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1. What Controls the Strength of Metastable Grain Boundaries?

Monte Carlo grain-boundary optimization algorithmll.
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* We performed MD simulations on 74 of the data to obtain the distribution of strength.

« We generated 30,000 metastable grain boundaries for the ), 5 and ), 9 tilt grain-boundary configuration using a computationally-efficient,
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Problem: The local atomic structure and chemistry of grain boundaries control the
tensile strength of silicon carbide components (SiC). However, predictions for the
properties of SIC grain boundaries are currently limited to their ground state
configurations despite the fact that recent studies!!l have shown that a significant
number of grain boundaries are not in the ground state.
Agproach
High-throughput atomistic simulations to create a large set of metastable
grain boundary structures and to calculate the grain boundary tensile strength
strength.
 Used 16 descriptors to describe local atomic structure and chemistry of each
grain boundary.
 Used boosted-regression trees (BRT) to predict the metastable grain-boundary
strength as a function of these descriptors.
Results:
* Rapid prediction of grain boundary tensile strength.
 BRT-based surrogate model accurately predict the tensile strength without the
need to perform any molecular dynamics (MD) simulations .
- Efficient identification of strong and weak grain boundaries using a low-
dimensional representation of the grain boundary structure.
* Determination of the features that control the strength of grain boundaries:
* The tensile strength of a generic metastable SiC grain boundary is primarily
dominated by the excess free volume and the amount of C-C bonds.
 The 5% strongest metastable grain boundaries have high amounts of C-C
bonds, low Excess Free Volume and are insensitive to the type of local

structure.
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2. Low-dimensional Representation of the Local
Atomic Environment of Metastable Structures

« We coupled the SOAP descriptor?l with PCA to identify
weak and strong metastable grain boundaries without
performing MD simulations.
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-+ Symbol Description (unit)

Table of Mean Absolute Percent Errors

CSL | Training Error | Average 5-fold Cross | Testing Error
(%) Validation Error (%)
(%)
y5 4.25 5.19 5.12
Y9 1.73 9.72 9.03
List of Symbols

Grain-boundary energy (J/m?)

Grain-boundary excess free volume (Ag)

Carbon-carbon bound density (1/A?)

Silicon-silicon bound density (1/A?)

Percentage of C—C to Si—5Si bond ratio

Cubic diamond structure (1/A?)

An atom being a first neighbor of an atom that was classified as cubic diamond.
Its four neighbors are positioned on lattice sites, but at least one of its second
nearest neighbors is not. (1/A?)

An atom being a second nearest neighbor of an atom that was classified as
cubic diamond. The atom itself is positioned on a lattice site, but at least one
of its neighbors is missing or is not positioned on a lattice site. (1/A?)
Hexagonal diamond structure (1/A?)

Graphene (1 /A?)

Simple cubic (1/A?)

Undefined structure (z.e. not diamond structure as identified by the diamond-

* The model was trained on 80% of the data and validated on the remaining 20%.
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