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; | WBG Power Electronics for Energy Storage

Typical Applications -
* Grid stabilization

* Frequency regulation

* Renewable integration

* Peak shaving

* Voltage support

Up to 53’ containers
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+ | Project Motivation and Goals

* Power electronic systems are a necessary interface between energy
storage systems and the electric grid

* Wide-bandgap semiconductors have material properties that make them
theoretically superior to silicon for power conversion applications

* Higher switching frequencies plus lower conduction and switching losses reduce the size and
complexity of power conversion systems, thus reducing the overall system cost

* However, questions remain regarding the performance and reliability of wide-bandgap materials
and devices, limiting their implementation

Program goal: Understand performance and reliability
of wide-bandgap power switches & how this impacts
circuit- and system-level performance and cost
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Program Historical Highlights
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electronics system
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the free-wheeling diode ideality
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Previous Results on GaN Diodes: Double-Pulse Testing

Cumulative v-GaN I-Vs over 720 minutes
of 1000V hard switching stress
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7 | Beyond Double-Pulse Testing

Mission-Profile Based Reliability

Device reliability depends on its mission profile, a complex set of application-
specific operating parameters and environmental stressors

Double-pulse testing provides simplified emulation of a mission profile—
essentially only electrical stress

For true representation of real-world performance, need to emulate
practical operating conditions as accurately as possible

Value of Data from Practical Application Testing

Represents a first step towards translating device-level characterization work

to improvements in system-level performance

Data are immediately useful for a variety of system integration tasks

o Better tools for design and performance optimization

o Improved estimates of remaining useful lifetime, more effective
preventative maintenance scheduling

o More effective methods of monitoring device and system integrity



8 | Design of a Custom Component Assessment System (1)

Core Functions

* Emulate real-world conditions of a practical power converter deployment

* Apply user-specified stress patterns and mission profiles

* Record internal state variables and performance data during long-duration
experiments

* Protect operators from electrical and kinetic hazards associated with practical
converter failures

: Circuit Power Stage Load -
External | ¢ | Protection DUTs Assembly | &
Power : %
Supply : Gate Sensors | ]
: Fans . I

; Drivers Signal Conditioning
i | Thermal Management Primary Power Q
¢ | and Fan Speed Control Converter Control s
User ; 3
Interface | £
§ Communications Data Logging i




o I Design of a Custom Component Assessment System (2)

Power Stage

* Isolated half-bridge topology selected based on >
characteristics of V-GaN diodes i E}
o High forward voltage (>5V) L Gl | IN-Diy Lo .
o High breakdown voltage (1200V nominal) va(®) 7" ‘ ! oL gsv
* Half-bridge provides a balance between simplicity and Il
flexibility

Experiment Control

* 32-bit DSP controls converter operation and maintains
experiment parameters
* Diode parameters regulated:
o Voltage stress (800V <Vd < |1500V)
o Device junction temperature (Ambient to 175C)
o Forward current® (avg. | A nominal)
o Switching frequency and duty cycle (100kHz/0.3
nominal)

* Current rating is limited by load assembly. Enclosure hardware will support
up to 1500V load. Alternatively, the load may be replaced with a connection
to external electronic load equipment.



of a Custom Component Assessment System (3)

I.Power entry, internal
distribution, and circuit
protection

2.1solated half-bridge
converter with on-board
DSP control card

3.Enclosure control board

4.Configurable load
assembly

5.PWM-controlled fans for
DUT temperature control




| Towards Better Power Device Performance Projections
Critical Electric Field is an important parameter in design and use of power components

» Trade-off between switching loss and standoff voltage:
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12 | Limitations in Impact lonization Modeling: ID vs. 2D

Breakdown voltage depends only on E_,, not on e 7
impact ionization parameters for ideal, 1D models Pl
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2D /3D models include non-idealities

* Impact ionization parameters
affect breakdown prediction

A.T. Binder et al., 62" Electronic Materials Conference, 2020.

leads to unreliable modeling

Low fonization Coefficients

ATLAS JTE:p-GaN
/

or = 1566 V.
P Anod
—

Breakdownrvoltage increases beyond
the 1D case for low coefficients, and
drops significantly for high coefficients s
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13 | ITRW: Materials and Devices Group

ITRW

International Technology
Roadmap for Wide Bandgap
Power Semiconductors

2019 Edition

Goal: to formulate a roadmap for wide-bandgap
and ultra-wide-bandgap materials and devices

Primary topics:
|. SiC devices
2. GaN devices

o HEMTs, integration, vertical GaN, etc.

3. UWBG materials

THE ITRW IS DEVISED AND INTENDED FOR TECHNOLOGY ASSESSMENT
ONLY AND IS WITHOUT REGARD TO ANY COMMERCIAL CONSIDERATIONS
PERTAINING TO INDIVIDUAL PRODUCTS OR EQUIPMENT.

ITRW 1.0 - ITRW 2.0

ITRW Special Issue: Open Journal of Power Electronics
o Call for papers — Sept |6t

IEEE-TV: ITRW Webinar
o Sept 16%" — 9am and 2pm EDT
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