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Abstract—Faults happen very frequently in distribution sys-
tems. Identifying fault types and phases are of critical importance
for outage management, fault location, and service restoration.
However, this task becomes very challenging due to measurement
scarcity in distribution systems. This paper is among the first
few that applies deep learning techniques in distribution system
fault classification. Specifically, a sequential Convolutional Neural
Network(CNN)-based classifier is developed to identify fault buses
and phases. The input to the CNN is the steady-state voltage and
current data measured at substations. The fault identification is
modeled as a multi-label classification problem. Training data
under various fault scenarios are obtained in OpenDSS and
Gaussian noises are added to mimic measurement errors. A case
study in IEEE 13-feeder test system is conducted with single
and multiple bus faults scenarios. Numerical results demonstrate
the high accuracy and fast computation of the proposed deep
CNN-based fault classification.

I. INTRODUCTION

Distribution system state estimation has become possible
with advanced sensing and communication technology. The
pre-requisite of state estimation is the topology identification
because distribution system topology constantly changes over
time due to faults or switching actions [1]. Topology iden-
tification is a sub-problem and also a fundamental problem
of state estimation [2]]. However, due to the lack of sufficient
measurement or communication devices installed in distribu-
tion systems, fault identification becomes very challenging [J3]].
Identifying fault types and phases are of critical importance
for outage management, fault location, and service restoration.

Many techniques have been introduced to classify and
identify faults. A basic fault location identification is based
on fault impedance, inferring the distance by calculating the
fault impedance from fault voltage and fault current [4]. With
the development of distribution system measurement devices,
data based methods are introduced [5]. An outage escalation
procedure and meter-polling procedure for searching outage
region are introduced in [6] . A synergistic method to use
automatic meter reading(AMR) to identify the outage map is
introduced in [7] . Jiang et al. introduced a method to identify
the outage section by calculating the credibility of each
hypothesis and select the hypothesis of the highest credibility
as the identified outage scenario [8]. The credibility is a ratio
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of supporting measurements to non-supporting measurements
from smart meters and fault indicators.

Using substation-only measurement data, this paper is
among the first few that applies deep learning techniques in
distribution system fault classification. Specifically, a sequen-
tial Convolutional Neural Network(CNN)-based classifier is
developed to identify fault buses and phases. The input to the
CNN is the steady-state voltage and current data measured
at substations. The fault identification is modeled as a multi-
label classification problem. Training data with various fault
scenarios are obtained in OpenDSS and Gaussian noises
are added to mimic measurement errors. Numerical results
demonstrate the high accuracy and fast computation of the
proposed deep CNN-based fault classification.

The paper is organized as follows. Section II introduces
the architecture and key components of the CNN fault clas-
sifier, including the feature extraction layers and the multi-
label classification layer. Section III discusses the case study
and results using an IEEE 13-bus test feeder system in an
OpenDSS environment Section IV summarizes the paper and
discusses future work.

II. PROBLEM FORMULATION

The fault classification problem is tackled using deep con-
volutional neural networks. CNNs are inspired by humanvisual
cognition mechanism, originally created for image processing.
After decades of development, it has been widely used for
feature extraction and classification in many areas, including
natural language processing(NLP), video classification, etc.
191-[12].

This paper applies CNNs to solve a challenging power
system problem - fault classification. The principle is to pro-
cess measurements in distribution power system as 2D or 3D
images and capture the spatial-temporal correlations among
measurement data. In addition, a multi-label classification
layer is added in the output layer to predict the status of nodes.
The architecture of the classifier is shown in Fig. E} First, the
measurement data is reshaped from a 3D-tensor to 2D-matrix.
Then two convolutional layers are applied to extract multiple
features from the data. Finally, a fully-connected (FC) multi-



layer perceptrons are added for classification and an indicator
vector is an output for fault identification.
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Fig. 1. CNN-based Fault Classifier

A. Measurement Data and Data Generation

We assume measurements are only available at the substa-
tion [13[].The measurement data are steady-sate pre-fault and
post-fault voltage and current phasors, as well as voltage and
current phasors after the fault is cleared. Specifically, the data
measured are three-phase voltage magnitudes, voltage angles,
current magnitudes and current angles. Therefore, there are 12
measurement items in total. Each item is a vector containing
time series values during the fault observing window. The fault
observing window is a time period that is long enough to
observe fault from happening to clearing. Each input of CNN
model is a matrix [[14]. The format of the matrix is shown in
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Fig. 2. Data Structure

The data set is generated from OpenDSS fault dynamic
simulation interfaced with python [15]]. Loading conditions
are taken into consideration with an absolute volatility(«) and
relative volatility(3). The absolute load volatility is the ratio
to the base load value and relative volatility is the variance of
each load. So the actual value of i*" load is formulated as

Li,actual =aX Li,base X (1 + Bz) (])

where « € (0,1] and 8; ~ N(0,0.1).

The flowchart of data generation is shown in Fig. [3] We
first start with the base load profile and run power flow in
OpenDSS. Then generate fault scenarios that cover various
fault buses, fault phases, and fault types. The loading condition

will also be varied to reflect real-world load fluctuations.
We then apply a specific fault, solve power flow, and record
steady-state voltages and currents at the substation. We also
add noises to the recorded data to mimic measurement errors.
We continue this procedure until a specified number of training
data is satisfied.
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Fig. 3. Data generation flowchart

B. Sequential CNN Model

CNN is the extension of the neural network in 3-dimension
[16], in the sense that the inputs of CNN are usually 3D ten-
sors. This feature enables the model to explore the correlation
among inputs in 3 directions(width, length, depth). Like human
eyes observing a picture, the width and length construct the
shape, and the depth represents the color. In deep learning
applications, CNN models are used in a stacked way to
enhance the ability of feature extraction. Therefore, the feature
extraction of fault classification can be efficiently carried out
using a sequential CNN model. A typical architecture of
sequential is shown in Fig. @] The data set is first separated
into mini-batches, then a set of feature map is extracted and
eventually classified into a class.

Fig. [5] shows how the filter moves along the length or width
and the corresponding output position in the feature map. The
size of convolution layer output depends on the setting of filter,
padding and stride. Their relation is formulated as

Nout:(Nzn_F+2P)/S+1 (2)



Fig. 4. Typical architecture of CNN
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Fig. 5. Example of convolution

in which, N is the size of either length or width, F, P and S
are filter size, padding size and stride size respectively of the
dimension. So, for the example shown in Fig. [5] input size is
(5,9), filter size is (3,3), padding size is (1,1), stride is (1,1)
and the output size is (5,5).

The parameters of the identifier model are specified in
Table [[} Filter size determines the size of weights and bias
matrix. Padding is to preserve the spatial size of the tensor,
compensating for the size lost during convolution [[16]]. Pooling
layer is the downsampling layer in CNN and the pooling size
determines the downsampling rate along the spatial dimension
[16]. Adam optimizer is a stochastic optimization method
that has fast convergence speed and great robustness [[18].
Initialization of weight is very important in deep learning
because weight determines whether the signal is decayed or
amplified, and Xavier initialization method makes sure that the
initial weight of each layer is in a reasonable range, enhancing
the robustness of the model [19].

TABLE I

CNN MODEL SETTINGS
Item Value
Filter size 5.,5)
Padding 2,2)
Pooling size  (2,2)
Optimizer Adam
Initialization ~ Xavier

C. Multi-label Classifier

Multi-layer perceptron(MLP) is a simple feedforward archi-
tecture of artificial neural networks. A typical architecture of
MLP is shown in Fig. [} The MLP consists of an input layer,

a hidden layer, and an output layer [20]. Each neuron has an
activation function used for simulating the non-linearity of the
target function.
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Fig. 6. Typical architecture of MLP

The relation between the input and output of a layer is
formulated as
out = a(w X Tip + b) 3)

where a(-) is the activation function, w is the weights matrix
and b is the bias vector.

MLP itself is capable of simple classification problems, and
it is also an indispensable part of deep learning models for
complicated problems. The last layer of the outage identifier
is a fully connected MLP that outputs classification labels.

Traditional fault section identification methods rely on gen-
erating hypothesis set and choose the scenario with highest
credibility [8]. The size of hypothesis increases exponen-
tially with the number of lines. To avoid this computation
inefficiency, a multi-label classification criterion is used in
the training. Unlike single labeling for each fault scenario,
the multi-label classification model is suitable for identifying
multiple faults in distribution systems. Each phase of a node is
an element in the label vector, and each label has two classes
[0,1], whereas O represents no fault and 1 represents fault. In
this way, any fault scenarios can be easily represented by the
label vector. The illustration of label vector is shown in Fig.
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Fig. 7. Format of label vector

The loss function used for the training is the soft margin
cross-entropy [21]], formulated as

LN
loss(p,y) = N Z%lOQ(Pi) + (1 =yi)log(l —pi) 4

p and y in the loss function are the prediction probability
and the target label. p is a vector of probability corresponding
to the element in y. By minimizing the cross-entropy loss,
the expected value of misclassification is minimized. As the
prediction is a probability vector, and the labels are binary
incidence, so a threshold needs to be chosen for classification.
The common value of the threshold is 0.5 that indicates the
corresponding fault is more likely to happen.



III. CASE STUDY
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Fig. 8. Topology of IEEE-13bus feeder [22]

The test system is the IEEE-13bus feeder shown in Fig.
[B] Experiments for single bus fault and multiple bus fault
scenarios are conducted. We also examine the robustness
of CNN-based classification assuming communication errors
with missing data. The measurement device is installed at the
node 650. The training data set has 5000 samples, the time
consumption of training is 415.2 seconds, on a GPU. The
specifications of training setting are shown in Table

TABLE I
SUMMARY OF TRAINING SETTINGS

Item Value
batch size 10
epoch 20
learning rate  0.001

A. Training Data Generation

The generation of training data follows the flowchart in Fig.
Bl An example illustrating the steps of generating the fault
and loading condition of a data sample is shown in Table [[TI}
The sample fault is a single phase A to ground fault at bus
675 in IEEE-13bus test feeder. First, we create a label vector
for applying the specified fault and then generate loading
condition by multiplying based load with «(1 + /). Having
the fault and loading condition generated, measurements are
calculated by OpenDSS power flow dynamic simulation. The
plot of three-phase voltage and current magnitudes are shown
in Fig. Pfa)(c). Fig. [0(b)(d) shows the curves of data added
with Gaussian noise. The visualized comparison of compre-
hensive measurement data to the heat map matrix is shown
in Fig. [I0] Fig. [T0[a) shows the comprehensive 3D plot of
all measurement data, 3 axes are variable, time and measured
value; Fig. [T0fb) shows the image input of identifier, though
there is only 2 axis(variable and time), the hidden axis(value)
is represented by color. The use of heat map enables the model
to explore the relation between both variables and time axis,
therefore more features can be extracted, making the result
more accurate.

TABLE III
DATA GENERATION EXAMPLE
Item Value
Step 1: Generate label  [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]
Step 2: [1155.0, 160.0, 120.0, 120.0, 170.0,

Read base load 230.0, 170.0, 485.0, 68.0, 290.0,
170.0, 128.0, 17.0, 66.0, 117.0]
Step 3: Generate 0.8

Step 4: Generate 3 [0.079 0.013 0.109 0.121 -0.098
-0.045 0.106 0.113 0.155 0.131
0.171 -0.108 0.020 -0.119 -0.016]
[997.3 129.7 106.5 107.6 122.7
175.8 150.4 431.7 62.8 262.4
159.2 91.4 13.9 46.5 92.1]

Step 5:
Calculate actual loads
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Fig. 9. Three phase curves of measured voltage and current
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Fig. 10. 3D visualization and heat map of measurement data

B. Single Bus Fault

The test data set of single bus fault validation has 3000
samples in total, including 1000 single-phase fault, 1000 two-
phase fault and 1000 three phase fault. The identification
accuracy is 99% for the whole test data set and the accuracy
for single-phase, two-phase and three-phase fault are 100%,
97%, 100% respectively. The time consumption of identifying
3000 samples is 13.873 seconds. In average, it takes less than
5 ms to complete one identification. 20 examples from the
test data set are listed in Table as well the corresponding
identification results.



TABLE IV
EXAMPLES OF SINGLE BUS FAULT TEST DATA

Index  Bus.Phase(s) a Identified fault
1 633.A 0.9 633.A
2 645.B 0.7 645.B
3 646.A 0.5 646.A
4 611.C 0.6 611.C
5 684.B 0.8 684.B
6 652.A 0.9 652.A
7 671.A 0.7 671.A
8 680.C 0.9 680.C
9 675.C 0.5 675.C
10 633.AB 0.9 633.AB
11 675.BC 0.7 675.BC
12 671.AC 0.6 671.AC
13 680.AB 0.7 680.AB
14 646.BC 0.5 646.BC
15 684.AC 0.8 611.C,652.A
16 645.BC 0.7 645.BC
17 675.ABC 0.9 675.ABC
18 671.ABC 0.8 671.ABC
19 680.ABC 0.6 680.ABC

20 633.ABC 0.5 633.ABC

C. Multiple Bus Fault

As mentioned earlier, one of the improvements of sequential
CNN based identifier is that it can be easily generalized to
multiple fault identification. The test data set for multiple bus
fault validation has 1000 samples, including 500 two-fault
samples and 500 three-fault samples. The overall identification
accuracy is 93%, time consumption of predicting 1000 samples
is 7.113 seconds. 15 examples from the test data set are listed
in Table |V| as well the corresponding identification results.

TABLE V
EXAMPLES OF MULTIPLE BUS FAULT TEST DATA

Index Fault « Identified fault
1 633.A,671.A 0.9 633.A,671.A
2 645.B,675.B 0.7 645.B,675.B
3 646.C,611.C 0.5 646.C,611.C
4 684.AC,633.AB 0.6 684.AC,633.AB
5 671.AB,675.C 0.8 671.AB,675.ABC
6 652.A,645.BC 0.9 652.A,645.BC
7 671.A,680.BC 0.7 680.ABC
8 680.C,671.AB 0.9 680.ABC
9 675.C,684.AC 0.5 675.C,684.AC
10 633.ABC,671.ABC 0.6 633.ABC,671.ABC
11 633.A,671.A,645B 0.9 633.A,671.A,645.B
12 684.A,680.C,633.A 0.7 684.A,680.C,633.A
13 645.C,675.A,611.C 0.5 645.C,675.A,611.C
14 611.C,652.A,680.A 0.6 611.C,652.A,680.A,684.AC
15 646.B,680.B,675.C 0.8 646.B,680.B,675.C

IV. CONCLUSION

Distribution system fault classification is a challenging
task due to measurement scarcity. This paper introduces a
deep learning technique to tackle this problem for better
outage management. The sequential CNN based identification
is very accurate and fast. Also, the use of 2-class multi-
label vector improves the computation complexity under the
multi-fault scenario. The case study demonstrates that deep

learning techniques can benefit power systems in traditionally
challenging areas. The limitation of this method is relying on
large training data set and having long training time. So, online
training scheme will be implemented in the future to solve this
problem.
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