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Strong indications that certain fundamental and economic
limits are being reached
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• Smallest usable gate length, 5 nm (-90

silicon atoms), has been achieved

o Taiwan Semiconductor

Manufacturing Co. (TSMC) and

Samsung 5-nm manufacturing

o IEEE Spectrum 2019, 56, 9

• Switching energy also plateauing

• Heat generation may be dominant

factor in the departure from Moore's

Law
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Machine learning and artificial neural networks for computing
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Application-specific computing capacity
now exceeds general-purpose computing
• Internet of Things
• Edge computing
• Mobile
• Autonomous vehicles

Humans excel at data processing
Machines do not

Which one of these images is a cat?

Time series
prediction

Natural language
processing

Humanoid
robot

Object
recognition

Personal
healthcare

Decision
making

Brain—machine
interface

Autonomous
vehicles

Q. Xia, J. J. Yang Nat. Mater. 2019, 18, 309

ML is energy-intensive

Example: autonomous vehicles:

10-100 GB / seco

Drivetrain: 5 kW

Sensors + computing: 1-2 kW

J. Gawron et aI.

Environ. Sci. Technol. 2018, 52, 3249-3256

Conventional von-Neuman digital

architecture is energy inefficient

Vector matrix

multiply (read)

Outer product 2 nJ 3600 nJ

update (write)

1=JE 2600 nJ

Energy/operation/array

1024X1024 synapses

1 million multiply-and-accumulate
YiYang Li, Sandia National Labs. Personal communication



Use resistive memories for energy-efficient local computation
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• A resistive memory or ReRAM is a

programmable resistor

o Applying small voltages allows

the conductance to be read:

=GxV

o Applying large voltages changes

the resistance

V = PR
I = GXV*---- multiplication

I 

12 .IVIAr.

Addition:

1=11+12
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Artificial neural networks (ANN) are compatible with low-
power analog hardware that can reduce energy consumption
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Key requirements for analog switches

• High number of distinct conductance states

• Low fluctuation and drift in each state

• High endurance for repeated training

• Currents < 10 nA to create large arrays

(>1000 x 1000) without large voltage drops

2-terminal memristors

• Phase-Change Memory (PCM) and

Filament-Forming Metal Oxides (FFMO)

• Stochastic switching mechanisms

• WRITE nonlinearities 4 degrades accuracy

• High WRITE voltages

• Excessive currents due to summation in

crossbar arrays with memristors in series

Schematic of a typical 2-terminal
memristor crossbar

Ta O.

!III!I

ii

Pt

Pt

Vi -±

v2—*

v,

Q. Xia, J. J. Yang Nat. Mater. 2019, 18, 309

No resistive memory device has been demonstrated with adequate electrical

characteristics to fully realize the efficiency and performance gains of ANN



Nanoscale ordered structures could accelerate ionic and
electronic transport

Knowledge gaps: Fundamentals governing charge and ion transport in organic mixed
conductors are very poorly understood
• Inadequate knowledge of local potentials

• Disorder within layers and at interfaces

• Lack of spatially resolved composition and microstructure

• No consensus regarding most effective modeling approach

• No structure-property relationships



Nanoporous MOFs are a class of coordination polymers provide
atomic-scale clarity within a tunable structure

lon and electronic charge transport are enhanced when the transporting medium is
ordered with minimal defects
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Advantages of MOFs for resistive switching
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• Tailorable nanopore size, geometry, chemical functionality 4 fast, selective ion transport

• Guest molecules in nanopores are a new design element for enhancing ion transport

• Crystallinity can enhance electronic charge transport relative to disordere polymers

• 1D, 2D, and 3D porous networks are available, allowing anisotropic ion and electronic

charge transport

Coaxial ion/charge flux
Conventional memristor

—01. Ion Flux Electric Charge Flux

1D channels Anisotropic ion/electronic charge flux
Solid-state electrolyte Conducting channel



A few examples of MOF-based resistive switching have been
reported
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First demonstration of MOF-based chemical bipolar resistance switching

Storage of Electrical I nformation in M etal—Organic-Framework
M emristors* *

• Switching occurs by selective ion transport through

the nanopores of a rubidium-cyclodextrin MOF

• Device: MOF sandwiched between silver

electrodes

• Transport of Ag+ facilitated under applied bias

• Mechanism of resistance modulation:

hypothesized to be formation of a nanoscale

passivating layer (Ag0?) at the MOF-electrode

interface.

a)
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S. M. Yoon et al.

Angew. Chem. Int. Ed. 2014, 53, 4437
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Proton-based resistive switching examples using MOFs

Simultaneous implementation of resistive switching
and rectifying effects in a metal-organic framework
with switched hydrogen bond pathway
Zizhu Yao1*, Liang Pan2*, Lizhen Liul, Jindan Zhang1, Quanjie Yingxiang Ye1,

Zhangjing Zhanet, Shengchang Xiang11', Banglin Chen3t

• Proton transport

• MOF single crystal bonded to two Ag

electrodes

• Low set voltage (-0.2 V)

• ON/OFF ratio > 10

• Chiral structure 4 device is also a rectifier
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Rewritable data storage device with copper paddlewheel
MOF HKUST-1 as active material

• Memory device involving cu2+/1+ reversible
reduction

• Active metal cations are thought to be
located near the interface of the MOF with
the electrode

• Cycled 6000 times without apparent
degradation

• Presence of methanol cause formation of
some Cu(i)

40..1‘.1.17N.°6111 V
Cte*lCu* citicuzi EP!

On
Ou24 II Cu*

1441k60.2„...0'
Cut I Cu2'

Read Rea d

S. D. Worrall et al. J.Mater.Chem.C,2016,4, 8687
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MOF-based switching facilitated by guest molecules

• Ferrocene-loaded HKUST-1

• Reversible and repeatable low- and
high-conductivity states

• Electrochemistry not consistent with
filament-forming switching
mechanism

• Possible switching mechanism:
loosely bound ferrocene Fe2+ ions?
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Guest molecules can provide coupling between SBUs to
create an electronic conduction path
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MOF growth

Molecule infiltration

TCNQ-infiltrated HKUST-1
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A. A. Talin, M. D. Allendorf, et al. Science 343, 66 (2014)



>107 increase in conductivity; hopping mechanism
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Seebeck coefficient measurements indicate that holes are the

majority charge
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Sida

High positive Seebeck

coefficient:

-400 µV/K vs.

170 p.V/K for Bi2Te3
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Conductivity mechanism: Cu2(btc)4 paddlewheels bridged by

TCNQ molecules
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Pawley fit zoom in

1.0TCNQ@Cu3BTC2
rwp = 7.25

1.0TCNQ@Cu3BTC2
r„,p=11.03

Cu3BTC 2
rvvp = 5.35

10 20 30
20 / °

40

Pn3m

Fm3m

Fm3m

50 11 13 15 17
2 0 / °

• 2 TCNQ will fit in each large pore (16 TCNQ/unit cell

4 Continuous TCNQ-Cu2-TCNQ pathway with 1

TCNQ/large pore = 8 TCNQs/unit cell



Transformation of Cu3BTC2 films in the presence of TCNQ
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K. ThOrmer, C. Schneider et al., ACS Appl. Mater. Interfaces, 2018, 10 (45), 39400



CuTCNQ nanowires form on crystallite surface during vapor-

phase infiltration
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XPS reveals a high concentration of Cu(I) species at the surface

of HKUST-1 crystals both before and after TCNQ infiltration
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K. Thuermer, C. Schneider et al.
ACS Applied Materials & Interfaces 2018, 10, 39400

the TCNQ7CH3CN solution and gently washed
tional CH3CN to remove any excess TCNQ°. The
ponent structure was then dryed under a vacuum
any trace of solvents. Finally, an aluminum electi
evaporated on the semiconducting layer (substrai
held at room temperature) which completed the :
The surface area of the metal/semiconductor/mc
wich structure was 0.25 cm2; however, the switchi
eters appeared independent of the cross-sectional
system. Electrical connection was made to the co
trode by solder or pressure probe while connectic
aluminum electrode was made through a liquid e
such as gallium, gallium-indium utectic, or mercu
The electrical behavior of these devices appeared t,
sitive to air or moisture and was not photo sensiti

All /- V measurements reported here were m
the device in series with a 102-12 load resistor. Figu

Cu(TCNQ) displays electric-field-induced bistable
switching behavior
4 Suggests potential mechanism for conductivity

modulation and resistive switching
(e.g. see Potember et al. Appl.Phys.Lett. 1979, 34, 405



Conclusions
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Vapor phase infiltration of MOFs provides well-

defined materials

Cu3BTC2

DCM

MeOH

VPI

TCNQ@Cu3BTC2

CuTCNQ

TCNQ@Cu3BTC2 (+ CuTCNQ)

vacuum

flame-seal

Reaction conditions matter

TCNQ arranges preferentially in 111 lattice plane

Cul + TCNQ° 4 Cull + TCNQI

100 - 150 °C

TCNQ oxidizes Cu(l) species

• Extent of reduction controllable by reaction

stoichiometry

• Reversibility unknown at this stage

• Write-Once Read-Many (WORM) memory is possible

device application

•
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