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Solar thermochemical ammonia production

Ammonia synthesis:

3 H2 -FR 2 NH3

• Ammonia is the second most produced
industrial chemical

• It is industrially produced via the Haber—
Bosch process

• It is responsible for over 1.4% of global CO2
emissions

Air z 79% N2 + 21% 02 CO2-neutral ammonia is possible!

• N2 separation from air typically consumes natural gas producing a lot of CO2

• Work here focuses on N2 separation from air, based on a solar driven two-
step thermochemical metal oxide (M0x) cycle.
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Solar

Two-step thermochemical cycle
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Reduction: ,

• TR : - 600 1000 °C

• Po2 = 21 kPa

Re-oxidation:

• Tox = 400 600 °C

• Po2,out = 10 Pa )
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Main features:

• Moving-particles

• Windowless receiver

• Countercurrent reactors

• Air sweeping (both reactors)

• Heat recovery (to be used in
other sub-processes)
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Material analysis
SrFe03
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Metal oxide candidates:

• SrFe0 3

• Ba,Sr1_,Fe03

• La,Sr1_,Fe03

• Ba and La substitutions: 5%, 10%, 15% and 20%

• Compound energy formalism  used to describe the
chemical equilibrium, good agreement with
experimental data

10-1 10° • This analysis is explained in detail by H. Evan Bush
in "Substituted SrFe03_5 Thermodynamics for Solar
Air Separation" at SoIarPACES 2020
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Particle reactor analysis: reduction
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• The line slope is determined by nN2 /nmox

• Isothermal operation: T R = max Ti (6i,pi*)

• Equilibrium at one single point

8 — p* coordinates
• Mass conservation:

depicted by straight lines

• Gibbs criterion: AG 0

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08
0

Mass balance

AG(TR, 62, /4) = o
AG(TRA,Pn >0

- - -Pair 

900 °C -

850 °C _

800 °C

750 °C

700 °C

650 °C

600 °C

50 oc

1 2 3 4 5 6

1; [-]

7 8

SolarPACES 2020 Tempe, AZ; SEP 2020 ASU LIGHTWORKS® Alberto de la Calle 6



nalLightWorits
ARIZONA STATE UNIVERSITY

N2
13* out

mo,_,15
6R

Colmteri
curr

ent

• Th

• Iso

• Eq

Particle reactor analysis: re-oxidation
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thermal operation: Tox

uilibrium at both ends

= min Ti (6i, p7)

6 — p* coordinates
• Mass conservation:

depicted by straight lines

• Gibbs criterion: AG 0
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System modeling: impact of sweeping ratio
Operating conditions: 
Material: SrFe03

Tox = 500°C

1302,in = 21 kPa Air

P02,out = 10 Pa N2 produced purity
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Countercurrent flow

Parallel flow
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• Parallel flow leads to a large underutilized chemical
potential along the reaction coordinate

• The countercurrent configuration can utilize all the
chemical potential of the material

Countercurrent reactor achieves the thermodynamic limit with
very low sweep flows
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System modeling: material testing, impact of Tox
Ba series

Solid black lines are
isothermal in Tox
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• We examined the full measured series
of Ba and La in the system model

• We have explored the full operating
range fixing P02,out = 10 Pa and
finding all solutions such that TR-Tox
meet the fixed value
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The lower To, the slower the kinetics: how low is feasible?

• I nwpr TR, Inwpr n--"- • " "NZ

• -fox is the key constraining
VcIFIclUIC to determine optimal

operating conditions

Ba series: appealing if the entire cycle is in lower temperature range (Tox < 450 °C)

La series: appealing if the entire cycle is in higher temperature range (im > 500 °C)
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Summary

• A receiver/countercurrent reactor can utilize all the chemical
potential of the material using air as the sweep gas

• Ba-substituted or La-doped SrFe03 can improve the system
performance

• Tox is the key constraining variable to determine the optimal
operating conditions
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If you like this work... there is more Solar Thermochemical

Ammonia Production in SolarPACES 2020:

Substituted Strontium Ferrite Thermodynamics for Solar Air Separation

H. Evan Bush

A Low-pressure Reactor Design for Solar Thermochemical Ammonia Production

Xiang Gao

Modeling of Concentrating Solar Reduction Reactor for Oxygen Separation from Air

Matt Kury

Experimental Screening of Substituted SrFe03_5 for Solar Thermochemical Air Separation

Tyler Farr
_ _____-)
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