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Solar thermochemical ammonia produhction

Ammonia synthesis: e Ammonia is the second most produced
' industrial chemical
3 HZ ‘\'@_) 2 NH3 * Itisindustrially produced via the Haber—
Bosch process

* Itisresponsible for over 1.4% of global CO,
emissions

Air=79% N, + 21% O, CO,-neutral ammonia is possible!

* N, separation from air typically consumes natural gas producing a lot of CO,

* Work here focuses on N, separation from air, based on a solar driven two-
step thermochemical metal oxide (MO,) cycle.
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| Two-step thermochemlcal cycle ‘

Solar

—

0,
N Reduction:

« T, = 600 — 1000 °C
* po, = 21KkPa

Re-oxidation:
Nitrogen production reactor o TOX — 400 — 600 °C
1 ; _
EMO — _MOx—5 + — . * Po,out = 10 Pa

5§ * 0
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System description
| e Heagosses
\ 4 Air & Sun .
Air/O —1< f Main features: \
s Reduction ’I ,
reactor Concentrated . .
[ solar radiation ° I\/Iovmg—partlcles
 Windowless receiver
Heat . ‘ Nopt
hancer HTF — e C
exchanger \ & s ountercurrent reactors
- Collection _ _
area e Air sweeping (both reactors)
Ai N .
il 2 * Heat recovery (to be used in
other sub-processes) /
MO, particles
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Material analysis

STATE

A RIZONA

) _ SrFeO; Metal oxide candidates:
* SrFe0O;
29+t N
sog o8 R * Ba,Sr;_,FeOs;

 La,Sr;_,FeOjy )

* Ba and La substitutions: 5%, 10%, 15% and 20%

e Compound energy formalism used to describe the
chemical equilibrium, good agreement with
experimental data

1167 107" 10" * This analysis is explained in detail by H. Evan Bush
po, |bar] in “Substituted SrFeO, s Thermodynamics for Solar
Air Separation” at SolarPACES 2020

10" 1073
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Particle reactor analysis: reduction
: Po,,i 6 — p* coordinates:
Pi = Dsys — Po,i * Mass conservation:

depicted by straight lines

p on * Gibbs criterion: AG<0 y
p 0.22 Y|t '
in N
. -
0.18 fir™..
L0460
. . . S 04p0
* The line slope is determined bynNz/nMox 0.19 | {[——Mass balance
. el —AG(TR, 6, p7) = 0
* Isothermal operation: T = max T; (6;, ;) B AGETZ&-,%;>0
e Equilibrium at one single point el 020,
q gle poin e e e O Y L L M
O 1 2 3 4 5 6 7 8
p; -]
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B Po,,i
Psys — Po,,i
_ 0.16
w5 0.14 -

* The line slope is determined by ny, /nmo,
* Isothermal operation: Tpx = minT; (6;, p;)

e Equilibrium at both ends
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Particle reactor analysis: re-oxuﬂatnon

6 — p* coordinates:

* Mass conservation:
depicted by straight lines

f Gibbs crliterion: AG<O0 .J

Mass balance |
800 °C|
—AG(TOX, 5i,p;) = Q™

AG(Tox, 6, p}) > 0[,750 °C]|

\G(Tox, %, 77) > 0,750 °C
- = ~Piir

0O 0.05 0.1 015 02 025 0.3
pi H
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System modeling: impact of sweeping atio

Operating conditions:

900 + —— Countercurrent flow |5 Materlal: SrFeOS
—— Parallel flow TOX = 500°C
| | | Ppo,in =21kPa < Air
S 860 Po,,out = 10 Pa  #«——— N, produced purity
ﬁ 840 r
e Parallel flow leads to a large underutilized chemical
820 —~ potential along the reaction coordinate
800 ————m s ————— ¢ The countercurrent configuration can utilize all the
10° 1072 107 10° 10"

— chemical potential of the material
nw, /1o -]

Countercurrent reactor achieves the thermodynamic limit with
very low sweep flows
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System modeling: matermal testmg, |mpa‘ct of Toxﬁ

500 500
Ba series La series  We examined the full measured series

475 | 0% o | 4757 0% ' of Ba and La in the system model
] b 600 °C _ Ew,
e ; 3 °

% L 10% 1 .

§ 2’ 1% § WOR B50°c| * We have explored the full operating
. 20% NSRS = o5 | 20% | range fixing pp, oyt = 10 Pa and
3 5 finding all solutions such that Tg-Tgy
- 500 ° = :
S 400 450 00 S 400 T meet the fixed value
< <

3751 «_| Solid black lines are ] 37571 450 °C prong B 550 °C | e Lower TR, lower Qsol/nNz

|sothermal in TOX
350 350 : _
700 750 800 850 900 950 100010501100 700 750 800 850 900 950 100010501100 - 1S the key constr'alnmg'
I EC Tr [°C] vanab[e to detqrmme optimal
operating conditions
S : : y
The lower T, the slower the kinetics: how low is feasible?

Ba series: appealing if the entire cycle is in lower temperature range (T,, < 450 °C)

La series: appealing if the entire cycle is in higher temperature range (T, > 500 °C)

SolarPACES 2020 | Tempe, AZ; SEP 2020 | ASU LIGHTWORKS® | Alberto de la Calle 9



A RIZONA STATE UNIVERSITY

* A receiver/countercurrent reactor can utilize all the chemical
potential of the material using air as the sweep gas

* Ba-substituted or La-doped SrFeO; can improve the system
performance

* Tox IS the key constraining variable to determine the optimal
operating conditions
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If you like this work... there is more Solar Thermochemical
Ammonia Production in SolarPACES 2020:

Substituted Strontium Ferrite Thermodynamics for Solar Air Separation
H. Evan Bush

A Low-pressure Reactor Design for Solar Thermochemical Ammonia Production
Xiang Gao

Modeling of Concentrating Solar Reduction Reactor for Oxygen Separation from Air
Matt Kury

Experimental Screening of Substituted SrFeO; ; for Solar Thermochemical Air Separation

Tyler Farr )
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