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31 Why High Al Content?
Electrical power density scales dramatically with band gap

Band gap energy (Eg) is a critical material property for power electronics

R on,sp =
QunsEc2rit
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Nishikawa, et aL, JJAP 46, 2316 (2007).
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41 Figure of Merit
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➢ AIGaN material advantages do translate to device improvements

Realistic for AIGaN to achieve 3-10x better power density vs. GaN...but better enough?



5 I Challenges

Reported specific contact resistance increases exponentially with increasing Al
fraction in the channel.

Increased mobility pushes desire to increase Al fraction, but platform for
Ohmic contacts becomes challenging

Can we use similar techniques developed for GaN-channel HEMTs to enable
AIGaN-channel devices?

1 0
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Channel

' AIGaN Channel HEMT

• GaN Channel HEMT
  Fit to AlGaN HEMTs

•
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x Al % Composition (AlxGaN)

Klein, B. A., (2017). ECS Journal of Solid State Science and Technology 6(11): S3067-53071.
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61 AIGaN/GaN HEMT Ohmic Contacts
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FIG. 2. (Color online) Z-contrast image of the Ti/Al/Mo/Au metallization

on n-GaN after annealing. (a) Low magnification Z-contrast image, (b) mag-
nified image of the interfacial region, and (c) EDS element mappings for N,

Al, Ti, Ga, Mo, and Au. The overlay images of Ti, Mo, and Au mapping

show that these three elements do not mix with each other.

Wang et al., J. Appl. Phys. 101, 013702 (2007).

Metal
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Channel
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lf1.1111`
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FIG. 5. (a) Z-contrast image of the contacts on AIGaN/GaN after annealing.
The threading dislocations are labeled by white arrows. Two types of TiN,
discrete TiN islands formed along dislocations and interfacial patchy TiN
layer, are observed. (b) HRTEM image showhig portions of the TiN island,
GaN, and AIGaN. (c) HRTEM image of one interfacial TiN grain.

Ohmic formation for GaN channel
HEMTs are likely due to either
metal spike formation or nitrogen
vacancy formation (resulting in
effective n+- doping). Many groups
have observed and reported
significant metal reaction and
spike formation.
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Table I. Reported contact resistances as a function of AlGaN barrier and channel composition.

Reference Ohmic metal IElarricr (AlyGa] yN) xchannei (A1,Ga[.„N) Pc (0 cm2) HEMT device results?

Nanjo 20086 TUAl+ Si implant 0.18 0 6.9 x 10-7 Ycs

Bright 20012' Ti/A1INi/Au 0.24 0 2.8 x 10-6 No

Nanjo 20135 Ti/A1 + Si implant 0.25 0 2.8 x 10-6 Ycs

Vanko 2008' 3 NbiTi/AliNilAu 0.25 0 3.0 x 10-6 No

Lee 201115 Ti./AllW 0.26 0 6.5 x 10-6 Ycs

Basu 200626 Mo/Al/Mo/Au 0.3 0 2.63 x 10-7 No
Wang 200517 Ti/AllMo/Au 0.3 0 2.9 x 10-7 No

Nanjo 20135 Ti/A1 + Si irnplant 0.4 0.15 4.5 x 10-5 Yes

Nanjo 2009 '-6 TilAl 0.39 0.16 9.68 x 10-6 Yes

Nanjo 20086 Ti/A1 + Si irnplant 0.39 0.16 1.79 x 10-5 Yes

Yafune 201114 Zr/AliMo/Au 0.55 0,3 2.6 x 10-4 Yes

This Work Ti/AlfNi/Au 0.45 0.3 2.5 x 10-5 Yes

Nanjo 20086 Ti/A1 + Si irnplant 0.53 0.38 5.28 x 10-3 Ycs

Tokuda 2016' Zr/Alilvlo/Au 0.86 0.51 4.8 x 10-2 Yes

Yafunc 20144 Zr/AliMo/Au 1 0.6 1.9 x 10-2 Yes
Baca 20163 Ti/AlfNi/Au 1 0.85 2.2 x 10° Yes

France 200712 WAI/V/Au 0 2.2 x 10-6 No

France 200712. V/Al/V/Au 0.24 3.2 x 10-6 No

France 200712 V/Al/V/Au 0.4 2.4 x 10-6 No

Mori 2016]] V/Al/NYAu 0.62 1.1 x 10-6 No

a)
4 um 41.tm

.
2 pm 1

' KIP ' mum
A1,45Ga0 „N (50 nm, Barrier)

A103Ga07N (250 nm, Channel)

A103Ga07N (3.9 pm, Buffer)

AIN (1.6 pm)

Sapphire Substrate (1.3 mm)

b)
Early work on Ohmics for GaN
channel HEMTs relied heavily on
planar contacts, with various metals
and even implant. Same is true for
AlGaN channel HEMTs.
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Ohmic metal reaction within stack still observed, but reaction with
underlying AIGaN not observed as significantly as reported for lower Al-
content barriers.
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(a)

Ti/Al/
Ni/Au

Ti/Al/
Ni/Au

AI,85Gao.1 N (50 nm)

Al„,Gao ,N1 (1.3 um)

AIN

Sapphire Substrate

(c)

Ti/Al/
Ni/Au

n*-
GaN

(b)

Ti/AI/
Ni/Au

Al„„Ga„„ N (50 nm)

Alo 7Gao 3N (1.3 tim)

Ti/Al/
Ni/Au

AIN

Sapphire Substrate

Al,„Ga,„ N (50 nm)

A107Ga0.3N (1.3 um)

Ti/Al/
Ni/Au

n4-
GaN

AIN

Sapphire Substrate

Figure 1 Schematic cross-section of the three TLM structures
investigated: (a) planar structure, (b) recessed structure, and (c) n+-
GaN regrowth.
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GaN Regrowth Simulation
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TCAD simulation studying
effect of recess depth of
dry-etch/regrowth.

Current crowding occurs
at interface between
2DEG and GaN regrowth.

Previous work on n+-GaN regrowth still resulted in lower current density than
predicted by theory.

Could current crowding limit electron density in 2DEG?
Is it possible to increase current conduction into 2DEG?



1,1 Engineering Regrowth

increasing 2DEG Interface

V f V

AIGaNIGaN cross-section AlGaN/GaN top-down

Proposed Regrowth Structures — simulating metal spikes

Circular Structures

0 0 0  
0 0 0
0 0 0 0

<— Gate

Recess
I With regrowth

Top r----:
metal

Comb Structure

In GaN channel, spike
formation is random and
uncontrolled.

For recess + regrowth,
assuming current crowding
is limiting factor, then
blue dashed line sets
boundary condition.

Can we increase 2DEG
interface through
engineering?

Regrowth patterns were investigated in order to optimize interaction length of
interface between regrowth material and the 2DEG.

1



121 Fabrication Method
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131 Fabrication Method (2)
3 designs for investigating 2DEG
contact length enhancement for
circular TLMs and transistors:

Standard (full removal of barrier)

Comb-like (varying length of fingers)

Holes (varying radius)

2DEG Perimeter um

Standard CTLM 314

Comb Length 5um 768

Comb Length 25um 1536

Hole Radius 1.5um 2139

Hole Radius 3um 1866

Hole Radius 5um 1508

1 1 1 1 1 1 illi
500um



14 1 Regrowth Characterization
EDS post-regrowth, prior to removal of SiN hardmask

Representative SEM
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1,1 Regrowth Characterization (2)

S4800 5.0kV x7 00k SE(U)

As-grown epi: RMS < 1nm

Etched surface: RMS < 1.5nm

Regrowth surface: RMS < 16nm

m•S

S4800 5.0kV x25 Ok SE(U)



16I Electrical Characterization (Comb)

S4800 5.OkV x100 SE(M)

Circular TLM Structure to evaluate contact resistance
Gap varying from 5um to 30um, 5um increments
Finger length 5um or 25um
Inner diameter held constant
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• Calculated RSH reduced by half.
• Sheet resistance measured by contactless Lehighton of as-grown 85/70 structure:

-1700 Ohm/sq
• Specific contact resistance reduced by almost an order of magnitude



171 Electrical Characterization (Comb)
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18 Electrical Characterization (Hole)
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length results in marked
improvement in contacts



19 Electrical Characterization (Hole)
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20 Conclusion
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Klein, B. A., (2017). ECS Journal of Solid State Science and Technology 6(11):
S3067-S3071.
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 E•1

• 2DEG contact length varied from 300pm to 2.1mm

• Sheet resistance decreased from >10k0 to -4.5k0.

• Specific contact resistance decreased from 1.2x10-1 to 3.2x10-2 Q*cm2

• 2.8X increase in maximum drain current at VGS = 8V
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