
1
SAND2020-9600PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

LDMS Monitoring of EDR InfiniB and Networks

Benjamin A. Allan1, Michael Aguilarl, Benjamin Schwallerl, Steven Langer2,
Sandia National Laboratories1 — Lawrence Livermore National Laboratory2

Albuquerque, New Mexicol — Livermore, California2
baallan mj aguil bschwal @ sandia.gov1 — langer 1 @ llnl.gov2

We introduce a new HPC system high-speed network fab-
ric production monitoring tool, the ibnet sampler plugin for
LDMS version 4. Large-scale testing of this tool is our work
in progress.When deployed appropriately, the ibnet sampler
plugin can provide extensive counter data, at frequencies up
to 1 Hz. This allows the LDMS monitoring system to be useful
for tracking the impact of new network features on production
systems. We present preliminary results concerning reliability,
performance impact, and usability of the sampler.
Index Terms—monitoring; high performance computing, net-

works, file servers

I. INTRODUCTION

Being able to measure and understand how an internal
high-speed network fabric (HSN) is behaving has potential
benefits in improved cluster performance. It can become clear
to system stakeholders when networks are suffering from
abnormally high levels of traffic congestion, when a network
is suffering from uneven and highly localized traffic, and how
well user programs are taking advantage of available hardware
resources such as hardware collective MPI acceleration.
To provide these insights, we have been working toward

comprehensive, high frequency (1 Hz) collection and analysis
of HPC system metrics and application metrics, including HSN
traffic metrics from InfiniBand and OmniPath Management
Datagram MAD) packets [1].
As in previous versions of our network fabric monitoring

tools, we continue to utilize the RDMA stack tools Man-
agement Datagram packets (MAD) and User Management
Datagram packets (UMAD). MAD packets are now able to
provide metric information per Quality of Service service
level, adaptive routing, and congestion information. We seek
to provide system administrators and users with insights into
systems and applications using these switch features.
LDMS monitoring samplers and monitoring daemons are

required to be low overhead and integrate well into the overall
HPC support ecosystem. The MAD calls allow us to maintain

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energys National Nuclear Security Administration under
contract DE-NA0003525.
SAND No. INPUT SAND NUMBER HERE.
This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344.

978-1-7281-6677-3/20/$31.00 copyright 2020 IEEE

visibility into individual switch port and node performance
even where the nodes and switches do not have an ldmsd
daemon running. Other network tools typically sweep an
entire network for information from a single server and only
complete this operation over an interval of several seconds to
minutes.
To extend our current monitoring ecosystem capabilities,

we are developing a distributed tool, the ibnet LDMS sampler,
which can sweep multiple interconnected InfiniBand networks,
when appropriately deployed, at 1 Hz and provide global HSN
metrics. This tool is an extension of our work [2], [3] to
support a wider range of metrics, to lower the administrative
burden of configuring the samplers on complex networks, and
to update our previous recommendations derived for QDR
InfiniB and .

II. APPROACH

We seek to gather synchronous data at a high enough
frequency (1-10 Hz) that we can point to specific network
hardware events and match them with application and file
system events. Our new sampling tool is intended to enable
us to analyze the impact of new hardware features such
as quality-of-service (QoS), adaptive routing (AR), and the
frame relay metrics forward and backward explicit congestion
notification. To this end, we have created the ibnet sampler
and administrative aids to simplify deployment. We are testing
the sampler with applications and benchmarks on a medium
scale system.

A. A new LDMS sampler

Our previous opa2 (OmniPath) sampler and fabric (In-
finiBand) samplers made single MAD calls per sample to
individual components within a fabric.
We designed the new ibnet sampler to:

• Take samples following an administrator-supplied list of
assigned LIDs and ports.

• Create one LDMS metric set per sampled port.
• Label the resulting data with host and interface names

following an administrator-supplied list.
• Provide (optionally) any of the per-port data sets available

via the perfquery utility.
• Provide (optionally) the time taken to collect data about

each port and to decode the data about each port.
• Provide (optionally) the total time taken to sweep all the

assigned ports.

The new ibnet sampler can be obtained from the current OVIS-
4 release of LDMS on github [4].

B. Administrative usability aids

To balance ibnet MAD call work loads among the data
gathering nodes, the list of ports must be divided following
(as much as possible) the guidelines suggested in our previous
work [3] without substantial time-consuming work by an
administrator. We created the program ldms-gen-lidfile.sh to
generate a sampler configuration file for a single sampling
node gathering data from the entire network at low frequen-
cies. For high sampling frequencies, we created the ldms-ibnet-
sampler-gen program to heuristically assign subsets of ports
in a three level fat tree to members of a user-specified list of
sampling nodes. The heuristics applied are:

1) All data from any single switch is handled serially
by a single sampler instance, thus avoiding contention
induced by multiple samplers for any embedded switch
processor.

2) The switch(es) and adapters directly attached to a sam-
pler's host are assigned to that sampler instance.

3) The switches in higher tiers of the fabric are assigned
round-robin fashion among the least-loaded sampler
instances.

4) The switches not yet assigned are distributed round-
robin to the least-loaded sampler instances.

5) The adapters not yet assigned are assigned to the sampler
instance which also gathers from the switch to which the
adapter is attached.

6) When computing the hierarchical relationships among
switches, links connected to SHArP ports are ignored.

These heuristics attempt to minimize the number of network
hops needed to gather the data. Both programs consume
the output of ibnetdiscover -p. Administrators may choose
to give the same configuration to two samplers, providing
controlled redundant data collection in the event of single node
failure. The other information needed to configure the sampler
is a node name map, a text file linking host and interface
names to InfiniBand GUIDs. This mapping file already exists
somewhere in most InfiniB and deployments.

C. Benchmark software and hardware features

We are updating our previous work on sampling large-scale
InfiniBand networks. We seek to quantify the impact of Adap-
tive Routing, QoS, and hardware collectives using SHArP. We
have added PF3D, HPL, ember, and IOR benchmarks. PF3D
is a laser beam-plasma interaction simulation code. For the
tests reported here, PF3D is configured to maximize inter-
node message passing during its computational phase, thus
increasing the chance of network resource competition among
simultaneous runs making checkpoints or computations. The
ember incast benchmark [5] tests the fabric's handling of high-
volume many-to-one communications.

D. Benchmark system Stria

Our tests use Stria, a production 288 node ARM64 cluster
with 1005 active ports that is a small version of the 2.3
petaflop Astra supercomputer [6]. The Stria cluster InfiniBand
network design is a that of an Up/Down fat tree. The compute
node rack switches are connected to six core switches through
a 2x over-subscribed design while the I0 server switches
are connected through a full fat tree. Each compute node
is designed with a Socket Direct configuration so that each
socket can communicate directly to the InfiniBand network
through the PCI bus. The Lustre 2.12 file system consists of
two metadata servers and four object storage servers. Each
server has an InfiniBand link to two separate switches. This
Lustre instance is not shared with other clusters.

III. PRELIMINARY RESULTS

We monitored the Stria cluster network at 0.2 Hz during
four days of production using a single compute node as the
ibnet sampler host, and at one Hz during a non-production
testing time using four or twelve reserved compute nodes (one
or three per rack) as the sampler hosts. The production work
load cannot be documented here, but includes many jobs that
regularly stress the Lustre storage system. We planned the
testing time to establish preliminary wall-time benchmarks
of the impact of advanced network features and LDMS on
a compute-heavy and check-point heavy application, PF3D,
and on micro-benchmarks, ember, IOR and HPL.

A. Production days

During the four production days, we saw data points missed
from the 0.2 Hz data only when nodes were down or during
short periods when a job was accidentally scheduled on the
sampling node. We timed the period to sweep the ports (which
includes failed query time for down nodes). We conclude our
sampler collects at reliable time cost based on Table I.

statistic Sweep MAD decode Total(seconds)
minimum 1.10 0.02 1.11
average 1.20 0.02 1.22
maximum 1.75 0.02 1.77
std. dev. 0.072 0.0004 0.072

TABLE I
DURATION OF 64230 SAMPLING OPERATIONS USING ONE INSTANCE.

B. Testing time

During our dedicated testing time, we ran various work load
combinations to discover what we can see in the collected data
and to gather data for planning future repetitive experiments
to establish statistical significance of overhead measurements.
1) PF3D: We submitted four PF3D jobs at approximately

the same time to an otherwise unoccupied system. The sim-
ulations were the same model with weak scaling applied to
consume 8, 16, 32, or 128 nodes. They started within two
minutes of each other. To eliminate any other possible effects
of the four LDMS daemons used to sweep the fabric, the ldmsd
service was not running on the any other nodes; thus we have

no contemporaneous data from LDMS lustre client or server
samplers. The three smaller jobs are configured to be check-
point heavy, and the large job is configured to be compute
heavy with some check pointing.

Figure 1 shows the total network bandwidth used by MPI
and file output, as measured from the job node adapter ports.
Figure 2 shows the write bandwidth achieved per core and the
time of the writes. Figures 1 and 2 show the write rates for
8, 16, and 32 node jobs are heavily depressed in the window
of 15-20 minutes due to the check-point of the 128 node job,
but interestingly Figure 3 does not show very high average
bandwidth in use for the same time span. Figure 3 shows
the rates of data flowing into Lustre object store nodes, as
measured from the switch ports attached to these nodes.

80

70

60

50

40

30

20

10

N=8

Bytes Sent to Network

MPH-FS

5.00 10.00 15.00 20.00 25.00 30.00

nlinutes

N=16 N=32

35.00

N=128 n=tot

Fig. 1. Data injection rates summed by job with data binned to 10 second
intervals. The top line is total injection rate.

Port query time: To support estimates of the time to com-
plete a sweep of many nodes on a loaded EDR network, we
collected the duration of the queries per port, where each query
is composed of eight MAD calls for the subsets "extended,
xmtdisc, rcverr, flowcticounters, vlxmitcounters, xmitcc, sm-
plctl". Figure 4 shows the frequency of wall-clock duration
for the combined query. The tail of the graph contains two
data points at 0.0044, but the average query is approximately
0.0004 seconds per port.
2) Port sweep time and ember: The ember incast bench-

mark provides a heavy many-to-one network load that is
not throttled by storage system limitations. We configured
a 64 node job with all cores in use so half the messages
must traverse the entire switch hierarchy and so congestion is
expected. We configured twelve ldmsd samplers (three nodes
per rack, two or less switches per sampler) for 1 Hz sampling,
to verify we can collect reliably under load. The distribution
of sweep times is shown in Figure 5. The compound MAD
query used in this test is the subsets extended, xmtdisc, rcverr,
vlxmitcounters. The benchmark is execution time is four hours

40

30

20

10

G B/s total
_iili lii I

l
5 10 15 20

time(min)

I
25 30

Fig. 2. Per-job write rates and intervals recorded by PF3D, colored by job
node count (blue: 8, green: 16, cyan: 32), where each node hosts 56 MPI
processes.

ill1111111111ill
1560 1645 1560

1,1
245 01 245 02 06 245 07 — 415.01 — 415.02 — 415.06 — 415.0]

Fig. 3. Check-point data flows into Lustre, binned to 10 second intervals and
colored by associated switch port. Total bar height is average total bandwidth
for each bin.

in a seven hour measurement window; all the high outliers
occurred while the benchmark is running.

3) HPL and IOR: We seek to show not only useful data
but also that sampling does not contribute significant network
overhead. We gathered data about the effects of enabling
fabric sampling with the ibnet sampler during overlapping
HPL benchmarks and IOR benchmarks using Lustre. Table II
results suggest there is no obvious degradation due to LDMS
sampling, though many further experiments are needed to
provide statistical significance.

LDMS (0.2 Hz)
on

no

HPL
GFLOPS

734.1

IOR xfer
read MB/s

47313

IOR xfer
write MB/s

50658

yes 733.7 47272 52663

TABLE II
HPL AND IOR SIMULTANEOUS RUNS.

90000

80000

70000

60000

50000

40000

30000

20000

1_0000

0

Counts of port query time

co Ll nt

0 0.001 0.002 0.003 0.004 0.005

seconds

Fig. 4. 182,000 compound MAD queries in bins of width 0.00005 seconds

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

Histogram of port sweep time

count

0 0.2 0_4-

seconds

Fig. 5. 289642 port sweep durations in bins of width 0.01 second

IV. LESSONS LEARNED

Network data collection appears easier than it is. Here we
share a few of our early lessons learned.

1) To achieve 1 Hz data on EDR equipment, limit a single
sampler to querying no more than 150 ports.

2) Store data with human decodable identifiers, not just
LID and port designation, to aid downstream user inter-
face operations.

3) When making a sequence of MAD calls to gather data
about a single port and the first of them fails, skip
the rest. Also limit the pma_query_via timeout to 5
milliseconds. The total of the timeouts can stretch the
gathering time beyond the sampling interval.

4) Do not run the ibnet sampler on a node with heavy core
usage. This may stretch the time to gather sampled port
information beyond the length of the desired sampling
interval. Conversely, an ibnet sampler handling many
ports may interfere with an application on the same node
unless the processes are restricted to separate cores.

V. RELATED WORK

Metric gathering from high-speed network and correlation
to running jobs is widely studied. However, none of the latest
approaches is suitable to HPC centers such as ours, since we
want a non-proprietary source of data at high frequency and

sample times correlated with other data being gathered. Cald-
well [7] recognized the scalability issues of fabric monitoring
and developed a distributed collection solution with awareness
of switch locality using the perfquery utility. The balanced-
perfquery source code [8] based on OFED 3 has not been
updated since 2015.

Currently, the INAM project of MVAPICH2 is remotely
targeting compute node and switch ports and correlating events
with MPI traffic and I0 [9]. The INAM project is targeted
to the InfiniBand fabric and GPUs. Unlike previous versions
of INAM, information outside of a current MPI run can be
gathered, as well. This is important because outside traffic
congestion and events can contribute to a specific MPI batch
job computational performance. Unfortunately, it appears that
the metrics gathered only consists of the overall traffic perfor-
mance data and not of traffic at different Service Levels. The
MVAPICH-based approach is both intrusive and unfeasible
in our constrained HPC environment, but may provide much
more detailed data about applications by default.
At Los Alamos National Laboratory, changes have been

made to their existing HSNMON monitoring suite to provide
daemons to gather metrics on network performance and traffic.
[10], [11] However, their current design requires access to
underlying layers of vendor provided programs that make
MAD calls at lower levels of the software stack.

In previous work performed at Sandia, LDMS InfiniBand
fabric samplers were designed for older generations of Infini-
Band . While LDMS gathered switch port metrics efficiently
on large systems, metrics related to QoS and other recent
developments were not collected, being unavailable on the
fabric [1].

VI. CONCLUSIONS AND FUTURE WORK

We have shown that 1 Hz sampling of all the port counters
in an EDR fabric is technically possible with LDMS. We have
shown and published tools to make configuring such collection
administratively practical. We have evidence, not yet complete,
that there is no significant interference in either direction
between applications and the appropriately configured ibnet
sampler. We have demonstrated that the sampler allows us to
form basic insights into the work loads on various network
regions even when we have no access to load source or load
sink operating systems and application codes.

Our next steps include:

1) Scaling the work to clusters of approximately 2000
nodes.

2) Thorough quantification of the impact of ibnet sampling
on CPU intensive and latency sensitive workloads in the
same network.

3) To enable 10 Hz sampling, thorough quantification of
the impact of ibnet sampling with no more than 72 ports
sampled per instance when sharing a node with a CPU
intensive or latency sensitive workload.

4) Validation of more MAD metric subsets, when we
upgrade to a subnet manager that enables them.

REFERENCES

[1] A. Agelastos, B. Allan, J Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, and T. Tucker, "Lightweight Distributed Metric
Service: A Scalable Infrastructure for Continuous Monitoring of Large
Scale Computing Systems and Applications," in Proc. Inel Conf for
High Performance Storage, Networking, and Analysis (SC), 2014.

[2] M. Aguilar, J. Brandt, B. Allan, and D. Pase,
"Host Based Infiniband Network Monitoring Performance?'
OpenFabrics Workshop 2017, 2017, OpenFabrics Workshop.
[Online]. Available: https://www.openfabrics.org/images/eventpresos/
2017presentations/306 _InfiniBandMonitoring \ _MAguilar.pdf

[3] M. Aguilar, B. A. Allan, and S. Polevitzky, "Measuring minimum
switch port metric retrieval time and impact for multi-layer infiniband
fabrics?' in 2017 IEEE International Conference on Cluster Computing
(CLUSTER), 2017, pp. 805-808.

[4] (2020) Ovis version 4 source code. [Online]. Available: https:
//github.comlovis-hpc/ovis/tree/OVIS-4

[5] (2020) READEME.mpi.incast. [Online]. Available: https://github.com/
sstsimulator/ember/blob/master/README.MPI.incast

[6] M. Aguilar, K. Pedretti, S. Hammond, J. Laros, and
A. Younge, "Evaluation of Hardware-Based MPI Acceleration on
Astra." OpenFabrics Workshop 2017, 2019. [Online]. Available:
https://www.openfabrics.org/wp-content/uploads/104 \ _MAguilar.pdf

[7] B. Caldwell. (2015) Scripts for InfiniBand Monitor-
ing. [Online]. Available: https://downloads.openfabrics.org/ofv/tools/
Infinibandmonitoringtools.pdf

[8] (2015) balanced_perfquery repository. [Online]. Available: https:
//github.comlbacaldwell/balanced-perfquery

[9] H. Subramoni, P. Kousha, K. Ganesh, and D. K. Panda, "Visualize and
Analyze Your Network Activities Using OSU INAIVI." OpenFabrics
Alliance Workshop 2020, 2020. [Online]. Available: https://www.
openfabrics.org/wp-content/uploads/2020-workshop-presentations/305.
-0FA-Virtual-Workshop-2020-PPT-Template.pdf

[10] J. Martinez, "HPC Networking in the Real World?' OpenFabrics
Alliance Workshop 2017, 2019. [Online]. Available: https://www.
openfabrics.org/wp-content/uploads/108 _JMartinez.pdf

[11] B. Holman and J. Martinez, "High Speed Network Monitoring
Enhancements." OpenFabrics Alliance Workshop 2017, 2019.
[Online]. Available: https://www.openfabrics.org/wp-content/uploads/
111 _BHolman.pdf

