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2 I Non-aqueous Flow Batteries

Project Goal: Build a better flow battery* by targeting (1) Energy Density (2) Materials
Cost (3) Mechanisms of Capacity Fade
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*>4.4 mol e’/L according to Darling et al., Energy Environ. 5ci., 2014, 7,
3459-3477.




Non-aqueous Flow Batteries-Metal Coordination Complexes (MCCs)

EDpyce = 22F2.2_,0.2 = 0.4F Low Cost Materials Crossover

First Generation redox reactions (2.2V)
Catholyte: Fe(Bipy);(BF,), = Fe(Bipy);(BF,); + e
Anolyte:  Ni(Bipy);(BF,), + 2 e = Ni(Bipy);
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Second Generation all-iron battery
minimizes issues with crossover and
utilizes non-innocent ligands.
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(1) Mun, Lee, Park, Oh, Lee, & Doo, Electrochem. Solid-State Lett., 2012, 6, A80-A82 (2) Mn, Oh, Park, Kwon, Kim, Jeong,
Kim, & Lee, J. Electrochem. Soc., 2018, 165, A215-A219 (3) Hogue & Toghill, Curr. Op. Electrochem., 2019, 18, 37-45.



4 | Second Generation Salt Study
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5 I Tuning Bipyridine Ligands

Goal: produce a higher voltage symmetric RFB

Samsung RFB
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Our complexes

- —| 2 BF,

R=CF;
CO,Me
Br
H
Me
'Bu
OMe
NH,

Movement of e- density
with substituents

Substituent inductive effects

Electron-withdrawing
More positive E, /,
More difficult to oxidize Fe(ll)

Electron-donating

More negative E,,
Easier to oxidize Fe(ll)

bipyridine: traditional -
acceptor ligand
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Normalized Current

Current Density (mA cm)

Ligand Effects on Redox Potentials
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Fe3*/2 Eq/; (V) FeZ/* E/ (V) AE/, (V)
Fe(bpyCF)s(BF,), 1.65 0.63 2.28
Fe(bpyCO,Me)s(BF.), 1.53 :0.68 2.21
Fe(bpyBr);(BF,), 1.43
Fe(bpy)s(BF,), 1.25 1.12 2.37
Fe(bpy'Bu)s(BF.), 1.09 1.19 2.28
Fe(bpyMe)s(BF ), 1.07 1.25 2.32
Fe(bpyOMe)s(BF,), 0.94 1.27 2.21
Fe(bpyNH,)s (BF,), 0.43
" -
Fe(ll)/ (1) ligand voltage
gap

Inductive effects change ease oxidation of Fe(ll)
EWGs shifted positively by up to 0.4 V
EDGs shifted negatively by up to 0.8 V
Fe(ll) and ligand-centered redox shifted together



7 I Asymmetric 2.6 V Fe-Ni RFB

Current Density (mA cm?)

Fe(bpyCF;);(BF,), had highest catholyte E,, of 1.65V (0.4V increase)
Built Fe(bpyCF;);(BF,),/Ni(bpy);(BF,), to understand stability limits of cathode
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Catholyte showed cycling
stability at high voltage but
anolyte degraded, resulting in

capacity fade



8 | Future Directions

We learned that:

* Crossover is less observed in symmetric RFBs

* Ni(bpy);(BF,), has poor stability as an anolyte

* Symmetric Fe(bpyR);(BF,), redox couples shift together

Pseudo-symmetric RFBs may extend voltage window, show low crossover, and solve anolyte stability issue
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Metal-oxide Clusters as Charge Carriers for Redox Flow Batteries

structural modifications characterization electrochemical
(synthesis)
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organic- and heterometal- analysis of stability, solubility,
functionalization of clusters and electrokinetic parameters I

% Structure-activity Relationships ‘

Synthetic modifications yield
feedback loop to yield informed optimization of properties for
design strategies high energy densities

PROJECT
Redox molecules
Redox molecules

Redox molecules
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10 I Accomplishments

Technical Presentations

H. Pratt, L. Small, T. Anderson “Diagnostics for failure modes in non-aqueous flow batteries” 236 ECS Meeting,Atlanta, GA, October
13-17,2019.

Invited Talks

H. Pratt, L. Small, T. Anderson “Elucidating failure modes in non-aqueous flow batteries” 2020 Spring MRS Meeting and Exhibit,
Boston, MA, November 28-December 4, 2020.

Patents Issued
D. Sava Gallis, H. Pratt, T. Anderson, N. Hudak “Metal-Organic Framework Electrodes for Sodium lon Batteries” U. S. Patent
10,497,971, December 3,2019.

Journal Publications

L.VanGelder, H. Pratt, T. Anderson, E. Matson “Surface functionalization of polyoxovanadium clusters: generation of highly soluble
charge carriers for nonaqueous energy storage” Chemical Communications, October 18,2019, vol. 55, 12247-12250,
https://doi.org/10.1039/C9CC05380H

N.Turner, M. Freeman, H. Pratt,A. Crockett, D. Jones, M. Anstey, T. Anderson, C. Bejger “Desymmetrized hexasubstituted [3]radialene

anions as aqueous organic catholytes for redox flow batteries” Chemical Communications, March 4,2020, vol. 56, 2739-2742,
https://doi.org/10.1039/C9CC08547E
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