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3 I Motivation

Lateral GaN SiC

Ultra WBG

Operating 600V 1200 V 10s of kV MV
Voltage Motor drives PV inverters Electric grid HV-DC
Eloctricveliicles ‘ Electric rail transmission and
Grid-level energy storage fault protection

4

* Increase grid resiliency

lower resistive
losses

Airplanes
@‘ _ l * Higher voltages,

* Reduce or eliminate passive * Less resistive energy loss

components (capacitors, inductors)

* Replace expensive IGBT /

* Spectral purity extends motor | Thyristor stacks
lifetime * ACsubsystems to 13.8 kV

* Operate at higher temperatures
without liquid cooling




4 I Material Comparison
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5 I AlGaN Alloy Mobilities are Smaller than Binary Alloys

AlGaN HEMT channel mobility
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Al Ga, N mobility increases markedly at x > 0.9

Binary alloy mobility drops markedly with (extreme) temperature
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s I Unipolar Figure of Merit Based on Best-Known Parameters

Utilizes refreshed parameters for WBGs and
best-known parameters for UWBGs

* Diamond, c-BN, and AIN lead the
pack

— ¢-BN the least mature (difficult to
grow in cubic form)

* (Caveats:

— Some material parameters are
unknown

— Some material parameters are
not constants

— Assumes full ionization of
dopants

Specific on-resistance (mQ cm?

10°
Breakdown voltage (V)

— Unipolar only




7 | Lateral Power Device Figure of Merit

* Not as widely known as the unipolar FOM
* Unipolar (vertical) FOM is often incorrectly used for lateral devices

EC
Gate L Drain
L W
AN Vg = E,L
/ L
Direction on Wq UcpN
of current
flow LZ
R =R, WL = ——
e on qUchMNs
VZ
FOM = —— = Q#chnsEg

R on,sp

Specific on-resistance (mQ cm?)

1
10 : Ll L T T Ll I
- -V 2 = 2
FOM = VB /Ron,sp . c"'l'chnsEC
GaN and AlGaN curves /
expected to show more 4
1 00 | | separation at higher T
F | * GaN p dominated by
phonon scattering
* AlGaN p dominated by
alloy scattering
p GaN vertical
10- = \ | ]
8 Al, o:Ga, =N
[ GaN lateral o'ssver(')c'il:al ]
- (n, =103 cm™?) -
Al 3-Ga, 15N lateral |
9 J (n, =103 cm?)
10 10

Breakdown voltage (V)

* Proportional to E.2 rather than E_3,

but high n_ can result in high FOM

10°*
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Room Temperature Figure of Merit Lateral Comparison

1.E-04

1.E-05

1.E-06

1.E-07

Specific On-Resistance (£2cm?)

1.E-08

1.E-09
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25°C
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Voltage (V)

SiC & GaN are well represented in current research
Ga,0; is not competitive as a lateral device — path to vertical??
Everything beyond SiC and GaN is immature

Al-rich lateral devices — this work
AIN least mature - doping & conductivity issues

1000000




9 I High Temperature FoM Lateral Performance
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FOM for Al, ,Ga, ;N HEMT is 16x superior to that for GaN at extreme temperature
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10 I Extreme Environment Applications

Relevant extreme environments for power electronics:
 Temperature extremes
* Vibration
 Radiation

v Down-hole: High T,
vibration

Aviation: High T, &
vibration

Space: Rédiation, lowT

Outer Belt
12,000 — 25,000 miles

GPS Satellites

. Low-Earth Orbit (LEO)
International Space Station
230 miles

S

Avalanche ruggedness is important for _
numerous power conversion circuits
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SiC Thinner drift layers

20 | ~2 MV/em for increasing E
18
GaN
16 ~5 MV/cm AIN
14 ~13 MV/cm
Sro e
210
28 » GaN and AIN preferred at high
- 6 voltages over mid-frequency range
* Benefit of higher E.
4 * Not as beneficial at low and
2 high frequency (low
0 conductivity modulation and
10 1,000 100,000 increasing reverse recovery)

Frequency (Hz) > Examined PiN diodes since peak

field is buried below surface
o, 2
300 K, 50% duty cycle, 500 A/cm * Part of more advanced devices

J. Flicker et al., WiPDA 2017 e Also must consider Schottky
Analysis based on method in Morisette and Cooper, TED 49(9), 1657 (2002)




2 | D-mode Al, ,sGag <cN/ Al, ;Ga,,N HEMT
2 um
4 um > 4 pm
4
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160 —Drain Current
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Drain Voltage (V) Gate Voltage (V)
Baca et al. JSSST 6, $3010 (2017).

* Linear through the origin I-V due to ~2.5 x 10> Q-cm? Ohmic contacts
* Exceptional lyyax/Ionin Tatio (1,,./1,¢) of 8 x 108
* Very low gate leakage




Drain Current (mA/mm)

Temperature Dependence of “45/30” Transfer and Output
14 I Characteristics

100 === '50°C
— 0°C
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Drain Voltage (V)
Baca et al. JSSST 6, S3010 (2017).
-10 -8 -6 -4 -2 0 2

Gate Voltage (V)

* Drain current decreases monotonically with temperature
* Exceptionally low leakage current is invariant with temperature
e Subthreshold slope varies slightly with temperature




D-mode Al 4 Ga, [N/ Aly,Ga, ;N HEMT

4 um 2 pm 4 um
S 1 G | 1 D

25 nm Al g5Gag 15N: Si

400 nm Al, ,Ga, ;N UID

50 nm Transition Layer

1.6 um AIN

Sapphire Substrate

50
Vgs Max: +4 V
Vgs Min: -5V
Vg, Step:

— -1V

-~ 41V Y mmmmEEEe

40+

Drain Current (mA/mm)

30: e Very little hysteresis
sl * Greater difficulty in Ohmic contact
formation leads to offset voltage and
.| further limitation of drain current
potential
00 2 4 6 8 10

Drain Voltage (V)

Baca et al. JSSST 6, Q161 (2017).



Exceptional Leakage Characteristics over Temperature in D-mode =
16 1 “85/70” HEMT )

DrainCurrent (mA/mm)

10°
E — 4n4 | |— Drain Current
0 E < 10 I -—— G i
10° |3 = ate Current
%W E === Frenkel-Poole
=
-'10:5 2 2.5 O 10-6 i 7
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©
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5 -
10+ § 10'3 L _
=
Q
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©
a 10" .
-10 -8 -6 -4 -2 0 2 4 Sy ! ‘ L L
Gate Voltage (V) 0 100 200 300 400 500 600
Baca et al. JSSST 6, Q161 (2017). Drain Voltage (V)

* Exceptional ratio | /I . ratio of 8 x 10° at -50°C

* Exceptionally low leakage current that increases with temperature and
E,=0.55eV

* Breakdown voltage exceeds 500 V and drain leakage current is
consistent with Frenkel-Poole conduction




17 | Extreme Temperature Operation

of D-mode “85/70” HEMT

25°C . 250°C 500°C
120 | 190 L
vV =10V 129 V=10V 120 V_ =10V
Step: -1V Step: -1V Step: -1V
= 90 _ - gpl
£ £ £
2 s 5 3
: 60+
E E E
30| - -~ ~ 30f
0 0

0 20

40 60

Vos(V)

80

60 80
V,.(V)

Carey et al. submitted to IEEE Trans. El. Dev.

* Current density exceeds 120 mA/mm from increasing the forward gate
bias

* Retain excellent current modulation and over 50 mA/mm current
density when operated at 500°C



On/Off Ratio of D-mode “85/70” HEMT is Favorable at High

18 | Temperature Operation

On/Off Ratio
— — = — o
af.a cl:..'ﬂ Q“-d a@ — :':

—
QA

* Al-rich HEMT maintains excellent On/Off ratio at 500°C and GaN doesn’t

.H.——.____. u
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'\‘_\

—u— 85/70 HEMT
—e— GaN HEMT .-, -
—a— SiN, MISHEMT e

0 100 200 300 400 500
Temperature (°C)

Carey et al. submitted to IEEE Trans. El. Dev.

* On/Off ratio is fairly flat from 200-500°C

()




19 1 E-mode Al,,Ga, ;N using F-Plasma Treatment

. 4um Zum 4um Motivated by Cai et al., IEEE Trans. El. Dev. 53, 2223 (2006)
[~ 1 [~
S SN——1 G N 1D
30 nm Al, ..Ga, ,-N: Si Au Au e F-ion
N1

330 nm Al, ,Ga, ;N UID — N

1.6 um AIN D-mode HEMT gate stack D-mode HEMT gate stack
Sapphire Substrate

Ni Gate

AlGaN Barrier

AlGaN Channel

20 nm

F-plasma from reactive ion etch (through SiN): combination of AlGaN etch and
incorporation of F ions near the surface
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ID (mA/mm)

10°

E-mode Al ;,Ga, ;N using F-Plasma Treatment

/ — el
10° -
Control
180% Over-Etch

2
10
10"
10°
10°

-8

Threshold Voltage (V)

Ot
VTH = (pb _ q psrtéa(\)rrler - AEC

....................

----------------- A& T Remaining
| Fluorine ' thickness
B I Treatment 7 v, d --------- Recess
L & Etching Starting
: . thickness

, . . |
_5 1 1 1 1
0 50 100 150 200 250 300
Barrier Thickness (A)

F-plasma from reactive ion etch (through SiN, then into AlGaN): combination of

AlGaN etch and incorporation of F ions near the surface
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2" Approach to E-mode AlGaN using p-type gate

D-mode 45/30 HEMT

45%AlGaN
(5004, uid)
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E-mode p-30/45/30 HEMT

p-30% AlGaN
1000A

45%AlGaN
(500, uid)

30%AlGaN

AIN

Sapphire

Source SiN VPNV

v

Gate
(Ni/Au)

Aly 45Gag 55N

Al,3Gag ;N
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20610 %900,
=
8 1.56-10 b
5
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4]
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*  MOVPE-grown UID Al, ,-Ga, scN/Al, 3Ga, ;N (45/30) on Al, ;Ga,,N-on AIN-on saphhire
*  p-Aly3Gag,N/Aly 4sGag ssN/Al, 3Gag 5N (p-30/45/30) heterostructures very resistive
* p-AlGaN gate defined by ICP etching and passivated with SiN
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IDS (mA/mm)

E-mode p-30/45/30 with high current density

|-V of D-mode 45/30 AlGaN HEMT

I-V of E-mode 30/45/30 AlGaN HEMT

80 : - - . L_=4pum
g —
801 L =2 um Ve =+8YV
70+ & _ V =46V
Lgd =4 Hm s
% 60 Ii
50| . // V,,=+4V
40} E 40+ /,
< 7
30+ E
£ 20 R, =51 Q.mm v, =+2V
20+ 0
10} 0 V,,=0V
° V <1V Va=0V
10 | 1 | | _20 ] ] 1 1 1
0 2 i 6 5 10 0 2 4 5 8 10
Yo ) vd (V)
Klein et al., ECS JSSST 6 S3067 (2017).
Douglas, et al., DRC, Santa Barbara, CA, June 25, 2018

Little to no degradation of /_, or R, for E-mode vs. D-mode AlGaN HEMT




23 1 E-mode p-30/45/30 with excellent gate performance

E-mode 30/45/30 AlGaN HEMT

10
V =10V
E Isp
£ 10°
<
E
T
.
c 10°
_U‘.i
107" ' ' '
10 -5 0 5 10

Vg (V)

e Small hysteresis (~ 80 mV)
* Vanishingly small gate current

&
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UWBG Development to Enable MEMS




25 I Piezoelectric Aluminum Nitride

P. I o e
iezoelectric Direct Effect

Converse Effect

Material can couple electrical and mechanical energy
o Direct effect

Electrically polarize in
> Converse effect

response to an applied

Magnitude characterized by piezoelectric constant (d;,,) stress

Efficiency characterized by electromechanical coupling coefficient (k,)

Aluminum Nitride (AIN)

Piezoelectric film
© dy="5.5 pC/N
° dy=-2.5 pC/N

Reactive sputter deposition
Low temperature deposition ~350°C

CMOS compatible

Mechanically strain in
response to an applied
electric field

Hexagonal Wurtzite

a=3.144 A
c=5.046 A




26 I AIN Commercial Success

Film Bulk Acoustic Resonator (FBAR) Filters
> Half-wavelength, thickness mode resonators
> Filter frequency is set by film thickness
> Commercial success for AIN MEMS

> >1 billion units produced per year from Avago
Technologies

o More than 40 discrete filter die in the modern
smartphone

Electrical
Acoustic A/2 energy out
Electrodes

resonance

Suspended
FBAR plate

Electrical
energy in

Schematics courtesy of Ben Griffin

Piezoelectric Micromachined Ultrasonic
Transducer (PMUT) Applications

= Proximity sensing

= Short range communication

= Extreme high sound pressure level
microphones

= |maging

Radiation Pressure

Cavity




27 1 Influence of Sc Alloying in AIN

Akiyama et al., Appl. Phys. Lett. 102, 2013

© 400
5 i o: Experimental data “® e: Experimental data
Piezoe leCtr'IC'Ity 35 ©O: Calculated values O: Calculated values
*  Material can couple electrical and mechanical energy 5 300 201
o
) Fy
& e 3
ScAIN has the potential to replace current AIN g 20 £ 150
technologies 'g 200 8
o
o . . . g 150 g
Alloying Sc into AIN increase piezoelectric response 2 100} @
5 -~
Challenges in depositing high Sc content films arise and 0
v 1 Il 1 | | 1 1 1 1 1
has created a hurdle in current LDRD 0010 20 30 40 50 60 % 10 20 30 40 50 60
Sc concentration (at%) Sc concentration (at%)
Device Performance Based on Properties -1 T TR YTl 16
14
,_ eh 15
Resonators t= < 12 o
E,é&33 = g
2 o -2 10 3
. (931,f) T -
Energy harvesting FOM = ——— o 8 9
€33,f ° 55 ©
' 16
Sensors g %
N Al 80833,ftan6 3t 14
0 10 20 30 40
% Sc
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28 I Challenges with Increasing % Sc and Recent Advances

Secondary grain growth (inclusions) in SCAIN
> Increase with Sc concentrations
> Density controlled by processing parameters

Inclusions have a diffuse {100} orientation
< Fichtneret. al., 2017

Compressive stress suppresses inclusions
> Henry et. al., 2018
o Compressive stress not optimal for released MEMS

Platinum as a bottom electrode on 8” wafers
> Mertinet al., 2018
> Full suppression of inclusions up to Sc 31%
> Ptis not CMOS compatible and presents integration challenge

Sc 10% Sc 31%

o-sputtering

S. Mertin et al., Surf. Coat. Technol. (2018)

L fiss
E

M. D. Henry et al., J. Vac. Sci. Technol. B 36 (2018)
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29 I Results: AIN and ScAIN on AlICu

High-quality ScAIN has been deposited on various CMOS compatible metal stacks
> Depositing SCAIN on CMOS metal is extremely valuable to industrial sector
o Aftractive to industry leaders and has sparked collaboration

Optimal ScAIN film quality found in Ti, Ti/AlCug 5, and Ti/TiN/AlCu, s metal

stack

Present results are state-of-the-art for their given thickness and Sc composition

. Esteves et al., 2018 (in prep)

FWHM
4.25'\\4.54° AIN\\SCAIN
100 nm AlCu, , Alcu
50 nmTiN TN
255\\2.71 o
[ R o so
1.63'\\1.73
- 50nm TiN
20nmTi
1.47°\\1.58
Increase Ti
1.11°\1.26
-
0.86"\\1.14
100 nm AlCu, ..
Ti
“hmit 0.90°W1.12
100 nm AlCu, .
Decrease AlCu, 50 nmTiN
i B 2o i i
0.94"\\1.07°
50 nm AlCu,
20nmTi
/L /L »
1 layer w 2 layers 7 3layers

Increasing Metal Stacks

()

3500
3000

Intensity (a
@
o
o

500

T

T T T T T

® Mertinetal, 2018 @
SNL
®
L
5! o ©
" ®
® o
@® @

o

Mertin, et. al., Surf. Coat. Tech. 2018

O 1 1 1 1

0 10 20 30 40
Sc (%)

ouo

16 17 18 19 20 21

Height 2.0um

SCy5 5Alg; sN on Ti/TiN/AICuU, o5



30 I Contour-Mode Resonators

High-quality ScAIN has been deposited on various CMOS
compatible metal stacks

> Electric field in z-axis creates an acoustic wave in x-axis via
piezoelectric effect

- Device architecture was chosen to show increases in
electromechanical coupling with addition of Sc.

\

Acoustic-wav

Acoustic-wave

n
/

QE*t
ér*t

_ 1
Ll 4 2w

f, (GHz)

f, decreases due to higher Sc Increase in electromechanical
alloyed films having lower E coupling with increasing Sc %
1.5 — 1.0 : :
—=—0% —=—0%
141 ——95% 1 o9f —+—95% ]
——12.5% o8l ——12.5% |
13} —+—285% —v—28.5%
——30% 0.7 F —+—30% 4
121 —«—37% 1 ——37%
14 g 00r ]
- -1 D
<05}
10f 1 ml
0.9 03} 4
08 02t .__’__//./' i
0.7 L4 L 1 L N 01 1 n L L L L "
0.06 0.07 0.08 0.09 0.10 07 08 09 10 11 12 13 14 15
t/ fs (GHZ)
A
Henry et al., J. Vac. Sci. 36 (2018)
Top electrode | | 1
of Floating bottom electrode | | |
-10F | CA=9.6pum
20 : : :
_30 - + + +
% 40} | ! !
w: i | / fop Bloctrgte
-60f | A=10.6 um
70f
80}
90
750 800 850 900 950 1000 1050
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31 I XMEMS Program ()

XMEMS process can fabricate devices capable of
operating at elevated temperature

> AIN temperature limit >1000°C

¢ SiC temperature limit > 2000°C

XMEMS Process

Release holes Electrodes

\ | |
Release Volume

Devices fabricated
o Ultrasonic transducer
o Microresonators

o Accelerometers

> Phononic crystals

° Tuning forks

Piezoelectric Micromachined Microresonator

Ultrasonic Transducer (PMUT)

Accelerometer

Esteves and Griffin et. al. J Microelectromech Syst (in prep) (2019)



22 I Post-Anneal Test Testing

Top Electrode

PMUT
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Esteves and Griffin et. al. J Microelectromech Syst (in prep) (2019)



3 1 In situ Testing of Microresonator

Heated chuck from to 500°C in steps of 50°C

—=—No Anneal
—=—650°C Anneal 1

0 100 200 300 400 500

Temperature (°C)

—=— No Anneal
—=—650°C Anneal |

——

Temperature hysteresis loo]p results in permanent T,
frequency shift in unannealed sample |
. . . . >
No degradation in piezoelectric performance £ 288)
>3
O
Challenges ® 287}
L
. . -
Quality factor degradation observed S sl
' 2
Potential sources 2 .
> Probe contact issues '
o Carbon contamination
> Via degradation 1800 0.40
expected to form at 500°C —e— No Anneal
1600 | —=—650°C Anneal | — € 0361
0 o
S5
s =it
S 1400} | 8 Fos2t
13} S 0
® O
- £
2 1200¢ 1 6 So2sf
T g3
31000 - {23
&/ W So2al
800 | J
0.20
Probe tip shift 800 900 200 300 400 500

from thermal
expansion

Temperature (°C)

Esteves and Griffin et

0 100 200 300 400 500
Temperature (°C)

. al. J Microelectromech Syst (in prep) (2019)




34 I In-situ Testing of Microresonator

= Heated chuck from to 500°C in steps of 50°C

= Temperature hysteresis loop results in permanent
frequency shift in unannealed sample

= No degradation in piezoelectric performance
Challenges
= (Quality factor degradation observed
= Potential sources
®= Probe contact issues

=  Carbon contamination

= Via degradation
= TiO, is expected to form at 500 °C
expected to form at 500°C

3

iN Surf

Post-release Post-Anneal Post-Air Test

Electromechanical

Resonant Frequency (MHz)
N N N N
® ® ® ®
[} ~ o ©

N
®
)

Coupling Coefficient

o o o (=] o
o o w @ s
S [e5] N D o

o
)
o

—=—No Anneal
—=—650°C Anneal 1

100 200 300 400 500

Temperature (°C)

—=— No Anneal
—=—650°C Anneal |

m%

100 200 300 400 500
Temperature (°C)

Esteves and Griffin et. al. J Microelectromech Syst (in prep) (2019)I
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35 1 Conclusion and Acknowledgements =

Ti/Ti/AlCu, 5 allows for growth of Sc, sAlg; N films with a
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