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Nonlinear Analysis is Critical to Designing Efficient Structures that can Survive
in Challenging Environments

* Understanding and taking advantage of nonlinear structural
behavior will be crucial in next generation designs.

e Structures with bolted joints exhibit drastic variations in stiffness
and energy dissipation.

* Nonlinear system identification techniques are required to
accurately characterize these effects.

* To reach high response amplitudes that sufficiently excite the
nonlinearity, the structure must be actively forced.

* Most nonlinear system ID techniques either cannot process forced
response, or are limited to specific types of forcing

* This work presents a general nonlinear system ID technique for
determining amplitude dependent natural frequency and damping
ratio curves for structures under arbitrary forcing,
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Theoretical Framework
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* Suppose a nonlinear system can be represented with a typical EOM by taking ¢ and k as functions of time.

mi+ct)x+k()x=f

* Convenient forms for c(t) and k(t) are general polynomials of time.

Fit ¢ and k with a Variation of the RFS Method DI
I
c®)=co+cit+- A k() =ky+kit+- |

* Substitute these into the EOM and move the acceleration term to the right side.

(co + cit + )k + (kg + kit + - )x = f — m&k

* Put this into matrix form as below, where the responses and time are assumed to be column vectors.

x tx - x tx -] ko = f —m¥ I




Fit ¢ and k with a Variation of the RFS Method

* The polynomial coefficients are now determined in a least squares sense.

K =|x tx - x tx --\|f—m¥i]
0

* The natural frequency and damping ratio may then be determined as:

wp(t) = \/ko +hkit+- A (@)= Co ;—(jlzt;_

* After determining the amplitude at each point in time, the time dependence can be swapped for the
associated amplitude dependence

wn(t) = wn(4d) A () > J(4)
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Numerical Case Study
- SDOF Linear System
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Sine Beat Applied to the Linear Model and the Subsequent Response
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Frequency and Damping as Functions of Time and Amplitude for the Simulated
Linear System

1.4 Frequency vs Time Damping vs Time
A Y T —
= (v ] Hilbert = 0 —
. \ ——RFS-V 2 5 el
> L\ S = T
g 1.2 “‘ m ",,/
S 5 £ -40 !
o Y g 4
D \Q o l'
A= 1 \a\ P Ll E "
L. Rl LT ammm———" 8 '60 //
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time [s] Time [s]
12 Frequency vs Amplitude Damping vs Amplitude
N N = 0
T . AL kel
g T & -20
3 B o
— e — =
g T T 2 40
b T S
0.9 AR i H P T H i 0_60 i PR S H i P i i PR
1073 1072 1071 10° 1073 1072 107 10°
Velocity Amplitude [m/s] Velocity Amplitude [m/s]

9/22/2020




Numerical Case Study
- Modal Iwan Model
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Sine Beat Applied to the Iwan Model and the Subsequent Response
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Model

Frequency vs Time Damping vs Time

Frequency and Damping as Functions of Time and Amplitude for the Iwan D:
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Frequency and Damping as Functions of Time and Amplitude for the Iwan
Model
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Experimental Demonstration
- Cylinder-Plate-Beam Structure
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Beam Experimental Structure
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Fitting Experimental Modes
- It CPB Mode: Beam Cantilever |
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Frequency and Damping as Functions of Time and Amplitude for the First
Elastic Mode of the CPB
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Frequency and Damping as Functions of Time and Amplitude for the First
Elastic Mode of the CPB at Various Forcing Amplitudes
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Fitting Experimental Modes
- 2" CPB Mode: Beam Cantilever 2
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Frequency and Damping as Functions of Time and Amplitude for the Second
Elastic Mode of the CPB at Various Forcing Amplitudes
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Fitting Experimental Modes
- 379 CPB Mode: Plate Drum
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Frequency and Damping as Functions of Time and Amplitude for the Third
Elastic Mode of the CPB at Various Forcing Amplitudes
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Conclusions

=N

* A novel nonlinear system ID technique, RFS-V, has been mathematically described and demonstrated on several
numerical and experimental case studies. ‘

* RFS-V produces natural frequency and damping ratio curves that are comparable to those from the
FORCEVIB method.

* RFS-V appears to be less susceptible to fitting end effects as FORCEVIB. This is likely due to FORCEVIB
being a function of first and second order dertvatives of a spline fit, while RFS-V produces a solution
directly from the original polynomial fits.

* Since FORCEVIB is derived from the complex magnitude-phase space, it has independent equations for the
stiffness and damping parameters. RFS-V is based on real valued quantities, so it results in one equation with
two unknowns that is solved in a least squares sense.

* The numerical case studies show that REFS-V gives equivalent or better results when compared to FORCEVIB.

* The experimental case showed that RFS-V produced consistent backbone curves for frequency and damping,

* The difference in the result from raising vs falling amplitude is likely due to inaccuracies in the modal force
from errors in the modeshapes used to modal filter or calibration of the force sensor. I

* While demonstrated on sine beats here, RFS-V could be utilized to identify structures under any forcing, as
long as it is accurately measured. This method could be particularly useful speeding up phase-quadrature testing
by estimating the quadrature point from a stable distance away:.
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and fy is the nonlinear Restoring Force.

mx+cx+kx+fy,=f

* The nonlinear Restoring Force can be determined by bring the other terms on the left-hand side to the right.

The Standard RFS Method DI
* In standard RFS, a response is assumed to fit the form below, where m, ¢ and k are their respective linear values |
fnp=f —mx —cx —kx |

* A set of polynomials formed from the responses are then fit via least squares to the Restoring Force.
3
X
[O- A] o = f NL
X

* This yields terms to replace the Restoring Force in the EOM.

mi+cx+kx+ox3+Ax2=f
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Table 1: Parameters used in the SDOF Modal Iwan Model Numerical Case Study

Iwan Model Parameters

Parameter

Fy

Kr

X

B

Ko

Value

400 [N]

25.27 [N/m]

-35[]

10 [-]

14.21 [N/m]
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Previously had Trouble Implementing RFS

* Used RFS to form models of nonlinear CPB
modal response

* Gauged accuracy by simulating response and
comparing freq and damping curves to those
from the exp data

* RES process did not produce an accurate
model and seemed too open-ended to be reliable
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Reorder Response with
Respect to Amplitude




Sort by Response Amplitude
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Sort by Response Amplitude
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Equations for Directly Determining
the System Parameters ¢ and k




FORCEVIB Derivation

Y (t) + 2hy (DY (t) + w3 (A)Y () = X(t)/m

* Y() = A(t)eup(t) ) Determined with
« Y(t) = (A(t) + ia)(t)A(t)) Y (t) Hilbert Transform

. V(b)) = (A‘(t) — w(t)2A(L) + 2iw(DA(L) + ia')(t)A(t)) eW(®)

l

Yo eiv

A

Y=(§+iw)y
Y=(§—w2+2iw§+im)y




‘ FORCEVIB Derivation

Y + 2hY + w3Y = X/m

((B-0? + 205 +i0)Y + 2hg (5 +iw) Y + wdY = X/m

A2t iwd s i A i)+ w2 o L X
T w +12a)A+la)+2h0(A+la))+a)0— . 2= () + iB(E)

mY 'Y_

*Split into Real and Imaginary Parts and Solve for Stiffness and Damping

(%— w? + 2h0§+ wg) +i(2a)§+ W + Zhow) = %(a(t) +iB (1))

a(t) LA A 242 Ao
— —_ _I_ _2 + _
m Aom A A Aw

c wi(t) = w? +

chy(t) = LD _A_

2wm A 2w




Differential Egs. for Amplitude and Phase

‘mX+cx+kx=f

m(0 +02)e® +ce® + ke = f \
-6 = —6? ——9——+L
m

f

°l5+iéi=—(l§2 a +21ab)——(b+1a)——+mx

x = e?®

x = 0ef®

i=(0+ 92)69“)
e 9(t) =b(t)+ia(t)
e 9(t) = b(t) +ia(t)
e O(t) =b(t) +id(t)

*Split into Real and Imaginary Parts

."_-2_'2_&'__’{_ 1 frxrt+fiXi
b=a“—>b mb - + w2l <—| Amplitude I
i =—2ab —|Sla + ~ 120 | Phase |
m m  xZ+x? !

x=e%0 =x_ +ix;
f =(eff’)“> =y + i
e Re rXr+ lxl

xZ+x?
- m(7) =

fixr—frxi
2 2




Cc
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Equations for ¢ and k

1 fiXy—frXi
m  xZ+x?

—2ab——a+
m

Damping

Zb_%_l_ 1 fixXr—frXi

ma x2+x?




FORCEVIB = Mine , I

.. 1 fixr_frxi_b_i - —
2m  2ma  xZ+x? 24 rXrv)i%i A e
Xy TX§ a X2 tx? a(t) ; X2 +x? B(t)
t A : ..
-hO:&———— a=w ; ad=w
2wm A 2W
. A e A &
b=ln(A) y b=z y b=z—ﬁ
k : 1 frxpr+fix; b fixr—frx; 3 . 1 . b
Lo gz I D Tt oy p2 g2 [
m m  X;+x; am  x7+x; a
a(t) (A A  24° Aw
cwi(t) = w2+ L2 _E —= 4+ ==+ = |
m Awm A A Aw



