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Structural metal foams... aka cellular solids

WD15.0mm 20.0kV x120k 250nm

Aluminum Foam Sandwich (AFS) Panel Nanoporous Au

Gold with only one fourth the
fracture toughness of glass!

Briot, Kennerknecht, Eberl, Balk, Phil. Mag., 2014 2
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Foams are expected to lose toughness as density decreases

1 —____—__—_ﬂ Is 1 an upper limit???
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An inspiring example: synthetic nacre

A ——————T—
E 1 A Grafted 4
©
S 30} §§ !
; i Brick |
2 Lamellar & Mortar
o 20 a
] @ Grafted |
3 | 5 = |
’; 10 Non-grafted Non-grafted |
S5 [PMMA Lo ceneous D,
§ ) ntanooomm\te Rule of Mlxtures +
| | S - T
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Mother of pearl is mostly ALO)! contet (vol%)
brittle calcium carbonate. “Br1ck and Mortar” toughening in Synthetic Nacre

How is it so tough???

E. Munch...RO Ritchie, Science, 2008



How do we improve a materials resistance to crack propagation!? ‘

Extrinsic Toughening Intrinsic Toughening

g
ndgin
| 79 cleavage
[\J fracture
| -
II r h‘= —= I microvoid
' coalescence
o o
fiber i
bridging plastic
zone
behind crack tip ahead of crack tip

RO Ritchie, Int. J. Fracture, 1999



Extrinsic toughening mechanisms for brittle materials

* CRACK DEFLECTION Ak Nt
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RO Ritchie, Int. J. Fracture, 1999




A simple proof of concept topology: iRy ~

Los Alamos

Periodic array of cylindrical holes in an “arrestor” orientation 7 I

4 4
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Limiting crack propagation in a brittle glassy polymer RO | “Loiaamos

Unmodified 93% Dense... Four rows of cylindrical holes
3 mm

0.18

-0.15

Material: Stratsys Durus, Polypropylene-like UV-Cured Glassy Polymer
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(a) Before Crack Growth Sl
0.016

Planes of cylindrical perforations
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Crack deflection, branching, pseudo-delamination
along planes of cylindrical holes

( d) After Crack Growth
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600% improvement in fracture toughness over base material
by adding air!
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Conway, et al, in preparation 13



Are lattices tougher than foams?
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Pham, Liu, Todd, Lertthanasarn, “Damage-tolerant architected materials inspired by crystal microstructure”, Nature, 2019



The gyroid lattice: a triply periodic minimum surface

sinx cosy + sinycosz + sinzcosx = 0

16
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Why the gyroid? 00 (-

Relative density = 25% 160 -+ /\ @ Relative density = 25%

Young's modulus (GPa)

Toughness (MJ/m?)
W

Al-Ketan, Rowshan, Al-Rub, Additive Manuf., 2018 17



5% dense 316L gyroid
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Alsalla, Hao, Smith, Mater Sci Eng A, 2016 18



Crack deflection... ‘ ok atmes

EST.

19
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The Gyroid architecture toughens by crack deflection... ROy | “Lodaamos
Fracture surface of solid material: Fracture surface of gyroid architecture:
brittle UV-cured polymer, Verowhite same brittle polymer, Verowhite
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3mm ‘
—— 3 mm

Conway, et al, in preparation 20



Can we further toughen a gyroid by adding hierarchical porosity?

21



Crack deflection by additional porosity

Unmodified gyroid, 316L

Gyroid with additional
cylindrical pores, 316L

CMOD (mm)
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arrest
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‘ s . (nut“) 1 2
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~_316L Modified Gyroid
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Iniiab Crack
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Additive manufacturing enables generative design...

3Dprint.com 24



Topology optimization, a form of generative design

verify function
w/FEA
Or testing

specify form design

CURRENT

specify design domain use topology optimization to determine form optimized
& function that meets function design form

NEW

Galjaard, Hofman and Ren,
Biomimetic Lightweight..., 2015
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Two-scale topology optimization for fracture resistance! | @A'amos
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Examples: nTopology, Altair hyperworks
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Three challenges for optimized design of fracture resistance Ny e
1. For computational tractability, 2. Nonlinear elastoplastic response 3. predicting ductile rupture in
you must employ is path dependent: challenging for  Fga is challenging
homogenization optimization
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Extrinsic toughening mechanisms for brittle materials
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Another form of toughening: pseudo-blunting o ptames
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A second form of toughening: pseudo-blunting

( g-} Before Crack Growth &, ,.
& 0.002
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(h)

0002
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A second form of toughening: pseudo-blunting

After Crack Growth g,
| 0.08

¥

)
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Any material can be a phase transforming material!
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Localized shearing for toughening
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Etching a crack path on a brittle material...

a
10 ;PoiyurE’ghane on Bio-inspired engraved glass
- straight interface infiltrated with polyurethane
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Mirkhalaf, Khayer Dastjerdi, Barthelat, Nature Comm, 2014
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Adding friction to the honeycomb topology... E SUNE @Alamos

honeycomb with

honeycomb e
friction elements

k

35



Architected energy dissipation

Force [N]

| = Friction Unit Cell

In a polymer

2
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Architecting dissipation at the microscale...

20

o

“«Los Alamos
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Energy Dissipated = 307.1 nJ

20 40 60 80
Displacement (um)
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Behavior is predictable = “programmable”

1 -+ Experimental Friction Unit Cell
801 - Analytical, p=0.7
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Reusable energy dissipation... like an elastomer
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Complex, hierarchical friction lattices.... ~ | @A'amos
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f.e‘ e £ ‘-‘u,.’:
Summary... Sl | /LosAlamos
ﬁ‘ o

You can toughen materials with air, but its all about the placement!

All traditional toughening mechanisms: deflection, delamination, transformation, pull-out, etc.
are possible, even with a single material!

These mechanisms can be enabled topologically in any material, albeit with reduced density.

But optimized digital design of fracture resistance is challenging

42



Setting aside topology... how does it scale?

43



Representative volume consideration???
Size dependence of effective mechanical properties...
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Roach...Boyce, in review 44
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No microstructural source of size dependent properties...! Tl | LosAamo

Ul Plotted with respect
to Tensile Direction
o 1
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Roach...Boyce, in review 45
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Surface topography dominates when features are <2.5 mm! | Lotasamos

600
500 l '
o ) 6.25 mm wide
a 2.5 mm wide
S400 ‘
S .
= .
= ’ 1.0 mm wide
ténsoo
v ! 0.6 mm wide
=g
m -
oo | 0-4 mm wide
2
>=
1 10 100

Nominal Cross-Sectional Area (mm~”2)

46

Roach...Boyce, in review
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Finite element modeling of roughness effect 3 Todatamos

NATIONAL LABORATORY
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Indeed, the effective strength of struts can
be <50% of the ‘material’ strength

5 Strut
Specimen
Isometric

View

Wireframe
View

. Stress Based on Nominal Dimensions Stress Based on Actual Dimensions

1200 1200
+«— Vertical «— Vertical

1000 —a— Horizontal 1000 | sl —=s— Horizontal
= 800 = 800
- sty - ;
= y =
o 600 -
@ 400 i iz

200 f»

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

Individual Strut Strain Using DIC

Individual Strut Strain Using DIC

B

Normalized Von Mises Stress ' Normalized Von Mises Stress

<145
» ®

Dressler...Boyce, Additive Manufacturing, 2019 49



Process parameter study for a lattice...

Deformation Work as a

Function of AM Process Parameters
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Garland...Boyce, submitted
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Can we ‘predict’ mechanical properties with just scalar
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Garland...Boyce, submitted 51



Can machine learning do any better? ULy | Lodaames

Convolutional neural network; 16 layers (resnet16 in fastai library);
stratified k-fold training (8 folds / 11% of data held for testing); enriched data by subwindowing

To ‘enrich’ the available data, rather than training on the entire image, we trained on
45 sub-images (windows) of each original image. This takes advantage of the repetitive nature of the lattice.

Garland...Boyce, submitted



Can machine learning do any better? 00 Y rrer—.

NATIONAL LABORATORY

Oblique view Top-down view
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Machine learning’s weakness: ‘explainability’ and extrapolation | LosAlamos

Lowest 20 percentile Highest 20 percentile

Image Convolutions Image Convolutions

gyroid

Octet truss

54



Summary

Feature-rich AM

First order influence: microstructure & porosity First order influence: dimensions & surface topography
Complex pathway to prediction Potentially easier to predict
In this presentation, | drew data from ~2000 mechanical tests. High-throughput testing and

machine learning enable us to develop process-structure-property relationships that were
otherwise elusive.

ga



Toughness: two basic definitions

Toughness = work of fracture

Units of J or N-m

Break or Rupture Point

Stress

Area under curve

Strain

W= [F-dx

U:/a':deV

Fracture toughness= work required
advance a crack by a unit length

Units of MPa/m (K) or J/m? (G)

i KE
EI plane stress
G=G; = {
' (1-v*)K} .
= plane strain

56



Power = 111°"W

o

« Los Alamos

Process parameter study

NATIONAL LABORATORY

X-ray computed
tomography
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Heckman...Boyce, Mater. Sci. Eng. A., 2020 57
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Connecting the dots... the old fashioned way...
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Grain size is not the only factor affecting mechanical response... < Tiokatmo
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Strength and Modulus

Griffith fracture criterion (1921)2 ) .,

Criterion: Crack growth will occur if the potential energy decrease produced by an

increment of crack extension equals the energy needed to extend the crack that same
increment.

r oIl oW
o= of, If — = ——
. da da
For the elliptical crack
alt ma®o} E* _ k. if plane stress
’ N 1_—EV2 if plane strain

da E*\

61



