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Abstract—Graph coloring is often used in parallelizing sci-
entific computations that run in distributed and multi-GPU
environments; it identifies sets of independent data that can be
updated in parallel. Many algorithms exist for graph coloring on
a single GPU or in distributed memory, but hybrid MPI+GPU al-
gorithms have been unexplored until this work, to the best of our
knowledge. We present several MPI+GPU coloring approaches
that use implementations of the distributed coloring algorithms of
Gebremedhin et al. and the shared-memory algorithms of Deveci
et al. The on-node parallel coloring uses implementations in
KokkosKernels, which provide parallelization for both multicore
CPUs and GPUs. We further extend our approaches to solve for
distance-2 coloring, giving the first known distributed and multi-
GPU algorithm for this problem. In addition, we propose novel
methods to reduce communication in distributed graph coloring.
Our experiments show that our approaches operate efficiently on
inputs too large to fit on a single GPU and scale up to graphs
with 76.7 billion edges running on 128 GPUs.

Index Terms—graph coloring; distributed algorithms; GPU;

I. INTRODUCTION

We present new multi-GPU, distributed memory implemen-
tations of distance-1 and distrance-2 graph coloring. Distance-
1 graph coloring assigns colors (i.e., labels) to all vertices
in a graph such that no two neighboring vertices have the
same color. Similarly, distance-2 coloring assigns colors such
that no vertices within fwo hops, also called a “two-hop
neighborhood,” have the same color. Usually, these problems
are formulated as NP-hard optimization problems, where the
number of colors used to fully color a graph is minimized.
Serial heuristic algorithms have traditionally been used to
solve these problems, one of the most notable being the DSatur
algorithm of Brélaz [5].More recently, parallel algorithms [4],
[9] have been proposed; such algorithms usually require
multiple rounds to correct for improper speculative colorings
produced in multi-threaded or distributed environments.

There are many useful applications of graph coloring. Most
commonly, it is employed to find concurrency in parallel
scientific computations [2], [9]; all data sharing a color can
be updated in parallel without incurring race conditions. Other
applications use coloring as a preprocessing step to speed up
the computation of Jacobian and Hessian matrices [13] and to
identify short circuits in printed circuit designs [12]. Despite
the intractability of minimizing the number of colors for non-
trivial graphs, such applications benefit from good heuristic
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algorithms that produce small numbers of colors. For instance,
Deveci et al. [9] show that a smaller number of colors used
by a coloring-based preconditioner reduces the runtime of a
conjugate gradient solver by 33%.

In particular, this work is motivated by the use of graph
coloring as a preprocessing step for distributed scientific
computations such as automatic differentiation [14]. For such
applications, assembling the associated graphs on a single node
to run a sequential coloring algorithm may not be feasible [4].
As such, we focus on running our algorithms on the parallel
architectures used by the underlying applications. These archi-
tectures typically are highly distributed, with multiple CPUs
and/or GPUs per node. Therefore, we specifically consider
coloring algorithms that can use the “MPI+X” paradigm,
where “X” is multicore CPU or GPU acceleration.

A. Contributions

We present and examine two MPI+X implementations of
distance-1 coloring as well as one MPI+X implementation
of distance-2 coloring. In order to run on a wide variety
of architectures, we use the Kokkos performance portability
framework [1], [11] for on-node parallelism and Trilinos [17]
for distributed MPI-based parallelism. The combination of
Kokkos and MPI allows our algorithms to run on multiple
multicore CPUs or multiple GPUs in a system. However, for
this paper, we focus on the performance of our algorithms
in MPI+GPU environments. For distance-1 coloring of real-
world networks, our algorithms see up to 28x speedup on 128
GPUs compared to a single GPU, and only a 7.54% increase in
colors on average. For distance-2 coloring, our algorithm sees
up to 27.6x speedup, and a 4.9% increase in colors in the worst
case. We also demonstrate good weak scaling behavior up to
128 GPUs on graphs up to 13 billion vertices and 76.7 billion
edges in size. added this last sentence. I think it’d be good
to err on over-emphasizing our ability to process graphs
much much larger than can fit in a single node. What’s
the largest graph colored before in distributed memory?

II. BACKGROUND

A. Coloring Problem

While there exist many definitions of the “graph coloring
problem,” we specifically consider variants of distance-1 and

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



distance-2 coloring. Consider graph G = (V, E) with vertex
set V' and edge set E. Distance-1 coloring assigns to each
vertex v € V a color C'(v) such that ¥Y(u,v) € E,C(u) #
C(v). In distance-2 coloring, colors are assigned so that
Y(u,v), (v,w) € E,C(u) # C(v) # C(w); i.e., all vertices
within two hops of each other have different colors. When
a coloring satisfies one of the above constraints, it is called
proper. The goal is to find proper colorings of G such that the
total number of different colors used is minimized.

B. Coloring Background

While minimizing the number of colors is NP-hard, serial
coloring algorithms using greedy heuristics have been effective
for many applications [15]. The serial greedy algorithm in
Algorithm 1 colors vertices one at a time. Colors are repre-
sented by integers, and the smallest usable color is assigned as
a vertex’s color. Most serial and parallel coloring algorithms
use some variation of greedy coloring, with algorithmic dif-
ferences usually involving the processing order of vertices or,
in parallel, the handling of conflicts and communication.

Algorithm 1 Serial greedy coloring algorithm

procedure SERIALGREEDY(Graph G = (V| E))
CVveV)«0 > Initialize all colors as null
for all v € V in some order do

¢ <+ the smallest color not used by a neighbor of v

Cv) ¢

Conflicts in a coloring are edges that violate the color-
assignment criterion; for example, in distance-1 coloring, a
conflict is an edge with both endpoints sharing the same color.
Colorings that contain conflicts are not proper colorings, and
are referred to as pseudo-colorings. Pseudo-colorings arise
only in parallel coloring, as conflicts arise only when two
vertices are colored concurrently. A coloring’s “quality” refers
to the number of colors used; higher quality colorings of a
graph G use fewer colors, while lower quality colorings of G
use more colors.

C. Farallel Coloring Algorithms

There are two popular approaches to parallel graph coloring.
The first is to concurrently find independent sets of vertices
and then concurrently color all of the vertices in each set;
this approach was used by Jones and Plassmann [19]. The
second, referred to as “speculate and iterate” [7], is to color
as many vertices as possible in parallel and then iteratively
fix conflicts in the resulting pseudo-coloring until no conflicts
remain. Catalyiirek et al. [7] and Rokos et al. [20] present
shared-memory implementations based on the speculate and
iterate approach. Distributed-memory and hybrid CPU+GPU
algorithms such as those in [4], [16], [22] use the speculate and
iterate approach. Bozdag et al. [4] showed that, in distributed
memory, this approach is more scalable than methods based
on the independent set approach of Jones and Plassmann.

D. Distributed Coloring

In a typical distributed memory setting, an input graph is
split into subgraphs that are assigned to separate processes.
A process’s local graph G; = (V; + V, E; + E,) is the
subgraph assigned to the process. Its vertex set V; contains
local vertices, and a process is said to own its local vertices.
The intersection of all processes’ V; is null, and the union
equals V. The local graph also has non-local vertex set V,,
with such non-local vertices commonly referred to as ghost
vertices; these vertices are copies of vertices owned by other
processes. To ensure a proper coloring, each process needs
to store color state information for both local vertices and
ghost vertices; typically, ghost vertices are treated as read-only.
The local graph contains edge set Ej, edges between local
vertices, and E,, edges containing at least one ghost vertex as
an endpoint. Bozdag et al. [4] also defines two subsets of local
vertices: boundary vertices and interior vertices. Boundary
vertices are locally owned vertices that share an edge with
at least one ghost; interior vertices are locally owned vertices
that do not neighbor ghosts. For processes to communicate
colors associated with their local vertices, each vertex has a
unique global identifier (GID).

III. METHODS

We present three hybrid MPI+GPU algorithms, called
Distance-1 (D1), Distance-1 Two Ghost Layer (D1-2GL)
and Distance-2 (D2). D1 and DI1-2GL solve the distance-
1 coloring problem and D2 does distance-2 coloring. We
leverage Trilinos [17] for distributed MPI-based parallelism
and Kokkos [11] for on-node parallelism. KokkosKernels [1]
provides baseline implementations of distance-1 and distance-
2 coloring algorithms that we use and modify for our local
coloring and recoloring subroutines.

Our three proposed algorithms follow the same basic frame-
work, which builds upon that of Bozdag et al. [4]. Bozdag
et al. observe that interior vertices can be properly colored
independently on each process without creating conflicts or
requiring communication. They propose first coloring interior
vertices, and then coloring boundary vertices in small batches
over multiple rounds involving communication between pro-
cesses. This approach can reduce the occurrence of conflicts,
which in turn reduces the amount of communication necessary
to properly color the boundary. In our approach, we color all
local vertices first. Then we fix all conflicts after communi-
cation of boundary vertices’ colors. Several rounds of conflict
resolution and communication may be needed to resolve all
conflicts. We found that this approach was generally faster
than the batched boundary coloring, and it allowed us to use
existing parallel coloring routines in KokkosKernels without
substantial modification.

Algorithm 2 demonstrates the general approach for our
three speculative distributed algorithms. First, each process
colors all local vertices with a shared-memory algorithm.
Then, each process communicates its boundary vertices’ col-
ors to processes with corresponding ghosts. Processes detect
conflicts in a globally consistent way and remove the colors



Algorithm 2 Distributed-Memory Speculative Coloring

needed to modify this algorithm so it fits with alg 3 and
the text

procedure PARALLEL-COLOR(Graph G = (V, E))
Color all local vertices
Communicate colors of boundary vertices
do
Detect conflicts
Recolor conflicting vertices
Communicate updated boundary colors
while Conflicts exist

of conflicted vertices. Finally, processes locally recolor all
uncolored vertices, communicate updates, detect conflicts, and
repeat until no conflicts are found.

A. Distance-1 Coloring (D1)

a) Local Coloring: Our D1 method begins by indepen-
dently coloring all local vertices on each process using GPU-
enabled algorithms by Deveci et al. [9]. These algorithms
include VB_BIT and EB_BIT in KokkosKernels [1]. VB_BIT
uses vertex-based parallelism; each vertex is colored by a
single thread. VB_BIT uses compact bit-based representations
of colors to make it performant on GPUs. EB_BIT uses edge-
based parallelism; a thread colors the endpoints of a single
edge. EB_BIT also uses the compact color representation to
reduce memory usage on GPUs.

For graphs with skewed degree distribution (e.g., social
networks), edge-based parallelism typically yields better work-
load balance between GPU threads. We observed that for
graphs with a sufficiently large maximum degree, edge-based
EB_BIT outperformed vertex-based VB_BIT on Tesla V100
GPUs. Therefore, we use a simple heuristic based on max-
imum degree: we use EB_BIT for graphs with maximum
degree greater than 6000; otherwise, we use VB_BIT. This
cutoff was selected experimentally.

b) Conflict Detection: After the initial coloring, only
boundary vertices can be in conflict with one another'. We
perform a full exchange of boundary vertices’ colors using
Trilinos [17]. Specifically, we use the FEMultiVector class
of Tpetra [18] to communicate the colors of boundary ver-
tices to their ghost copies on other processes via an all-to-
all exchange. After each process receives its ghosts’ colors,
it detects conflicts by checking every owned vertex’s color
against the colors of its neighbors. Our conflict-finding process
uses vertex-based parallelism and is parallelized using Kokkos.
The overall time of conflict detection is small enough that any
imbalance resulting from our use of vertex-based parallelism is
insignificant relative to end-to-end times for the D1 algorithm.
Our conflict resolution approach is illustrated in Algorithm 3,
which takes place in the inner loop of Algorithm 2. Note that

! As suggested by Bozdag et al., we considered reordering local vertices to
group all boundary vertices together for ease of processing. This optimization
did not show benefit in our implementation, as reordering tended to be slower
than coloring of the entire local graph.

this algorithm runs on each process using its owned local graph
G.

Algorithm 3 Distance-1 conflict resolution and recoloring

procedure RESOLVE-CONFLICTS(

Local Graph G; = (V; +V,, E; + E;), colors, GID)
gc +— current colors of all ghosts
conflicts «+ 0
for all v € V; do in parallel

for all (v,n) € (E; + E,) do
if colors[v] = colors[n] then
conflicts < conflicts + 1
if rand(GID[v)] > rand(GID[n]) then
colors[v] <+ O
break
else if rand(GID[v)] < rand(GID[n]) then
colors[n] < O
else
if GID[v] > GID[n] then
colors[v] «+ 0
break
else

colors[n] < O
Do the following changes make sense?

Allreduce(conflicts, SUM) > Get global conflicts
if conflicts > O then
colors = Color(G;, colors)
Replace ghost colors with gc
Communicate recolored vertices to ghost copies

> Neighbors of v

> Recolor vertices

return conflicts

When a conflict is found, only one vertex involved in the
conflict needs to be recolored. Since conflicts happen on edges
between two processes’ vertices, both processes must agree on
which vertex will be recolored. We adopt the random conflict
resolution scheme of Bozdag et al. We use a random number
generator (given as the “rand” function in Algorithm 3) seeded
by the GID of each conflicted vertex, as this produces a
consistent set of random numbers across processes without
communication. In a conflict, the vertex with the larger random
number is chosen for recoloring. For the rare case in which
both random numbers are equal, the tie is broken based on
GID. Using random numbers instead of simply using GIDs
helps balance recoloring workload across processes.

c) Recoloring: Once we have identified all conflicts, we
again use VB_BIT or EB_BIT to recolor the determined set
of conflicting vertices. We modified KokkosKernels’ coloring
implementations to accept a “partial” coloring and the full
local graph, including ghosts. (Our initial coloring phase did
not need ghost information.) We also modified VB_BIT to
accept a list of vertices to be recolored. Such a modification
was not feasible for EB_BIT.

Before we detect conflicts and recolor vertices, we save a
copy of the ghosts’ colors (gc in Algorithm 3) on a given
process. Then we give color zero to all vertices that will be
recolored; KokkosKernels interprets color zero as uncolored.



To prevent KokkosKernals from resolving conflicts without
respecting our conflict resolution rules (thus preventing con-
vergence of our parallel coloring), we allow a process to
temporarily recolor some ghosts, even though the process
does not have enough color information to correctly recolor
them. The ghosts’ colors are then restored to their original
values in order to keep ghosts’ colors consistent with their
owning process. Then, we communicate only recolored owned
vertices, ensuring that recoloring changes only owned vertices.

B. Two Ghost Layers Coloring (DI1-2GL)

Our second algorithm for distance-1 coloring, D1-2GL,
follows the D1 method, but adds another ghost vertex “layer”
to the subgraphs on each process. In D1, a process’ sub-
graph does not include neighbors of ghost vertices unless
those neighbors are already owned by the process. In DI1-
2GL, we include all neighbors of ghost vertices (the two-hop
neighborhood of local vertices) in each process’s subgraph,
giving us “two ghost layers.” To the best of our knowledge,
this approach has not been explored before with respect to
graph coloring.

We use to reduce the total amount of communication relative
to D1 for certain inputs by reducing the total number of
recoloring rounds needed. In particular, for mesh or otherwise
regular graph inputs, the second ghost layer is primarily made
up on interior vertices on other processes. Interior vertices
are never recolored, so the colors of the vertices in the
second ghost layer are fixed. Each process can then directly
resolve more conflicts in a consistent way, thus requiring fewer
rounds of recoloring. Fewer recoloring rounds results in fewer
collective communications.

However, in D1-2GL, each communication can be more
expensive, because a larger boundary from each process is
communicated. Also, in irregular graph inputs, the second
ghost layer often does not have mostly interior vertices. The
relative proportion of interior vertices in the second layer also
gets smaller as the number of processes increases. For the extra
ghost layer to pay off, it must reduce the number of rounds of
communications enough to make up for the increased cost of
each communication. We discuss this tradeoff in our results.

To construct the second ghost layer on each process, pro-
cesses exchange the adjacency lists of their boundary vertices;
this step is needed only once. After the ghosts’ connectivity
information is added, we use the same coloring approach
as in D1. However, we optimize our conflict detection by
looking through only the ghost vertices’ adjacencies, as they
neighbor all local boundary vertices. By keeping the new
ghost adjacency information separate from the local graph,
we can detect all conflicts by examining only the edges
between ghosts and their neighbors. could we have done this
optimization in D1? would it have been faster than looping
over the local graph? don’t necessarily need to discuss
here, but KDD is curious about the answer

C. Distance-2 Coloring (D2)

Our distance-2 coloring algorithm (D2) builds upon both D1
and D1-2GL. As with distance-1 coloring, we use algorithms
from Deveci et al. in KokkosKernels for distance-2 coloring.
Specifically, we use NB_BIT, which is a ’net-based” distance-
2 coloring algorithm that uses the approach described by
Tas et al. [24] Instead of checking for distance-2 conflicts
only between a single vertex and its two-hop neighborhood,
the net-based approach detects distance-2 conflicts among
the immediate neighbors of a vertex. Our D2 approach also
utilizes a second ghost layer to give each process the full two-
hop neighborhood of its boundary vertices. This enables each
process to directly check for distance-2 conflicts with local
adjacency information. However, to find a distance-2 conflict
for a given vertex, its entire two-hop neighborhood must be
checked for potentially conflicting colors.

Algorithm 4 Distance-2 conflict detection

procedure DETECT-DISTANCE2-CONFLICTS(
Local Graph G; = (V; + V, E; + E;), colors, GID)
for all v € V; do in parallel
for all (v,n) € (E; + E,) do
if colors[v] = colors[n] then
if rand(GID[v]) > rand(GID[n]) then
colors[v] <+ O
break
else if rand(GID[n]) > rand(GID[v]) then
colors[n] <+ O
else
if GID[v] > GID[n] then
colors[v] <+ 0O
break
else
colors[n] < 0
for all (n,m) € (E; + E,) do > Neighbors of n
GMS - Ian should check this. I just modified notation
but left algorithm alone.
if colors[v] = colors[m] then are there any
issues with race conditions here? m could be a boundary
vertex, not a ghost; does setting its color to zero cause
correctness problems if it is a boundary vertex? could it
cause excessive recoloring (m set to zero by one thread
while another thread is setting m’s neighbors to zero)?
if rand(GID[v]) > rand(GID[m]) then
colors[v] <+ 0O
break
else if rand(GID[m]) > rand(GID[v]) then
colors[m] «+ 0
else
if GID[v] > GID[m] then
colors[v] < 0
break
else
colors[m] <+ 0

> Neighbors of v




TABLE I: Summary of input graphs. §4.4 refers to average degree and 6,4, refers to maximum degree. Numeric values listed
are after preprocessing to remove multi-edges and self-loops. k = thousand, M = million, B = billion.

Graph Class #Vertices #Edges | davg F —_—

1door PDE Problem 09 M 21 M 45 77

Audikw_1 PDE Problem 0.9 M 39M 81 345
Bump_2911 PDE Problem 29M 63 M 43 194
Queen_4147 PDE Problem 41 M 163 M 78 89
hollywood-2009 Social Network 1.1 M 57TM 99 12 k
soc-LiveJournall Social Network 48 M 43 M 18 20 k
com-Friendster Social Network 66 M 1.8 B 55 52k
europe_osm Road Network 51 M 54 M 2.1 13
indochina-2004 Web Graph 74 M 194 M 26 | add value here
MOLIERE_2016 | Document Mining Network 30M 33B 80 | add value here
rgg_n_2_24 s0 Random Graph 17M 133 M 15 40
mycielskian19 Random Graph 393 k 452 M | 23 k | add value here
mycielskian20 Random Graph 786 k 14B | 34k | add value here
hexahedral Weak Scaling Tests | 125M - 13B | 75 M -77 B 6 6

What about the twitter graph? I saw 13 mentioned as number of graphs. Was twitter one of those? Which one didn’t we use from above?

Algorithm 4 shows the straightforward way in which we
detect conflicts in D2 for each process. We again use vertex-
based parallelism while detecting conflicts; each thread exam-
ines the entire two-hop neighborhood of a vertex v. As with
distance-1 conflict detection, we identify all local conflicts
and use a random number generator to ensure that vertices
to be recolored are chosen consistently across processes.
The iterative recoloring of D1 then also works for D2; we
recolor all conflicts, replace the old ghost colors, and then
communicate local changes.

D. PFartitioning

We assume that target applications partition and distribute
their input graphs in some way before calling these coloring
algorithms. In our experiments, we used XtraPuLP v0.3 [23] to
partition our input graphs. Determining optimal partitions for
coloring is not our goal in this work. Rather, we have chosen
a partitioning strategy representative of that used in many ap-
plications. We partition input graphs by balancing the number
of edges per-process and minimizing a global edge-cut metric.
This approach effectively balances per-process workload and
helps minimize global communication requirements.

IV. EXPERIMENTAL SETUP

We performed scaling experiments on the AiMOS super-
computer housed at Rensselaer Polytechnic Institute. The
system has 268 nodes, each equipped with 2 IBM Power 9
processors clocked at 3.15 GHz, 4 NVIDIA Tesla V100 GPUs
with 16 GB of memory each, 512 GB of RAM, and 1.6 TB
Samsung NVMe Flash memory, and connected together with
a Mellanox Infiniband interconnect.

The input graphs we used are listed in Table I. We used
graphs from the SuiteSparse Matrix Collection (formerly
UFL Sparse Matrix Collection [8]). The maximum degree,
Omaz, can be considered an upper bound for the number of
colors used, as any incomplete, connected, and undirected
graph can be colored using at most d,,,, colors [6]. We
selected many of the same graphs used by Deveci et al. to
allow for direct performance comparisons. We include many
graphs from Partial Differential Equation (PDE) problems

because they are representative of graphs used with Automatic
Differentiation [14], which is a target application for graph
coloring algorithms. We also include social network graphs
to demonstrate scaling of our methods on irregular real-world
datasets. We preprocessed all graphs to remove multi-edges
and self-loops.

We compare our implementation against the distributed
distance-1 and distance-2 coloring in the Zoltan [10] package
of Trilinos. Zoltan’s implementations are based directly on
Bozdag et al. [4]. For our results, we ran Zoltan and our
approaches with four MPI ranks per node on AiMOS, and used
the same partitioning method across all of our comparisons.
Our methods D1, D1-2GL, and D2 were run with four GPUs
and four MPI ranks (one per GPU) per node. Zoltan uses only
MPI parallelism; it does not use GPU or multicore parallelism.
We restrict Zoltan to four MPI ranks per node, and use the
same number of nodes for experiments with Zoltan and our
methods. We used Zoltan’s default coloring parameters; we did
not experiment with options for vertex visit ordering, boundary
coloring batch size, etc.

V. RESULTS

For our experiments, we compare the performance of our
methods to Zoltan for distance-1 and distance-2 coloring. Our
performance metrics include execution time, parallel scaling,
number of colors used, and the number of communication
rounds. We do not include the partitioning time for XtraPuLP;
we assume target applications partition and distribute their
graphs. Each of the results reported represent an average of
five runs.

A. Distance-1 Performance

We summarize the performance of our algorithms relative
to Zoltan using performance profiles. Performance profiles
plot the number of problems an algorithm can solve for a
given relative cost. The relative cost is obtained by dividing
each approach’s execution time (or colors used) by the best
approach’s execution time for a given problem. In these plots,
the line that is the highest is the best performing algorithm.



Fig. 1: Performance profiles comparing D1 and D1-2GL on
128 Tesla V100 GPUs with Zoltan’s distance-1 coloring on
128 Power9 cores in terms of (a) execution time and (b)
number of colors computed for graphs in Table I
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We ran D1, D1-2GL, and Zoltan with 128 MPI ranks to
color all of the input graphs in Table I. D1 and D1-2GL
used MPI plus 128 Tesla V100 GPUs, while Zoltan used
MPI on 128 Power9 CPU cores across 32 nodes. Figure la
shows that both D1 and D1-2GL outperform Zoltan in terms
of execution time in these experiments. The D1 method is
the fastest in roughly 50% of the cases, D1-2GL is fastest in
roughly 40%, and Zoltan outperforms both in only a single
instance. D1 has at most a 8.8x speedup over Zoltan (with
the europe_osm graph) and at worst a 20% slowdown relative
to Zoltan (with Audikw_1). D1-2GL shows similar speedups
over Zoltan: an 8.8x relative speedup with europe_osm, and
at worst an 8% slowdown with Audikw_1. D1 and D1-2GL
are close in terms of execution times; the largest differences
are with indochina-2004, which D1 is 36% faster, and with
twitter7, which D1-2GL is 30% faster. In general, D1 and
DI1-2GL have performance differences of approximately 10%;
it is difficult to say which approach will perform better on a
given graph.

Figure 1b shows that Zoltan outperforms D1 and D1-2GL
in terms of color usage. Zoltan uses fewer colors in over 60%
of our experiments. In most cases, however, D1 and D1-2GL
use no more than 20% more colors than Zoltan. With the
Twitter7 graph, Zoltan uses 45% fewer colors than D1 and
DI1-2GL, but with Mycielskian20, D1 and D1-2GL use 41%
fewer colors than Zoltan. On average, D1 uses 6.8% more
colors than Zoltan. D1 and D1-2GL differ by 1% on average.
The differences in the number of colors used exist because
KokkosKernels uses different local coloring algorithms from
Zoltan.

B. Distance-1 Strong Scaling

Figure 2 shows strong scaling times for Queen_4147 and
com-Friendster. The D1 method scales better on the com-
Friendster graph than on Queen_4147, as the GPUs can be
more fully utilized with the larger com-Friendster graph. For
Queen_4147, D1 is at least 2.7x faster than Zoltan for each
run, and D1 uses 12% fewer colors than Zoltan in the 128 rank
run. For com-Friendster, D1 is roughly 7x faster than Zoltan

Fig. 2: Zoltan, D1, and D1-2GL strong scaling
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in the 128 rank run, but D1 uses 26% more colors than Zoltan
in that case. For smaller rank runs, D1-2GL

In general, it is difficult for a multi-GPU approach to
show good strong scaling over a single GPU run due to
communication overhead. Graphs that can fit into a single
GPU do not provide sufficient work and parallelism for large
numbers of GPUs, and multi-GPU execution incurs communi-
cation overhead. However, on average average over what? all
graphs? all rank configurations for these two graphs?, D1
shows a 5.35x speedup over the single GPU run on 128 GPUs,
while the D1-2GL approach sees an average speedup of 4.5x.
On small or highly skewed graphs that fit on a single GPU we
do not see speedup from a single GPU, due to communication
overhead or underutilizing the GPUs.
what does ’on average’” mean in the next sentence? average
over all graphs using 128 ranks? average on these two
graphs over all rank configurations? On average, DI
sees a 60% increase in the number of colors from a single
GPU run, while D1-2GL sees an average 61% increase. what
about Zoltan? Such large color usage increases are mostly
due to the Mycielskian19 and Mycielskian20 graphs. These
graphs were generated to have known minimum number of
colors (chromatic numbers) of 19 and 20 respectively, and
our single GPU runs use 19 and 21 colors to color those
graphs. Both our approaches and the Zoltan implementation
have trouble coloring these graphs, but our D1 and DI-
2GL implementations color these graphs in fewer colors than
Zoltan. Without these two outliers, D1 sees an average 7.54%
increase in color usage, while D1-2GL sees a 7.24% increase.
increase over what? single GPU?

Fig. 3: D1 and DI-2GL communication time (comm) and
computation time (comp)
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Figure 3 shows the total communication and computation
time associated with each run. For the Queen_4147 graph,
the computation dominates the total execution time for larger
numbers of ranks. As the number of ranks increases, there
is no computational benefit to adding more GPUs to the
problem. the previous two sentences seem contradictory.
If computation time is dominating, adding GPUs should
help, right? Is computation time really dominating, or is
it kernel launch time? with large numbers of ranks, are
we doing as well as is possible given the device latency?
The com-Friendster graph also shows computational scaling,
but in this case communication is the dominant factor of the
execution time.

C. Distance-1 Weak Scaling

This weak-scaling study was conducted with uniform 3D
hexahedral meshes. The meshes are partitioned with block
partitioning along a single axis, resulting in the mesh being
partitioned into slabs. Larger meshes were generated by dou-
bling the number of elements in a single dimension in order
to keep the per-process communication and computational
workload the same.

Fig. 4: Distance-1 weak scaling on 3D mesh graphs
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Figures 4a and 4b show that the weak scaling behavior for
both D1 and D1-2GL is very consistent. For both methods,
there is an overall increase of roughly 0.04 seconds for each
workload. There is no clear-cut winner between the two
methods here; both are essentially the same. For these graphs,
D1-2GL does reduce the number of rounds of communication
how much?, but the extra communication overhead offsets this
savings such that the execution time is very similar to D1. are
we sure that it is extra communication overhead and not
something else? do we have a comm vs comp breakdown
for D1-2GL? Additionally, due to the regular structure of
these graphs, D1 does not use many rounds of communication,
so any time savings are minimal. this discussion is weak; can
we back it up with numbers?

In general, the results section doesn’t do a good job of
comparing D1-2GL to D1. We don’t show the reduction
in number of rounds that we hypothesized. We don’t
characterize how much additional communication volume
is incurred by the extra ghost layer. We don’t show that
the performance similarity is due to extra communication
volume rather than additional ghost traversal. The only
detailed comparison is done in this weak-scaling section

on graphs that don’t necessarily need many rounds of
communication (somewhat nullifying the effect of the extra
ghost layer).

D. Distance-2 Performance

Fig. 5: Performance profiles comparing D2 on 128 Tesla V100
GPUs with Zoltan’s distance-2 coloring on 128 Power9 cores
in terms of (a) execution time and (b) number of colors
computed for graphs in Table I axes need labels
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We compare our D2 method on 128 Tesla V100 GPUs
with Zoltan’s distance-2 coloring method on 128 Power9 cores
using eight graphs from Table I: Bump_2911, Queen_4147,
hollywood-2009, europe_osm, rgg_n_2_24 sO, ldoor, Au-
dikw_1, and soc-LiveJournall. Figure 5a shows that D2 com-
pares well against Zoltan in terms of execution time. Zoltan’s
distributed algorithm uses local distance-2 coloring and a
conflict detection scheme that requires only a single ghost
layer. Additionally, to reduce conflicts, the boundary vertices
are colored in small batches. The Zoltan is faster than D2
on three graphs: Audikw_1 (1.18x), hollywood-2009 (2.82x)
and soc-LiveJournall (6.6x). In the best case, we see a 4.5x
speedup over Zoltan on the europe_osm graph. Figure 5b
shows that D2 has similar color usage to Zoltan. D2 and
Zoltan each produce the lowest number of colors in half of the
experiments. In all but one of the cases in which Zoltan uses
fewer colors, D2 uses no more than 10% more colors. D2 uses
46% more colors with the soc-LiveJournall graph than Zoltan.
These color usage differences are due to the differences in the
D2 approach and Zoltan’s distance-2 approach. We use vertex-
based conflict detection, and because of that we require two
ghost layers. Additionally, we do not color boundary vertices
in rounds, so we expect D2 to have to resolve more conflicts.
the previous three sentences are weak. Sentence 1: ”’the
usage differences are due to the approach differences”
doesn’t say anything. Sentence 2: Vertex-based conflict
detection doesn’t require two ghost layers; the additional
two-hop check requires two ghost layers, right? But we
don’t show that having two ghost layers increases the
number of colors; if anything, I thought it might reduce
the number of colors as each processor has more info with
which to make decisions. Sentence 3: we haven’t shown
that D2 requires more conflict resolution, nor have we
shown that more conflict resolution results in more colors.



For D1, we argued that KokkosKernels gave more colors
in its local coloring than Zoltan did; is D2 different?

E. Distance-2 Strong Scaling

Fig. 6: Zoltan and D2 strong scaling
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Figures 6a and 6b show the strong scaling behavior of D2
on europe_osm and Queen_4147. These graphs were chosen
to highlight features of D2’s scaling behavior. For both graphs,
D2 has a spike in the execution time at 8 ranks, for two
different reasons. For europe_osm, the spike is primarily
caused by our vertex-based distance-2 conflict detection. why?
what’s happening? For Queen_4147 the spike is due to
communication overhead, which is likely due to the two ghost
layers that D2 requires. ”likely”’? what’s happening? After
the spikes, both D2 and Zoltan scale similarly, and both
implementations use a similar number of colors.

D2 on average overall all graphs? and MPI rank con-
figurations? same edits needed as with D1 exhibits 9.32x
speedup over a single GPU, and on average ditto D2 uses
2.7% more colors than the single GPU run. The speedup is
likely greater with D2 than D1 because the distance-2 coloring
problem is more computationally intensive, and thus benefits
more from adding GPUs.

Fig. 7: D2 communication time (comm) and computation time
(comp)
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Figures 7a and 7b show the source of the spikes in the
execution time. For europe_osm, the primary factor in the
spike is conflict detection. We use a vertex-based conflict
detection scheme in D2 which is similar to our conflict
detection in D1 and D1-2GL. For this graph, there is an
imbalance in the eight-rank run that causes conflict detection
to happen very slowly. The Queen_4147 graph has a similar
spike, but it is caused by communication on eight ranks. The

D2 method currently requires a second ghost layer, which
increases communication overhead. this explanation is weak;
isn’t the overhead higher on more ranks? why is the eight-
rank case special?

F. Distance-2 Weak Scaling

Fig. 8: Distance-2 weak scaling on mesh graphs
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Figure 8 shows the weak scaling behavior for D2. The same
hexahedral mesh graphs were used as in the D1 weak scaling
experiments. discussion needed. why does weak scaling
break down for the larger meshes? we did not see that
behavior with D1 or D1-2GL.

VI. FUTURE WORK

We plan to extend our distance-2 coloring to partial
distance-2 coloring to support automatic differentiation ap-
plications. In partial distance-2 coloring, coloring criteria are
applied only to vertices that are two hops apart. Since the
colors of adjacent vertices are not considered, a proper partial
distance-2 coloring may not be a proper distance-2 or even a
proper distance-1 coloring. Our goal is to deliver a complete
suite of MPI+X algorithms for distance-1, distance-2, and
partial distance-2 coloring in the Zoltan2 package of Trilinos.
This work’s target application is the optimization of the com-
putation of sparse Jacobian [21] and Hessian matrices [14],
both of which are used in automatic differentiation and other
computational problems [3].
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