, 316L
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Gyroid with additional
cylindrical pores, 316L
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31.6L Modified Gyroicl

Initial Crack
Propagatio
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Additive manufacturing enables generative design... a Los Alamos
NATIONAL
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Topology optimization, a form of generative design

specify form design

verify function
w/FEA

Or testing

specify design domain
Et function

use topology optimization to determine form
that meets function

M=&-

33.1

0,2)1?).

optimized
design form

Galjaard, Hofman and Ren,
Biomimetic Lightweight..., 2015
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Two-scale topology optimization for fracture resistance?
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Three challenges for optimized design of fracture resistance

1. For computational tractability,
you must employ
homogenization

Direct Micromorphic

X Velocity (m/s)

1.0 1.5 3.0 4.5 6 0

Dingreville, Robbins, Voth, JOM, 2013

2. Nonlinear elastoplastic response
is path dependent: challenging for
optimization

L/12

L/12

•

u

L/12

3. Predicting ductile rupture in
FEA is challenging

cion(Pa)

3.19e+09
2.89e+09
2.63e+09

 2.36e+09
 2.10e+09
 1.84e+09
 1.58e+09
  1.31e+09
 1.05e+09

7.88e+08
5.25e+08
2.63e+08
9.03e+04

Alberdi, Zhang, Khandelwal, Numerical Methods in Eng., 2018 Kramer...Boyce, Int. J. Fracture, 2019
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Extrinsic toughening mechanisms for brittle materials

• CRACK DEFLECTION

• MICROCRACK TOUGHENINGi

A(K) - E' f,, h

• TRANSFORMATION TOUGHENING.

A(K) - r. \in

• BRI1TLE FIBER/WHISKER TOUGHENING:
(crack bridging)

A(K)- (2f, E' f2 la.)1‘.2

• DUCTILE PARTICLE TOUGHENING:

A(K)-(CE' a y

K k
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Another form of toughening: pseudo-blunting
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A second form of toughening: pseudo-blunting
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A second form of toughening: pseudo-blunting
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Any material can be a phase transforming material!
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Restrepo, Mankame, Zavattieri, Extreme Mechanics Letters, 2015 32



Localized shearing for toughening

(a)

Organi
!hal layers
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platelets

(c) (d)
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Crack growth ea (mm)
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Etching a crack path on a brittle material...
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10 iPoiyurethane on
-straight interface

8

Bio-inspired engraved glass
infiltrated with polyurethane
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Mirkhalaf, Khayer Dastjerdi, Barthelat, Nature Comm, 2014
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Adding friction to the honeycomb topology...

honeycomb
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Architected energy dissipation

In a polymer

Am.
— C n111111.
mdti.
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At the microscale

• Friction Unit Cell

Energy Friction = 251.07 nJ
— Open Unit Cell

Energy Open = 54.18 nJ
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Displacement [um]
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Architecting dissipation at the microscale...
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Behavior is predictable = "programmable"
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-0- Experimental Friction Unit Cell
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Reusable energy dissipation... like an elastomer

140 7 0.04 -
Open Lattice

120--  Friction Lattice

20 7
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Dissipative properties like an elastomer... but thermally robust...
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Complex, hierarchical friction lattices....
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Summary...

You can toughen materials with air, but its all about the placement!

All traditional toughening mechanisms: deflection, delamination, transformation, pull-out, etc.
are possible, even with a single material!

These mechanisms can be enabled topologically in any material, albeit with reduced density.

But optimized digital design of fracture resistance is challenging

42



Setting aside topology... how does it scale? a Los Alamos
NATIONAL LABORATORY
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Representative volume consideration???
Size dependence of effective mechanical properties...
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No microstructural source of size dependent properties...!
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W=6.25 value
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Surface topography dominates when features are <2.5 mm!
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Finite element modeling of roughness effect
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4) Confirm experimental trends
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Indeed, the effective strength of struts can
be <50% of the 'material' strength

5 Strut
Specimen
Isometric
View

Wireframe
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Process parameter study for a lattice...
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Can we 'predict' mechanical properties with just scalar measures
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Can machine learning do any better?

Convolutional neural network; 16 layers (resnetl6 in fastai library);
stratified k-fold training (8 folds / 11% of data held for testing); enriched data by subwindowing
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To 'enrich' the available data, rather than training on the entire image, we trained on
45 sub-images (windows) of each original image. This takes advantage of the repetitive nature of the lattice.
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Can machine learning do any better?
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Machine learning's weakness:'explainability' and extrapolation

Image
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Summary

Monolithic AM Feature-rich AM
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First order influence: microstructure Et porosity First order influence: dimensions Et surface topography

Complex pathway to prediction Potentially easier to predict

In this presentation, I drew data from -2000 mechanical tests. High-throughput testing and
machine learning enable us to develop process-structure-property relationships that were

otherwise elusive.
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Toughness: two basic definitions

Toughness = work of fracture

Units of J or N-m

Strain

W = F • dx

U = : cl€ V

Break or Rupture Point

Fracture toughness= work required
advance a crack by a unit length

Units of MPaf m (K) or J/m2 (G)

ao a c
CRACK SIZE

G= G =
(1 —

E

plane stresti

plane strain
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Process parameter study

X-ray computed
tomography
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High-throughput data —> a Weibull minimum allowable threshold
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Connecting the dots... the old fashioned way...

Weibull threshold
Yield Strength (MPa)
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Grain size is not the only factor affecting mechanical response...
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Strength and Modulus

Griffith fracture criterion (1921)2
Criterion: Crack growth will occur if the potential energy decrease produced by an
increment of crack extension equals the energy needed to extend the crack that same
increment.

For the elliptical crack
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