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Nonlinear Analysis is Critical to Designing Efficient Structures that can Survive
in Challenging Environments

• Understanding and taking advantage of nonlinear structural
behavior will be crucial in next generation designs.

• Structures with bolted joints exhibit drastic variations in stiffness
and energy dissipation.

• Nonlinear system identification techniques are required to
accurately characterize these effects.

• To reach high response amplitudes that sufficiently excite the
nonlinearity, the structure must be actively forced.

• Most nonlinear system ID techniques either cannot process forced
response, or are limited to specific types of forcing

• This work presents a general nonlinear system ID technique for
determining amplitude dependent natural frequency and damping
ratio curves for structures under arbitrary forcing.
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Theoretical Framework
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1 Fit c and k with a Variation of the RFS Method

• Suppose a nonlinear system can be represented with a typical EOM by taking c and k as functions of time.

m5e + c(t)± + k(t)x = f

• Convenient forms for c(t) and k(t) are general polynomials of time.

c(t) = co + c1t + ••• A k(t) = k0 + k1t + •••

• Substitute these into the EO and move the acceleration term to the right side.

(c0 + clt + •• • )5c + (k0 + klt + •••)x = f — m5e

• Put this into matrix form as below, where the responses and time are assumed to be column vectors.
-co -
c1

[)*c t5c ••• x tx • • .]
•••

k0
k1

= f — m51.



1 Fit c and k with a Variation of the RFS Method

• The polynomial coefficients are now determined in a least squares sense.
co

c1
• • •

ko
k1

[± tic • •• x tx • ••]\[f — m5e]

• The natural frequency and damping ratio may then be determined as:

co + cit + • • •
con(t) = Vko + iclt + • • • A W) = 20)n (0

• After determining the amplitude at each point in time, the time dependence can be swapped for the
associated amplitude dependence

c0n(t) —> con(A) A W) —> WO



Numerical Case Study
- SDOF Linear System
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Sine Beat Applied to the Linear Model and the Subsequent Response
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Frequency and Damping as Functions of Time and Amplitude for the Simulated
Linear System
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Numerical Case Study
- Modal lwan Model
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Sine Beat Applied to the lwan Model and the Subsequent Response
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1 Frequency and Damping as Functions of Time and Amplitude for the lwan
Model
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Frequency and Damping as Functions of Time and Amplitude for the lwan
Model

Frequency vs Time
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Experimental Demonstration
- Cylinder-Plate-Beam Structure

•N

9/22/2020



Cylinder-Plate-Beam Experimental Structure
•

9/22/2020 14



Fitting Experimental Modes
- I st CPB Mode: Beam Cantilever I
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Frequency and Damping as Functions of Time and Amplitude for the First
Elastic Mode of the CPB
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Frequency and Damping as Functions of Time and Amplitude for the First
Elastic Mode of the CPB at Various Forcing Amplitudes
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Fitting Experimental Modes
- 2nd CPB Mode: Beam Cantilever 2
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Frequency and Damping as Functions of Time and Amplitude for the Second
Elastic Mode of the CPB at Various Forcing Amplitudes
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Fitting Experimental Modes
- 3rd CPB Mode: Plate Drum
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Frequency and Damping as Functions of Time and Amplitude for the Third
Elastic Mode of the CPB at Various Forcing Amplitudes
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Conclusions

• A novel nonlinear system ID technique, RFS-V, has been mathematically described and demonstrated on several
numerical and experimental case studies.

• RFS-V produces natural frequency and damping ratio curves that are comparable to those from the
FORCEVIB method.
• RFS-V appears to be less susceptible to fitting end effects as FORCEVIB. This is likely due to FORCEVIB
being a function of first and second order derivatives of a spline fit, while RFS-V produces a solution
directly from the original polynomial fits.

• Since FORCEVIB is derived from the complex magnitude-phase space, it has independent equations for the
stiffness and damping parameters. RFS-V is based on real valued quantities, so it results in one equation with
two unknowns that is solved in a least squares sense.

• The numerical case studies show that RFS-V gives equivalent or better results when compared to FORCEVIB.

• The experimental case showed that RFS-V produced consistent backbone curves for frequency and damping.
• The difference in the result from raising vs falling amplitude is likely due to inaccuracies in the modal force
from errors in the modeshapes used to modal filter or calibration of the force sensor.

• While demonstrated on sine beats here, RFS-V could be utilized to identify structures under any forcing, as
long as it is accurately measured. This method could be particularly useful speeding up phase-quadrature testing
by estimating the quadrature point from a stable distance away.
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Extra Slides
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1 The Standard RFS Method

• In standard RFS, a response is assumed to fit the form below, where m, c and k are their respective linear values
and fNL is the nonlinear Restoring Force.

m.51. + ci + kx + fm, = f

• The nonlinear Restoring Force can be determined by bring the other terms on the left-hand side to the right.

fNL = f — mi — ci — kx

• A set of polynomials formed from the responses are then fit via least squares to the Restoring Force.

X 3[a 1 1
IL-1 [± 2 — fNL

• This yields terms to replace the Restoring Force in the EOM.

ink + ci + kx + ax3 + A.±2 = f



lwan Model Parameters

Table 1: Parameters used in the SDOF Modal Iwan. Model Numerical Case Study
Parameter Fs KT x ß Ko,

Value 400 [N] 25.27 [N/m] -.35 [-] 10 [-] 14.21 [Wm]
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I Previously had Trouble Implementing RFS
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Reorder Response with
Respect to Amplitude
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Equations for Directly Determining
the System Parameters c and k



I FORCEVIB Derivation

Y(t) + 2h0 (A) . 7 (t) + 0)6(A)Y (t) = X (t) 1 m

• Y (t) = A(t)eilP(t) -[ Determined with
• )7(t) = (4(t) + ico(t)A(t)) eilP(t) Hilbert Transform I

• ?(t) = (A(t) — (.0(02 A(t) + 2ico(t)À(t) + ith(t)A(t)) eilP(t)

• -
Y 
= e

to
A

• ). 7 = (-A + ico) Y



FORCEVIB Derivation I

i

• ? + 2h01.7 + (La = X/m

• 04 — (o2 + i2a)1,41 + ith) Y + 2ho (114 + ico) Y + (a = X/m

A A A 1 X X _
a (t) + i 1g ( t )•71 — (.02 + i2(.0 71+ ith + 2ho (71+ iCO) + CO0

2 _ 
— 77,,,

Y -

• Split into Real and Imaginary Parts and Solve for Stiffness and Damping

• (12.171 — (.02 + 2h 104 + (06) + i (2(.0 114 + (;) + 2h0(0 1 ) = (a(t) + iie (t))
m

• 0)6 (t) = 
0)2 
+ 

a(t) 16)(0A A
+ 

2/42 
+ 

Aa)

m Acorn A A2 Aco

• ho(t) = 16 A 
a)

2com A 2a)



1 Differential Eqs. for Amplitude and Phase

•m.k+c.i+kx=f

•m0 + 62)e9 + cÒ e9 + ke9

• t'j = -62 - k + f

m mx

•b + iei = —(b2 — 6.2 + 2ietb)

= f

c (b +id) k
+

m m mx

• Split into Real and Imaginary Parts

• h = a• 2 _ b2

• ii = —2etb —

c
m

c
m

b — k

m
+ 2

1 frxr+fi 
2

xi 4_1 Amplitude
m X +Xir 

a -1--
, 1 fixr-frxi

m xr +xi2
. I Phase \

• x = ee(t)

• ± = 6e,e(t)

• x, = (e + 6,2)ee(t)

• Kt) = b(t) + ia(t)
• 6 (t) = b(t) + ia(t)
• e(t) = El(t) + id(t)

• x = eKt) = xr. + ixi
• f = ea(t) = fr + ifi

• Re L =
frxr+ f ixi 

()
X X

2 -Ex •2r t

• Im (L) = f ixr-frxi
2 -FX •X Xr I

2



1 Equations for c and k

ä = —2611 c + 1 f ixr— frxi
• 2 2m m -F,X •r

• = —2b ti. + 1 f ixr— frxi
m Tt ma 4+4

4-1 Damping

• c12 b 
• 
2 

k 1 frxr+ f ixi
2 2m M. M. X' -F,X •r

k .
• — — a
m

bZ—b 2b 
1 f ocr— fr./ •
— b + 

1 frxr+ f ixi

et met x;-. m Xr2

f ixr— frxi , 1 frxr+ f ixi
• IL — 6,2 + b2 + 2 2 

Stiffness
m a met x2 +xt-r m xr+xi



1
• _ —
2m 2met )4+4

)6' (t) A (i)
• hp =

aum A au

C 1 f ixr— frxi

. —k = a2
m

• WO (t
)

+
m xr2 +xj2

b

FORCEVIB = Mine

a

2 et

1 frxr+fixi b f bxr— fr. x i 
et 2 +.7c•m xr i

2

2 a (t) /3 (t)ii
(.0 +

m Atom

frxr+ f ixt
2 + .9c •2  = a (t) ,.9cr t

a = co ; a = C.0

f ixr— frxi

Xr
2 +.9c •t

2 = R(t)

ii2
b = ln(A) • , b = 

A
A- • , b = 1214.1 — A2

Es + b2 + i i
a

A 2112 ila)
— + — +
A A2 Aco


