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The Mechanisms of Ductile Fracture

The relationship between stress state and
'cductilitv7s of ductile fracture assume that ductility depends on stress state.
The two rupture mechanisms that are generally considered are void nucleation,
growth, and coalescence (for tensile-dominated loading), and shear-localization
and void coalescence (for shear-dominated loading). Current constitutive models
have thus focused on predicting the competition between these mechanisms
based on the stress state and the material's strain-hardening capacity. However,
there is now strong evidence that stress-state alone does not determine a
material's ductility.-------,
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Hypothesis
Departing from nearly all prior studies of ductile fracture, in the present study we
propose that:
1. As many as seven different mechanisms can control fracture, and that
2. These mechanisms are not necessarily independent or exclusive, but can work

in sequence during the rupture process.

A postulated taxonomy of failure mechanisms
(a) lntervoid necking

Stress triaxiality > 1/3

Void nucleation Growth Coalescence

(b) Intervoid shearing

Stress triaxiality < 1/3
Localization on single plane

Flow Void
localitzation nucleation Coalescence

(e) Necking to a point (f) Catastophic shear

Stress Triaxiality < 1/3
Localization on single planeStress triaxiality > 1/3

Neck
formation

Flow
localization

localization

(c) Void sheeting

Stress triaxiality < 1/3
Localization on multiple planes
Flow Void nucleation

and coalescence

(d) Orowan mechanism

Stress triaxiality < 1/3
Localization on multiple planes

Flow Void
localization nucleation Growth

(g) Catastrophic shear

Stress triaxiality < 1/3
Localization on muiltiple planes

Flow
localization

Secondary flow
localization

At least seven
different failure
mechanisms have
been observed in
different materials.
However, all but
intervoid necking and
intervoid shearing
have largely been
ignored. Thus, there is
no understanding of:
1. How these

mechanisms
interact with one
another, and

12. The
microstructural
l'matures and
selection
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Methods: interrupted tensile tests of three
high-purity FCC metals
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The fracture process was examined in high-
purity aluminum (Al), copper (Cu), and nickel
(Ni)
Damage accumulation was characterized by
interrupting tensile tests of different
specimens of each material at predetermined
percentages of the UTS. Specimens were
subsequently ground and polished to the
midplane to characterize the progression ot
damage

Aluminum: mechanism depends on grain size
Polycrystalline Al Oligocrystalline Al

Polycrystalline Al failed by
intervoid necking while
Oligocrystalline Al failed by
necking ot a point. The
fracture mechanism in Al
depended on grain size.

Copper and Nickel: a series of mechanisms worked together in a stepwise manner to cause
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1g vs. Void
eiffriecence nucleation limited
iiniervaid shearing) or growth limited
(void shearing)? This competition is
controlled by the material's strain
hardegim capacity

(15-
1) = v At,
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V k: void volume fraction
rn, A: strain-hardening constants

von Mises stress 
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Conclusions
• We generally think of fracture as being controlled by exclusively one mechanism and that the

dominant mechanism depends on the stress state. The reality is that fracture is more of a relay
race. Multiple mechanisms can combine in a stepwise manner to cause failure.

• The competition between these mechanisms depends on the distribution of void nucleation sites
and the material's strain-hardening capacity

• Accurate fracture predictions must capture the complex interplay between different
fracture mechanisms, material properties, and the microstructure.
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