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The Mechanisms of Ductile Fracture
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Cdldﬂtﬁl:lctys of ductile fracture assume that ductility depends on stress state. h g h-pu rlty FCC metals
The two rupture mechanisms that are generally considered are void nucleation, 650 e g _ . a
growth, and coalescence (for tensile-dominated loading), and shear-localization I — Polycrystalline Al failed by
and void coalescence (for shear-dominated loading). Current constitutive models ssof- - ~ intervoid necking while
have thus focused on predicting the competition between these mechanisms sool The fracture process was examined in high- Oligocrystalline Al failed by
based on the stress state and the material’s strain-hardening capacity. However, 5ol purity aluminum (Al), copper (Cu), and nickel necking ot a point. The
 there is now strong evidence that stress-state alone does not determine a T - (Ni) fracture mechanism in Al
material’s ductility. ol e Damage accumulation was characterized by  depended on grain size.
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Departing from nearly all prior studies of ductile fracture, in the present study we g,_
propose that: Q
1. As many as seven different mechanisms can control fracture, and that &
o
2. These mechanisms are not necessarily independent or exclusive, but can work
In sequence during the rupture process. y
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g 1 2 The s Vol osecene controlled by the material’s strain race. Multiple mechanisms can combine in a stepwise manner to cause failure.
; - 20,1 nieke hardening capacity 1 e s : trig i ' - -
: microstructural S0 N L eitinck D etal Aot The Competltlgn,betwgen these _mechanls_ms depends on the distribution of void nucleation sites
2 \_ fotiras and || oy — m M\ = =VNy  Mewallurgica (1988) and the material’s strain-hardening capacity
¢ SeISClOn von Mises Stress (5 VNy: void volume fraction « Accurate fracture predictions must capture the complex interplay between different
| 2 R T T S fracture mechanisms, material properties, and the microstructure.
\ j 9 0. von Mises stress ) \\ v
P ENERGY  12:hoion, engneering solions of Sandia, Lio. 2 whly awned acbsicram of Honepwell Sandia
PR P International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration Natlonal
WF% g;ﬁeDr lSl(())r'wtract DE-NA0003525. I-aborato'ies




