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Challenge

» Radiographic applications incorporating scintillators and imaging
optics have an inherent trade-off.

* Systems are nearly always light starved, driving design towards faster optics
and thicker scintillators.

* Both options increase the optical blur, and the inherent geometries of such
systems cause the blur to vary across the FOV.

* This blur cannot be fixed through deconvolution or any other existing method.
It can be reduced in telecentric or pericentric lenses, but these are generally
impractical.

* Radiographic systems designed conservatively to minimize constant and
variable blur are not able to take full advantage of available options.
» Future radiographic systems will have increasing performance
requirements, and yet no current technology or method will allow
them to beat this trade-off.

» A new technique is required to allow higher resolution and
contrast in the data products of radiographic imaging.
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Challenge (lllustrated)
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normal incidence to
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4. Given the finite depth of
focus of a lens system, this

line is generally blurred at
both ends, resulting in a
complex, anisotropic blur
function that varies over

the FOV.

3. These combine and
result in a single x-ray

vector producing a line
PSF at the camera face
line increases |

radial
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length with
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2. The optical system

collects light at angles non-

normal to the scintillator

faces.




Challenge (lllustrated)

As a result, radiographs that we expect to look like the image on the left end up looking
like that on the right — blurred everywhere, but much worse towards the edges and
anisotropically (note that straight edges stay crisp, while the arcs get progressively
blurrier). Note that the center of the FOV is in the lower left of each image.
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Innovation

» Commonly, blurred images are deblurred by the use of
deconvolution (which does not work for varying blur) or other
simple techniques (which may not be quantitatively rigorous), or
more sophisticated approaches that employ prior knowledge and
require user guidance, thereby leaving room for variability and
uncertainty.

» This effort took inspiration from recent developments in Integrated
Depth of Field (IDOF) and astronomical imaging. We develop a
new method using a Bayesian framework with spatially varying
hyper-parameters to deblur radiographic images that are affected
by spatially varying blur while decreasing variability in the
outcome. The result is rigorous, while applicable as simply as
deconvolution.
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Technical Approach

» Two approaches were employed in this
spatially varying blur SDRD project, resulting
In method for removing spatially varying blur:

1. Develop a methodology that allows for a
spatially varying blur kernel (field of kernels) in
the formulation for deconvolution.

1D method was developed in-house with support
from LLNL.

2D method was developed in collaboration with
PNNL.

2. Develop a Markov Chain Monte Carlo method
that allows the spatial variation of regularization
parameters, along with the ability to spatially
partition between regularization types.

This was developed through a University of
Arizona collaboration.
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Technical Approach: University of Arizona

Spatially Varying Parameters and Multi-regularization

» The method of regularization allows us to reconstruct a signal or
Image while imposing a priori knowledge about the data.

» What if different regions of an image require different types of
regularization?

Here, neither regularization
method is satisfactory for
the entire signal
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Technical Approach: University of Arizona

Spatially Varying Parameters and Multi-regularization

» The method of regularization allows us to reconstruct a signal or
Image while imposing a priori knowledge about the data

» What if different regions of an image require different types of
regularization?

Tikhonovl + | TV|

»
»

With spatially varying hyper-
parameters in the MCMC
reconstruction method
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Results on real data: Checkerboard object

We developed the methodology for
deblurring spatially varying blur in 1D and
extended it to 2D.
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Results on real data: Checkerboard object, 1D

» Deconvolution assumes a single deblurring kernel, which is not the case in
spatially varying blur.

» Point Spread Functions (PSFs)
are approximated at a finite
number of points in the image
and interpolated to obtain PSF
estimates at each pixel in the
image.

» The “deconvolved” image shows
the reconstruction with sharper
edge features and behaves like
a step function, as expected.
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Results on 2D synthetic data: Radial blur

» Earlier results were in 1D and were published.
» In FY21, we extended the method to 2D reconstruction.

» Given the kernel(s) for a spatially varying radial blur, we have demonstrated
successful deblurring of images using a deconvolution-like approach!
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Results

» Novel method has been successfully
demonstrated in both 1D and 2D

m Parallelized version prototyped to work on 4k x 4k images
(e.g., Cygnus radiography)

m Any future programmatic follow-on should focus on
increased computational efficiencies with matrix-free
methods for larger images.

Given the kernel(s) for a spatially varying radial blur, we can successfully deblur images with a deconvolution-like approach in both 1D and 2D
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Impact

» Papers

m J. Adams, M. Morzfeld, K. Joyce, M. Howard, A. Luttman, “A Blocking Scheme for
Dimension-Robust Gibbs Sampling in Large-Scale Image Deblurring,” Inverse
Problems in Science and Engineering, 2021. DOI: 10.1080/17415977.2021.1880398.

m J. Adams, J. Pillow, et al., “An Approach to Characterizing Spatial Aspects of System
Blur,” Statistical Analysis and Data Mining, 2021 (accepted).

m J. A. Pillow, E. Machorro, M. Howard, K. Joyce, D. Frayer. “Methods for Spatially
Varying Deconvolution,” 2021. In preparation.

m J. A. Pillow, M. Morzfeld, J. Adams, M. Kupinski, M. Howard. “Bayesian Spatially
Varying Multi-Regularization Image Deblurring,” 2021. In preparation.

Poster from Conference

» Conferences on Data Analysis 2020

m Conference on Data Analysis, Santa Fe,
February 2020: An Approach to Characterizing
Spatial Aspects of Image System Blur

m SIAM CSE 2021: Dimension Robust Gibbs
Sampling for Large-scale MCMC in Image
Deblurring
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Impact

» Collaboration with University of Arizona
m PhD student graduated and hired on as Postdoc: Dr. Jordan Pillow

» Programmatic Transfer of Knowledge

B Radiography is the primary diagnostic for Great Basin SCE

Radiographic requirements will require quantifying sources of error (e.g., noise,
blur)

NNSS has been asked by LLNL to support Great Basin through an analytical
approach for radiography analysis, which includes both Abel inversion and
removing spatially varying blur using the methods developed in this project

This work WILL be used in upcoming SCEs!
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Challenge

Radiographic applications incorporating scintillators and imaging optics have an inherent trade-off.

Systems are nearly always light starved, driving design towards faster optics and thicker scintillators.

Both options increase the optical blur, and the inherent geometries of such systems cause the blur to vary across the FOV.

This blur cannot be fixed through deconvolution or any other existing method. It can be reduced in telecentric or pericentric lenses, but these are generally impractical.

Radiographic systems designed conservatively to minimize constant and variable blur are not able to take full advantage of available options.

Future radiographic systems will have increasing performance requirements, and yet no current technology or method will allow them to beat this trade-off. 

A new technique is required to allow higher resolution and contrast in the data products of radiographic imaging.
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Radiographic applications incorporating scintillators and imaging optics have an inherent trade-off:

In dynamic radiography, systems are nearly always light-starved. This can, in theory, be mitigated through faster lenses and/or thick scintillators.

Both of these options, however, increase the optical blur in the system by decreasing the ratio between the depth of field and the scintillator thickness. This optical blur is in addition to blur caused by other factors, e.g. scatter in the scintillator.

In addition to increased blur, the inherent geometries of these systems causes optical blur to vary across the field of view.

Constant blur may be addressed through deconvolution of the blur point-spread function (PSF). However, varying blur cannot be addressed using deconvolution or any other existing method.

As such, radiographic systems have long been designed conservatively, to minimize both constant and variable blur, and so have not been able to take full advantage of available options.
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Challenge (Illustrated)











1. X-rays from a cone beam transit the scintillator at non-normal incidence to the scintillator faces.

2. The optical system collects light at angles non-normal to the scintillator faces.

3. These combine and result in a single x-ray vector producing a line PSF at the camera face. This line increases in length with radial distance from the image center. 

4. Given the finite depth of focus of a lens system, this line is generally blurred at both ends, resulting in a complex, anisotropic blur function that varies over the FOV.
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Challenge (Illustrated)





As a result, radiographs that we expect to look like the image on the left end up looking like that on the right – blurred everywhere, but much worse towards the edges and anisotropically (note that straight edges stay crisp, while the arcs get progressively blurrier). Note that the center of the FOV is in the lower left of each image.
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Innovation

Commonly, blurred images are deblurred by the use of deconvolution (which does not work for varying blur) or other simple techniques (which may not be quantitatively rigorous), or more sophisticated approaches that employ prior knowledge and require user guidance, thereby leaving room for variability and uncertainty. 

This effort took inspiration from recent developments in Integrated Depth of Field (IDOF) and astronomical imaging. We develop a new method using a Bayesian framework with spatially varying hyper-parameters to deblur radiographic images that are affected by spatially varying blur while decreasing variability in the outcome. The result is rigorous, while applicable as simply as deconvolution.
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Technical Approach

Two approaches were employed in this spatially varying blur SDRD project, resulting in method for removing spatially varying blur:

Develop a methodology that allows for a spatially varying blur kernel (field of kernels) in the formulation for deconvolution.

1D method was developed in-house with support from LLNL.

2D method was developed in collaboration with PNNL.

Develop a Markov Chain Monte Carlo method that allows the spatial variation of regularization parameters, along with the ability to spatially partition between regularization types.

This was developed through a University of Arizona collaboration.
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Technical Approach: University of Arizona



Spatially Varying Parameters and Multi-regularization

The method of regularization allows us to reconstruct a signal or image while imposing a priori knowledge about the data.

What if different regions of an image require different types of regularization?





Here, neither regularization method is satisfactory for the entire signal
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Technical Approach: University of Arizona

Spatially Varying Parameters and Multi-regularization

The method of regularization allows us to reconstruct a signal or image while imposing a priori knowledge about the data

What if different regions of an image require different types of regularization?







Tikhonov    +    TV







A new double approach allows us to fuse the benefits of multiple regularization methods with spatially varying hyper-parameters to allow for spatially varying blur

With spatially varying hyper- parameters in the MCMC reconstruction method
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Results on real data: Checkerboard object











9

We developed the methodology for deblurring spatially varying blur in 1D and extended it to 2D.













Deconvolution assumes a single deblurring kernel, which is not the case in spatially varying blur. 



This approach allows us to “deconvolve” and reconstruct the signal while allowing for the PSF to spatially vary!
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Point Spread Functions (PSFs) are approximated at a finite number of points in the image and interpolated to obtain PSF estimates at each pixel in the image.

The “deconvolved” image shows the reconstruction with sharper edge features and behaves like a step function, as expected.

Results on real data: Checkerboard object, 1D











Results on 2D synthetic data: Radial blur
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Earlier results were in 1D and were published.

In FY21, we extended the method to 2D reconstruction.

Given the kernel(s) for a spatially varying radial blur, we have demonstrated successful deblurring of images using a deconvolution-like approach!











Results

Novel method has been successfully demonstrated in both 1D and 2D

Parallelized version prototyped to work on 4k × 4k images (e.g., Cygnus radiography)

Any future programmatic follow-on should focus on increased computational efficiencies with matrix-free methods for larger images.





Given the kernel(s) for a spatially varying radial blur, we can successfully deblur images with a deconvolution-like approach in both 1D and 2D
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Impact

Papers

J. Adams, M. Morzfeld, K. Joyce, M. Howard, A. Luttman, “A Blocking Scheme for Dimension-Robust Gibbs Sampling in Large-Scale Image Deblurring,” Inverse Problems in Science and Engineering, 2021. DOI: 10.1080/17415977.2021.1880398.

J. Adams, J. Pillow, et al., “An Approach to Characterizing Spatial Aspects of System Blur,” Statistical Analysis and Data Mining, 2021 (accepted).

J. A. Pillow, E. Machorro, M. Howard, K. Joyce, D. Frayer. “Methods for Spatially Varying Deconvolution,” 2021. In preparation.

J. A. Pillow, M. Morzfeld, J. Adams, M. Kupinski, M. Howard. “Bayesian Spatially Varying Multi-Regularization Image Deblurring,” 2021. In preparation.
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Poster from Conference on Data Analysis 2020

Conferences

Conference on Data Analysis, Santa Fe, 
February 2020: An Approach to Characterizing Spatial Aspects of Image System Blur

SIAM CSE 2021: Dimension Robust Gibbs Sampling for Large-scale MCMC in Image Deblurring











Impact

Collaboration with University of Arizona

PhD student graduated and hired on as Postdoc: Dr. Jordan Pillow



Programmatic Transfer of Knowledge

Radiography is the primary diagnostic for Great Basin SCE

Radiographic requirements will require quantifying sources of error (e.g., noise, blur)

NNSS has been asked by LLNL to support Great Basin through an analytical approach for radiography analysis, which includes both Abel inversion and removing spatially varying blur using the methods developed in this project

This work WILL be used in upcoming SCEs!
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An Approach to Characterizing Spatial Aspects of Image System Blur
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Abstract Checkerboard Data Conclusion
In imaging applications, such as X-ray radiography, A checkerboard target can be used as a calibration object for quantifying blur in X-ray radiography. This In many classical treatments, the blurring process
the experimental system setup and data capture image was captured with a a 20mm thick Lutetium-yttrium oxyorthosilicate (LYSO) scintillator at NRL. is modeled as a convolution between the true image

and a spatially invariant PSF.

process introduce system blur and distortion. In
images taken with thick scintillators, a spatially-
varying system blur is observed, requiring a non-
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b(s,t) = Alul(s,t) = /Qu(x, y)a(s —x,t —y) dx dy
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standard approach to blur and distortion estima-
tion and removal. We demonstrate an approach
to estimation of local point spread functions us-
ing checkerboard radiographs collected at the Naval
Research Laboratory (NRL) and extend that into
a map defining the kernel over the camera field of
view.

The tools under development here seek a higher
fidelity, higher precision model that accounts
for spatially varying blur that has been found
experimentally [2].
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Building on techniques that can model blur (as
PSFs) but only in small regions across boundaries
of high contrast [1|, the team has developed the
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Thick Scintillato

. . Figure 3: On the left, a radiograph of a tungsten checkerboard is overlaid with the center of each square, and framework to piece together PSFs from those dis-
In high energy X-ray radiography, X-rays are pulsed Specific portions are marked in and blue. On the right, these portions are crete points to form a smooth spatially varying blur
from a source and travel through a scene. X-rays zoomed, and the mean vertical and horizontal edges are plotted, along with the resultant PSFs, calculated as in [1]. kernel

that are not attenuated by objects in the scene are
absorbed by a scintillator, and re-emitted as visible : : : |
light. An imaging system then captures this light to Spatlally V&I‘Ylﬂg Point Spread Fui b(s,t) := Alul(s, ) = /Qu(x, y)a(s,t, x,y) dv dy

produce the output image, as depicted in Figure 1. Given the two grids of horizontal and vertical PSFs, an approximation for a PSF at any point in the grid

. N . . . N 1cal simulati followed by direct -
can be produced via a partition of unity (POU) between successive PSFs across the image. umerical simulations 10Llowed by diretl cotlpat

isons with anticipated experiments are planned to
calibrate the model and evaluate its performance

» \ | - with respect to deconvolution.
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Abstract


In imaging applications, such as X-ray radiography,


the experimental system setup and data capture


process introduce system blur and distortion. In


images taken with thick scintillators, a spatially-


varying system blur is observed, requiring a non-


standard approach to blur and distortion estima-


tion and removal. We demonstrate an approach


to estimation of local point spread functions us-


ing checkerboard radiographs collected at theNaval


Research Laboratory (NRL) and extend that into


a map deﬁning the kernel over the camera ﬁeld of


view.


Thick Scintillators


In high energy X-ray radiography, X-raysarepulsed


from a source and travel through a scene. X-rays


that are not attenuated by objects in the scene are


absorbed by a scintillator, and re-emitted as visible


light. An imaging system then capturesthislight to


produce the output image, as depicted in Figure 1.


Figure 1: Imaging system schematic


X-rays from the source are emitted as a cone beam.


The photons produced via scintillation can occur at


any point along the X-ray trajectory through the


scintillator. The X-ray path has a larger extent far-


ther from thecenter of theX-ray source asdepicted


in Figure 2, which results in blur that varies spa-


tially.


Figure 2: X-ray path through a thick scintillator


Checkerboard Data


A checkerboard target can be used as a calibration object for quantifying blur in X-ray radiography. This


image was captured with a a 20mm thick Lutetium-yttrium oxyorthosilicate (LYSO) scintillator at NRL.


Figure 3: On the left, a radiograph of a tungsten checkerboard is overlaid with the center of each square, and


positions for calculated PSFs. Speciﬁc portions are marked in red and blue. On the right, these portions are


zoomed, and the mean vertical and horizontal edges are plotted, along with the resultant PSFs, calculated as in [1].


Spatially Varying Point Spread Functions


Given the two grids of horizontal and vertical PSFs, an approximation for a PSF at any point in the grid


can be produced via a partition of unity (POU) between successive PSFs across the image.


Figure 4: The set of horizontal POU functions used to interpolate a PSF between known points (left); an example


pair of vertical and horizontal PSFs for a speciﬁc point (right)


It is expected that the PSFs are correlated to the center of the cone beam, so the horizontal and vertical


cross sections are not along the primary axes of the PSF. Using a Gaussian approximation and forcing the


covariance based on the position of the PSF, it is possible to get a regularized Gaussian ﬁt of a 2D PSF


that attempts to match the horizontal and vertical PSFs at that point.


Figure 5: 2D PSF contour with vertical and horizontal residuals (left); Gaussian 2D PSF (right)


Conclusion


In many classical treatments, the blurring process


is modeled as a convolution between the true image


and a spatially invariant PSF.
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The tools under development here seek a higher


ﬁdelity, higher precision model that accounts


for spatially varying blur that has been found


experimentally [2].


Building on techniques that can model blur (as


PSFs) but only in small regions across boundaries


of high contrast [1], the team has developed the


framework to piece together PSFs from those dis-


cretepointsto form a smooth spatially varying blur


kernel.
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dx dy


Numerical simulations followed by direct compar-


isons with anticipated experiments are planned to


calibrate the model and evaluate its performance


with respect to deconvolution.
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