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Introduction

Due to their capacity to function as single-ion
conductors, ion-containing polymers present an
attractive potential alternative to standard
electrolytes in Li-ion batteries. To facilitate the
design of ion-containing polymers for this purpose,
a greater understanding of their microscopic
structure and dynamic properties is needed. We
present molecular dynamics simulations of a novel
set of single ion-conducting polymers containing
precisely-spaced sulfonated phenyl groups, which
are fully neutralized with a counterion X+ (Li+, Ne,
or CO. The focus is on the structure of self-
assembled ionic aggregates and ion dynamics.

Molecular Dynamics Simulations
• OPLSAA force field
• n = 8, 95% sulfonation, 64 to 728 molecules, 15k to 400k atoms
• Production runs at 433 K for 100 ns to 9 µs
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• Structure factor computed from MD simulation (Fourier
Transform of g(r) - 1) corresponds to intensity profiles obtained
from X-ray scattering
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• First maximum of r
cutoff distances to determine if atoms are in the same cluster

• Cations and oxygen atoms form single percolating cluster
• Intraaggregate spacings correspond to q1 peak in structure factor

• Ionomer peak intensity and
amorphous halo shape
influenced by cation species

• Simulation and experiment
agree reasonably well in
position and relative intensity
of ionomer peak and
amorphous halo

• Ionomer peak (q1) occurs at
about 3 nm-1 for each ion
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Intermediate Subclusters

• Mapped aggregate structure to
graph theory representation using
cutoffs obtained from RDFs.

• Extracted subclusters using graph-
distance cutoff

• Compute relative shape anisotropy
(4) of extracted subcluster

• Compare with previously studied
p9AA-100 Li system
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• Snapshots and K2 distributions reveal large number of plane-like subclusters
in Li and Na polymers, but greater isotropy in Cs polymers

• Previously studied p9AA-100 Li polymers exhibit ribbon-like and string-like
domains with higher values of K2

• Correlation between volume fraction of ionic groups in polymer and relative
shape anisotropy of aggregate structures
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Li motion in aggregate
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•

Li ions (green)
transition from one
group of O atoms
(red) to another to
diffuse through
aggregate. See two
Li ions in yellow
and silver.
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• Exponential dependence of measured e)c. 
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'2 -io-conductivity on 1/T indicates
Arrhenius behavior

• Qualitative agreement in conductivity
between experiment and MSDs
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• Reasonably good agreement between computed and
experimentally measured structure factors.

• Ionic groups assemble to form percolating aggregates
• Cation species has significant impact on local and

intermediate structure of aggregate; Li and Na aggregates
contain several planar regions while Cs tends to yield more
isotropic subclusters

• Qualitative agreement between MSD and conductivity
• Arrhenius temperature dependence of conductivity, larger

cation diffusivities relative to polymer backbones, and
observed intraaggregate diffusion indicate decoupled ion
transport.

Future Work
• Probe impact of hydration on aggregates and conductivities
• Study impact of polarization on simulations
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