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The DOE Office of Electricity views sodium batteries as a priority in
pursuing a safe, resilient, and reliable grid. Improvements in solid-state

electrolytes are key to realizing the potential of these large-scale
batteries

❑ Montmorillonite lon Condu

• Clay sheets composed of one layer of A106
octahedra between two layers of SiO4
tetrahedra.

• Sheets are negatively charged due to
substitutions and charged is balanced by
dissolved cations

• 2D hydrated interlayers transport Na+, similar
to 1311-A1203

• Inexpensive material, low-temp processing,
and tunable properties
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• Montmorillonite (MMT) structure water

content, platelet orientation
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Destruction of layered structure (exfoliation)
degrades mechanical properties.

ONanomechanical mapping

0

Topography

2

0

• Identify fundamental structure-processing-property
relationships in montmorillonite sodium-ion conductors to

inform design for use in sodium batteries

Characterization Methodology

Nanoindentation -small

deformation to measure
modulus and hardness by
Oliver-Pharr Method
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• Atomic force microscopy

topography and spatial mapping
of elastic modulus

ellets e controlled by:

• Pellet preparation-

Pressure, pellet thickness
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• Composition Polyethylene can be added to

increase modulus/hardness

Pellets can be made stronge with more pressure
and can be made thin without losing integrity.
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Small deformations made with an AFM cantilever can
extract elastic modulus with sub-micron spatial resolution
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Incorporation of small amount of chemically
inert polymer improves mechanical integrity.

onclusions d Future Work
Conclusions:
• The mechanical properties of sodium ion conductors can be tuned by

controlling:
• Extent of clay exfoliation
• Pressure during pellet formation
• Polymer content in clay composites

• Mechanical properties can be correlated with topographical features to
further inform design decisions

Future Considerations:
• Can MMT be used as an ion conductor in other battery chemistries?
• Can other polymers further improve mechanical properties in composites?
• Can MMT platelets be oriented preferentially in thru-plane direction?
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I mechanica properties can be correlated with
surface features (pores, impurities, roughness)!
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