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2 Non-aqueous Flow Batteries

Project Goal: Build a better flow battery* by targeting (I) Energy Density (2) Materials
Cost (3) Mechanisms of Capacity Fade

Energy DensityRFB = 'AnFVcelicactive

EDAQ = 1/2 I F I 3cell2active — I .5F

EDMetIL = 1/22F2cell3active = 6.0F Low Cost Materials Viscosity

ElDmacm = 1/22F2cel10. I active — 0.2F

EDRedTarg = 1/2 I F3cell.5active = 7.5F High Energy Density

Surface Area Kinetics `,11:

*>4.4 mol e-/L according to Darling et al., Energy Environ. Sci., 2014, 7,
3459-3477.
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3 Non-aqueous Flow Batteries-Metal Coordination Complexes (MCCs)

EIDNICC = 1/22F2.2ceii0.2active — O.4F Low Cost Materials Crossover

First Generation redox reactions (2.2V)

Catholyte: Fe(Bipy)3(BF4)2 Fe(Bipy)3(BF4)3 + e-

Anolyte: Ni(Bipy)3(BF4)2 + 2 e- Ni(Bipy)3

Second Generation all-iron battery
minimizes issues with crossover and
utilizes non-innocent ligands.
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Next Generation Lower Symmetry, Higher Solubility
EIDNICC = 1/22F2.6ceii I active — 2.6F Tunable Jgands,WiderVoltage

(1) Mun, Lee, Park, Oh, Lee, Et Doo, Electrochem. Solid-State Lett., 2012, 6, A80-A82 (2) Mn, Oh, Park, Kwon, Kim, Jeong,
Kim, Et Lee, J. Electrochem. Soc., 2018, 165, A215-A219 (3) Hogue Et Toghill, Curr. Op. Electrochem., 2019, 18, 37-45.



4 I Second Generation Salt Study

• Argon Glovebox, 0.5 M electrolyte, 0.2
M MCC, PC, unsupported AEM, I 0
mA cm-2

• TEA+ is superior to TBA±
• BF4- is a superior anion
• TEABF4: 96.5 % CE
• A by-product forms upon cycling
• Common decomposition mechanisms:

ligand shedding and oxidative
degradation

• Built RFBs with impure Fe(bpy)3(BF4)2
• 30 % impurity = 30% decrease in EY,

CE, capacity
• Currently in the process of

characterizing impurity
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5 Tuning Bipyridine Ligands

Goal: produce a higher voltage symmetric RFB

Samsung RFB

-I 2 TFSI-

N'''''' NI 
%%%%%%%% N /

NrFhN

2.2 V 1 .

'—y—'

Fe(II)/(111)

Our complexes Substituent inductive effects

7 2 BF4
/

/

R = CF3

CO2Me

Br

H

Me

tBu

OMe

NH2

Electron-withdrawing
More positive E112

More difficult to oxidize Fe(II)

Electron-donating

More negative E1 /2

Easier to oxidize Fe(II)

Movement of e- density bipyridine: traditional rr-
with substituents acceptor ligand



6 I Ligand Effects on Redox Potentials
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Fe(bpytBu)3(BF4)2

AP-̀ 

-Fe(bpyMe)3(BF4)2
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/

Fe3+/2+ E112 (V) Fe2+/+ E1/2 (V) AE1 n (V)

Fe(bpyCF3)3(BF4)2 1.65 -0.63 2.28

Fe(bpyCO2Me)3(BF4)2 1.53 -0.68 2.21

Fe(bpyBr)3(BF4)2 1.43

Fe(b130y)3(BF4)2 1.25 -1.12 2.37

Fe(bpytBu)3(BF4)2 1.09 -1.19 2.28

Fe(bpyMe)3(BF4)2 1.07 -1.25 2.32

Fe(bpyOMe)3(BF4)2 0.94 1.27 2.21

Fe(bpyN H2)3(BF4)2 0.43

1-1-1

Fe(II)/(111) ligand

Inductive effects change ease oxidation
EWGs shifted positively by up to O.
EDGs shifted negatively by up to O.

Fe(II) and ligand-centered redox shifted

voltage
gap

of Fe(II)
4 V
8 V
together
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7 I Asymmetric 2.6V Fe-Ni RFB
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Built Fe(bpyCF3)3(BF4)2/Ni(bpy)3(BF4)2 to understand stability limits of cathode

1.0 0.5 D.4 -0.5 -1.4

Potential (V) vs. Ag/AgCl

Average CE and EE:
90.6 and 78.0 % over 20

cycles

-1.5

Ca
pa
ci
ty
 (
m
A
h
)
 

3.0

2.0  

45

Next Gen

1 10 210 410 50 60

Time

40 -

35 -

30 -

25 -

20 -

15 -

10 -

❑

❑

❑

E 06

• OA

• 0.2

0.0

-0 2

-0 4

0 0
0 ❑

0❑
❑

❑

Potential (V) v. AG/A9C1

❑ ❑
❑ ❑ ❑ ❑ ❑ ❑

Ef
fi
ci
en
cy
 (
1)
0 

T
❑

2 8 8. 02 o 0 0 0 0 0
L. L. 

6 6 L. A A ABel

0

80-

1 Next Gen
5 10'

Cycle

O 0 00D
O 0000.

A. A a t,

15
r

CE
VE
EE

20

Catholyte showed cycling
stability at high voltage but

anolyte degraded, resulting in
capacity fade

5

0 5 10

Cycle

15 20



8 I Future Directions

We learned that:
• Crossover is less observed in symmetric RFBs
• Ni(bpy)3(BF4)2 has poor stability as an anolyte
• Symmetric Fe(bpyR)3(BF4)2 redox couples shift together

Pseudo-symmetric RFBs may extend voltage window, show low crossover, and solve anolyte stability issue
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9 I External Collaborations

UNIVERSITY COLLABORATORS

Mitch Anstey

Ellen Matson

Christopher Bejger

Davidson College

University of Rochester

UNC Charlotte

Metal-oxide Clusters as Charge Carriers for Redox Flow Batteries

structural modifications characterization electrochemical
(synthesis) analysis

organic- and heterometal-   analysis of stability, solubility,
functionalization of clusters and electrokinetic parameters

Structure-activity Relationships

feedback loop to yield informed
design strategies

Synthetic modifications yield
optimization of properties for

high energy densities

PROJ ECT

Redox molecules

Redox molecules

Redox molecules

[3]radialene

Unstable
in air

Tris(dialklyamino)- Hexacyano- Asymmetric-
cyclopropenium [3]radialene dianion [3]radialene dianion

Irreversible
oxidation
in water

NC

NC. CN

CN

CN CN

Reversible
oxidation
in water

MeO2C

NC CO2Me

CN

CN CN

Enhanced
solubility &
performance



10 Accomplishments

Technical Presentations
H. Pratt, L. Small,T.Anderson "Diagnostics for failure modes in non-aqueous flow batteries" 2366 ECS Meeting,Atlanta, GA, October
13-17, 2019.

Invited Talks
H. Pratt, L. Small,T.Anderson "Elucidating failure modes in non-aqueous flow batteries" 2020 Spring MRS Meeting and Exhibit,
Boston, MA, November 28-December 4, 2020.

Patents issued
D. Sava Gallis, H. Pratt,T.Anderson, N. Hudak"Metal-Organic Framework Electrodes for Sodium lon Batteries" U. S. Patent
10,497,971, December 3, 2019.

Journal Publications
L.VanGelder, H. Pratt,T.Anderson, E. Matson "Surface functionalization of polyoxovanadium clusters:generation of highly soluble
charge carriers for nonaqueous energy storage" Chemical Communications, October 18, 2019, vol. 55, 12247-12250,
https://doi.org/10.1039/C9CC05380H 
N.Tu rner, M. Freeman, H. Pratt,A. Crockett, D. Jones, M.Anstey,T.Anderson, C. Bejger "Desymmetrized hexasubstituted [3]radialene
anions as aqueous organic catholytes for redox flow batteries" Chemical Communications, March 4, 2020, vol. 56, 2739-2742,
https://doi.org/10.1039/C9CC08547E 
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