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3 WBG Power Electronics for Energy Storage

Up to 53' containers

Energy storage Power conversion system Thermal management

Benefits of portable storage 
• Low installation cost
• Short time from installation to operation
• System is optimized for use at multiple sites

Typical portable power conversion system 
• PWM voltage sourced converter
• Silicon-based power electronics
• Water cooled (complex, bulky, and expensive)

Typical Applications 
• Grid stabilization
• Frequency regulation
• Renewable integration
• Peak shaving
• Voltage support
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4 Project Motivation and Goals

• Power electronic systems are a necessary interface between energy
storage systems and the electric grid

• Wide-bandgap semiconductors have material properties that make them
theoretically superior to silicon for power conversion applications
• Higher switching frequencies plus lower conduction and switching losses reduce the size and

complexity of power conversion systems, thus reducing the overall system cost

• However, questions remain regarding the performance and reliability of wide-bandgap materials
and devices, limiting their implementation

Program goal: Understand performance and reliability
of wide-bandgap power switches & how this impacts

circuit- and system-level performance and cost



5 Program Historical Highlights

Suggested reliability
improvements for
components, software,
and operation of
Silicon Power
Corporation's Solid-
State Current Limiter

2009 I

Characterized and evaluated commercial
SiC MOSFETs, including the impacts of
bias, temperature, packaging, and AC
gate stress on reliability

Developed and
documented a general
process for analyzing the
reliability of any power
electronics system
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Created a physics-
based model for
GaN HEMTs linking
defect properties
to device design

Developed models for SiC threshold
voltage instability, and identified
the free-wheeling diode ideality
factor as a potential screening
metric for threshold voltage shifts

Over 30 papers and
presen ta tions through

the course of the project

10-1 - - •D4v. 1
e 1.75

•
Dev. 2

- 11-1.28
•

10-SI

10

Stress .t -20V. 17gr, 150 min.'

0-g 10

6

i 0

,kti2. 5

Trapped lectren
(°) density (910" On')

8.11 x _ 5,„„

:T. :VIZ  

10' 10' 10' 10

8.09

10°

k:COIZ 

le 10' le 10
Time (a)

Characterized
switching of

vertical GaN PiN
diodes using

double-pulse test
circuit

Developed an easy to
use method that can be
used by circuit designers
to evaluate the
reliability of commercial
SiC MOSFETs

Meas. reel eeeee mp • 175°C

eo. • P....0.. 0 Paelstoves
C o Pm...

4.6 -0.6 -0.7 0 4 
V. (V) 

•
Va (V) 

10°
10'
104
10'

— 10'
5S- 10'

10'
104
10'

nr"0 

- Pre-stress -
- Post-stress -

-20 V for 30 min at 175°C 1

= 100 rny

1 2 3 4 5 6 7 8 9 10
N/ (V)

E

10"

JEDcC 

Participating in
JEDEC WBG

reliability working
group

Constructed half-
bridge hard-
switching test

circuit

1TRW
International Technology

Roadmap for Wide Bandgap
Power Semiconductors

2019 Edition

—0— 10' cre
—0— 2 ,10" cm'

5 s10' cm'
—v— 10° cre

sinr Leading ITRW
materials and

o 0.1 0.2
„- E (eV)

0.3

devices working
group

2020



I Previous Results on GaN Diodes: Double-Pulse Testing
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• But the double pulse test circuit is not a
true power converter

• This year's focus is to create a half-
bridge converter to extend this work
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7 Beyond Double-Pulse Testing

Mission-Profile Based Reliability
• Device reliability depends on its mission profile, a complex set of application-

specific operating parameters and environmental stressors
• Double-pulse testing provides simplified emulation of a mission profile—

essentially only electrical stress
• For true representation of real-world performance, need to emulate

practical operating conditions as accurately as possible

Value of Data from Practical Application Testing
• Represents a first step towards translating device-level characterization work

to improvements in system-level performance
• Data are immediately useful for a variety of system integration tasks

o Better tools for design and performance optimization
o Improved estimates of remaining useful lifetime, more effective

preventative maintenance scheduling
O More effective methods of monitoring device and system integrity



8 Design of a Custom Component Assessment System (I)

Core Functions
• Emulate real-world conditions of a practical power converter deployment
• Apply user-specified stress patterns and mission profiles
• Record internal state variables and performance data during long-duration

experiments
• Protect operators from electrical and kinetic hazards associated with practical

converter failures
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9 Design of a Custom Component Assessment System (2)

Power Stage
• Isolated half-bridge topology selected based on

characteristics ofV-GaN diodes
o High forward voltage (>5V)
o High breakdown voltage (I200V nominal)

• Half-bridge provides a balance between simplicity and
flexibility

Experiment Control
• 32-bit DSP controls converter operation and maintains

experiment parameters
• Diode parameters regulated:

o Voltage stress (800V <Vd < 1500V)
o Device junction temperature (Ambient to I 75C)
o Forward current* (avg. I A nominal)
o Switching frequency and duty cycle (100kHz/0.3

nominal)

* Current rating is limited by load assembly. Enclosure hardware will support

up to 1500W load. Alternatively, the load may be replaced with a connection
to external electronic load equipment.
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10 Design of a Custom Component Assessment System (3)

I . Power entry, internal
distribution, and circuit
protection

2.1solated half-bridge
converter with on-board
DSP control card

3.Enclosure control board

4.Configurable load
assembly

5.PWM-controlled fans for
DUT temperature control



Towards Better Power Device Performance Projections
Critical Electric Field is an important parameter in design and use of power components
• Trade-off between switching loss and standoff voltage:
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12 I Limitations in Impact lonization Modeling: I D vs. 2D

Breakdown voltage depends only on Ecrit, not on
impact ionization parameters for ideal, 1D models
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13 I ITRW: Materials and Devices Group
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