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Abstract

Rigorous uncertainty quantification requires integration of predictions over many models
according to their respective degrees of plausibility using Bayesian inference or a close ap-
proximation of it. When we seek to obtain predictions from abstract algorithms using small
or otherwise limited datasets, it is particularly important for inference to begin with well-
justified prior belief. Algorithmic Probability and Minimum Description Length are closely
related theories that may be understood within the Bayesian paradigm to derive prior be-
lief in algorithms from the amount of information contained their encodings. A primary
challenge to apply this perspective to high-parameter architectures is how to formulate
information-efficient model encodings and then, given encodings, how to find models with
high posterior probability from an information-suppressing prior.

We examine an algorithmic framework to merge subspace-constrained inference over con-
tinuous parameters with a discretized prior that is only nonzero at a few discrete values per
parameter. This allows us to constrain and control the amount of information that may be
present in an individual model. We capture the approximate shape of the corresponding
posterior using transformations on approximate first moments, which we then cast as a
Laplace approximation, despite the fact that the actual posterior is neither continuous nor
differentiable.

Keywords: machine learning, Bayesian inference, uncertainty quantification, complexity,
Algorithmic Probability, Minimum Description Length, moment-transformation approxi-
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1. Introduction

Our primary aim in this work is to understand how to efficiently obtain reliable uncertainty
quantification in automatic learning algorithms with limited training datasets. Standard
approaches rely on cross-validation to tune hyper parameters. Unfortunately, when our
datasets are too small, holdout datasets become unreliable—albeit unbiased—measures of
prediction quality due to the lack of adequate sample size. We should not place confidence in
holdout estimators under conditions wherein the sample variance is both large and unknown.
More poigniantly, our training experiments on limited data (Duersch and Catanach, 2021)
show that even if we could improve estimator quality under these conditions, the typical
training trajectory may never even encounter generalizable models.

Bayesian inference provides a rigorous theoretical framework to obtain well-justified un-
certainty in predictions. In the context of automatic learning algorithms, where we seek
to obtain predictions from otherwise arbitrary programs, suppressing unnecessary complex-
ity in abstract predictive architectures requires constructing prior belief from a concrete
notion of complexity suppression. The work of both Solomonoff (1960, 1964a,b, 2009) on
Algorithmic Probability (AP) and Rissanen (1983, 1984) on Minimum Description Length
(MDL) associate complexity with information, originally cast in terms of Shannon’s entropy
(Shannon, 1948) or as a change in belief with the Kullback–Leibler divergence (Kullback and
Leibler, 1951; Kullback, 1997; MacKay, 2003; Ebrahimi et al., 2010; Duersch and Catanach,
2020). The key distinction between AP and MDL is that AP only restricts belief in plausible
programs to those that are consistent with training data whereas MDL typically optimizes
a single model, minimizing the information required to store the description combined with
the information requires to store residual information in training data. Solomonoff’s theory
effectively computes the posterior-predictive distribution over programs that reproduce a
binary sequence, whereas Rissanen’s picture optimizes the Maximum À Posteriori (MAP)
model. Expectation formulations of MDL McAllester (1999), however, can be understood
as Variational Inference (VI) approximations of the posterior distribution for which the
prior is taken from AP. Grünwald and Roos (2019) provide a recent overview of MDL.

Since it is not tractible to propose and evaluate arbitrary predictive programs, we can
leverage the expressive potential of neural networks to describe diverse phenomena while in-
corporating complexity-suppressing prior belief by regarding a neural network as an abstract
interpreter that is capable of accepting encoded parameter states to generate predictions.
We typically regard a neural network as a continuous function with real parameters ,θ ∈ Rd,
floating-point implementations not withstanding. If, however, we can efficiently encode a di-
verse set of discrete parameter states, then we can apply an analogous form of Solomonoff’s
prior during training.

We consider doing this by first constructing a diverse set of representable values, R =
{rj | j ∈ [m]}, that each parameter may take. We can then assign each value an efficient
encoding so that short codes are spread over a wide domain of parameter states. Let
the encoding length of the representable value rj be given by `(rj), measured in natural
information units (nats). Indexing network parameters by i ∈ [d], our prior belief becomes

p(θ) =

d∏
i=1

m∑
j=1

e−`(rj)δ(θi − rj).
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This produces an inference problem with a continuous likelihood function and discretized
prior belief.

We require a training scheme to discover efficient parameter representations that si-
multaneously limits complexity while promoting agreement with our data. In principle,
robust posterior integration would optimize learning efficiency and eliminate the need for
cross-validation while also providing strong uncertainty quantification from small datasets.

1.1 Our Contributions

First, we propose a parameter discretization that allows representable parameter states
to gradually increase in encoding length to obtain increases in specificity only as needed
while still approximating a wide variety of outcomes. Building on Marzouk’s Likelihood
Informed Subspaces (LIS) (Marzouk and Najm, 2009; Cui et al., 2014), we then discuss
a quadrature integration method to approximate the local structure of likelihood within
a critical subspace near an expansion point. This method only requires computing loss
gradients in the typical fashion with backward propagation.

We can then merge the continuous likelihood formulation with discretized prior belief
to obtain a discretized posterior. To capture the shape of this posterior, we propose an
approximation method similar to that of Laplace, but derived from mean transformations
that can be efficiently computed over discrete distributions. We can formulate a minimal
information perturbation to the posterior belief for which an approximate first moment
becomes a fixed point of a Rao-Blackwellized moment update. We can then interpret the
distribution perturbation as a weak gradient of a Laplace posterior approximation. This
allows us to capture the local shape of the posterior distribution using a strategy similar
to that of the likelihood approximation. Our posterior approximation method produces
enough information to formulate a precision matrix as diagonal plus low rank. In contrast
to L2 regularization, which always compels the posterior toward the origin, we show how
this framework compels parameters towards simple representations when the likelihood is
broad, but allows increased specificity as the likelihood becomes sharp.

Finally, we propose a training algorithm to incorporate these techniques into a quasi-
Newton posterior optimization scheme. This report includes early test results and com-
parisons with standard training using regularized stochastic gradient descent (SGD) and
cross-validation. When we construct an ensemble of models with our training algorithm,
the resulting averaged predictions out-perform any individual model in the set.

Section 2 provides background discussion, notation, and analysis of the key methods
we develop. Section 3 combines these approximation techniques into key training algo-
rithms. Section 4 provides a review of our numerical results, discusses key considerations
our investigation uncovered, and summarizes our main results.

2. Localized Distribution Approximation and Integration

In the Bayesian paradigm, we regard loss as the negative log likelihood (NLL), which we
will approximate as J(θ) ≈ − log p(D | θ). Likewise, we may regard a regularization term
as the negative log prior (NLPr) so that regularized loss becomes the negative log posterior
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(NLPo), up to a constant offset,

K(θ) ≈ − log p(D | θ)− log p(θ) = − log p(θ | D)− log p(D).

Table 1 provides a quick reference for additional notation.

The difficulty we encounter when performing Bayesian inference on a high-dimensional
abstract machine learning model stems from unjustified prior belief. For example, L2 regu-
larization may be understood as deriving from a standard normal prior, p(θ) = N (θ | 0, I),
but the resulting Maximum À Posterior (MAP) model may still exhibit memorization of
training data. This is due to excessive creation of algorithmic information that results from
inference with a loose prior in many dimensions. Although such priors are simple to de-
scribe, the model evidence p(D) becomes very small since normalization in high dimensions
generates a shallow distribution spread over a large domain, with most models poorly fitting
our data.

2.1 Bisected Gaussian Codes

By constraining parameter representations to values of increasing specificity, it may be
possible to efficiently represent a wide variety of outcomes. We hypothesize that performing
inference within the space of representations, thereby efficiently constraining our belief as
needed, the model evidence for more simple restrictions may be much higher and dominate
over the increase in information required to articulate them.

Early work on representation simplification goes back to Hinton and van Camp (1993).
Hinton construct discrete encodings from equispaced bins on a standard normal distribution.
By applying Shannons Source-Coding Theorem, we know that for a long enough sequence of
realizations, an encoding may be constructed to become arbitrary close to the probabilities
specified within each bin. This construction is well-approximated by L2 regularization.

Other discretization approachs include binary quantization (Courbariaux et al., 2015,
2016; Rastegari et al., 2016), ternary quantization (Mellempudi et al., 2017; Zhu et al.,
2017), and fixed-point quantization (Lin et al., 2016). Fixed point, i.e. fixed precision as
opposed to floating point, representations (Courbariaux et al., 2014; Lin et al., 2016) can
be more generalizable if the network is trained to account for the representation, rather
than rounding after the fact (Rastegari et al., 2016; Lin and Talathi, 2016). A similar
approach employs stochastic rounding, (Gupta et al., 2015; Gysel et al., 2016; Lin and
Talathi, 2016), which associates an affine probability distribution with intermediate values
between representations. Given a value in the interval x ∈ [a, b], round to a with probability
p(a) = x−a

b−a . Otherwise, round to b.

Ternary Neural Networks with Fine-Grain Quantization (Mellempudi et al., 2017). A
network is pretrained according to standard practices and then a threshold ∆ is set such
that Ŵi = sign(Wi) and we minimize the error of the ternary quantization {−α, 0, α} so
that (α,∆) = argmin ‖W −αŴ‖F . This doesn’t allow training to account for parsimonious
snapping.

Blier and Ollivier (2018) investigates description length of deep learning models using
prequential parameter encodings. Baldassarre et al. (2012); Han et al. (2015, 2016); Louizos
et al. (2017) use structured sparsity penalty functions, sensitivity-based pruning, and other
forms of sparsity enforcement to reduce trained model complexity.
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Table 1: Notation
D Training dataset

d Number of model parameters

θi Model parameters, i ∈ [d]

m Number of representable values

rj Representable values, R = {rj | j ∈ [m]}
`(rj) Representation lengths in nats

p(θ) Prior belief, p(θ) =
∏
i

∑
j e
−`(rj)δ(θi − rj)

p(D | θ) Likelihood

p(θ | D) Posterior

τ Reparameterization length scales

z Rescaled parameters, θ = z ~ τ
J(z) Local quadratic approximation of negative log likelihood

z0 Quadratic expansion point

J0 Constant term, J(z0)

g0 Gradiant term, ∇z J(z0)

H Hessian (precision matrix), H ij = ∂2

∂zi∂zj
J(z)

k Tracked subspace rank

U Orthonormal column basis, U ∈ Rd×k so that UTU = I

C Core matrix of low-rank precision, H = UCUT

K(z) Local quadratic approximation of negative log posterior (unnormalized)

K0 Constant term, K(z0)

c0 Gradiant term, ∇zK(z0)

Λ Posterior precision matrix

∆ Posterior precision core in low-rank approximation, Λ = I +U∆UT

δ Diagonal of increase in posterior precision, ∆ = diag(δ)

m(z | ẑ) Moment-mapping distribution for posterior approximation

q(D | z) Local likelihood approximation, q(D | z) = exp(J(z))

q(z | D) Local posterior approximation, q(z | D) ∝ exp(K(z))

r(z) Current view from which expectations and approximations are computed

The discretization we propose is derived by articulating intervals with a sequence of
binary digits. We equate each 1-bit extension to the description with a corresponding
elimination of an interval of belief containing half of the remaining probability that starts
from a standard normal distribution. Thus, the KL divergence from each intermediate
distribution to the update given by reading the next bit is exactly 1-bit also. We then
associate each subinterval with a single value at the median. Figure 1 shows selected
intervals and plots the corresponding representations for two parameter dimensions. change
in the distribution

In order to efficiently approximate posterior-predictive integrals needed to obtain robust
predictions, we require a means to both discover and articulate the shape of local domains
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Figure 1: Left: Illustration of several probability distributions over subintervals that are
obtained by sequentially bisecting a Gaussian distribution into equal-probability
halves. The resulting distribution for each subinterval is then approximated as
a single point located at the median, what would be the next bisection location.
Right: The corresponding discrete prior distribution in two dimensions. The
prior probability of each point is both the probability contained in the respective
subinterval and, equivalently, the prior weight from representation length as a
sequence of binary decisions, exp(−`(rj)). This fractal-like decomposition of
space distributes representable values throughout the domain with a coherent
association between specificity and probability.

with high likelihood. LIS constrains exploration to the dimensions for which changes in
parameters are most sensitive. Then, our next task will be to incorporate discretized prior
belief into an approximate posterior over such domains.

Clearly, the actual posterior takes nonzero probability mass at every combination of
representations and, thus, an exact description is intractible, having md components. In-
stead, we only need to capture the approximate shape of the posterior in domains that
substantially contribute to the posterior-predictive integral. Writting our local likelihood
approximation as q(D | z), we will compute a corresponding posterior approximation

q(z | D) ≈ q(D | z)p(z)∫
dz q(D | z)p(z)

.

2.2 Bayesian inference and integration

Although we seek to obtain an efficient approximation of plausible models through infer-
ence, our primary objective remains to propagate justifiable model uncertainty through to
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predictions on new data by approximating the integral of the posterious distribution over
the corresponding predictions obtained from individual models. Thus, one of our primary
concerns is how we understand efficient integration in approximate inference. We will also
see that efficient integration directly feeds into variational inference optimization for local
posterior approximations. Therefore, we spend some time examining the properties we
desire in a belief approximation and corresponding integral.

In high-dimensional parameter spaces, some form of restricted exploration is unavoid-
able. Suppose we have d parameter dimensions, but we can only afford to evaluate the loss
function O(k) times where k is the smallest hyperplane dimension that contains all of the
evaluation locations. Although we may be able to obtain high-order integral approxima-
tions with this hyperplane, the fact remains that after integration, all orthogonal dimensions
have only been probed at a single coordinate. Since we are considering high-dimensional
architectures, d � k, we are forced to approximate posterior integrals in most dimensions
with what may be regarded as a 1-point quadrature in those dimensions.

The best we can do in this setting is ensure that the evaluation point is a Gaussian
quadrature. It is trivial to show that for a 1-point quadrature approximation to exactly
integrate 1st-degree polynomials, the evaluation point must be located at the mean of the
distribution, and the corresponding weight must be 1.∫

dxp(x)f(x) ≈ f(µ) where µ =

∫
dxp(x)x.

Within the statistics literature, this simplifying approximation and a variance reduction
technique is known as Rao-Blackwellization (Rao, 1945; Blackwell, 1947; Casella and Robert,
1996). Fortunately, we are still free to choose the best k dimensions within which we can
afford a more efficient integral approximation with a higher-order quadrature formula.

2.3 Likelihood Approximation

Since we are primarily concerned with small data regimes, where it is computationally feasi-
ble to iterate over our full training dataset many times, we can afford to compute likelihood
approximations that extracts curvature from a single training example through several eval-
uations. Not only does this allow us to integrate critical dimensions more efficiently, it also
provides a means to refine the basis for the dimensions that benefit most from high-order
integration.

The key properties we require to approximate the local likelihood structure are the abil-
ity to articulate a center, critical dimensions, and corresponding length scales. The simplest
analytic NLL construction with these properties is quadratic. In anticipation of reparam-
eterization, which will be useful for our posterior approximation, we cast the likelihood in
terms of a reparameterization, θ = τ ~ z, where the vector τ specifies fixed length scales
in each coordinate and z indicates the parameters to our quadratic approximations. Thus,
our NLL is approximated as − log p(D | θ = τ ~ z) ≈ J(z) where

J(z) = J0 + (z − z0)Tg0 +
1

2
(z − z0)TH(z − z0).

The corresponding likelihood approximation, q(D | z) = exp (−J(z)), is a form of the
Laplace approximation. Since the most sensitive dimensions have a small covariance, or

8



CIS-LDRD Project 222359, Final Technical Report

high precision, we only retain a low-rank precision approximation, H ≈ UCUT , where
U ∈ Rd×k has orthonormal columns, UTU = I, and C ∈ Rk×k. Daxberger et al. (2021)
also discusses Laplace approximations for Bayesian deep learning.

Note that we track low-rank precision, rather than low-rank covariance, because the
improper distribution that follows is simple to describe and evaluate. Low-rank covariance
is not meaningful without restricting the distribution to the subspace containing positive
eigenvalues.

It is also important for us to track curvature in drift dimensions that exhibit shallow
local curvature, but at distances that are long enough that they should not be dropped.
Otherwise, disregarding cumulative likelihood improvements in such dimensions would sev-
erly inhibit our ability to keep high likelihood domains within our quadratic approximation.
To do this, the algorithm we propose will record important parameter states from the most
recent epochs, say Z =

{
z(e), z(e−1), . . . ,z(e−t)

}
. This will allow us to extend the basis

U as needed with additional orthonormal columns U+ to ensure that each tracked state
remains in the extended span, Z ⊂ span([U U+]).

We can approximate the precision using only likelihood gradients, −∇z log p(D | z) ≈
∇z J(z). Since we have ∇z J(z) = g0 + UCUT (z − z0), integrating a local distribution
centered at z0 easily recovers the corresponding gradient term at the expansion point z0.
Further, if we compute the gradient at symmetric evaluation points within a hyperplane,
so that z± = z0 ±Uϕ with the vector ϕ ∈ Rk specifying the displacement in the basis U ,
we have

g± = ∇z J(z±) = g0 ±UCϕ.

Averaging over pairs gives g0 and projecting the difference onto U allows us to evaluate
matrix-vector products with the precision core matrix

1

2
UT (g+ − g−) = Cϕ.

2.4 Sigma Points

By evaluating ϕ at each standard basis vector, we can easily reconstruct each column of C
in our NLL approximation. This is equivalent to evaluating a function at the sigma points
proposed in the Unscented Transform (Uhlmann, 1995), except we restrict our evaluations
to a critical subspace. We only need to keep the symmetric component of C since it provides
the only contribution to the symmetric innerproduct in the quadratic approximation.

This construction can be framed as an equal-weight quadrature to simplify our numerical
approximation of the integral of a unit-normal distribution against another function

N [f ] =

∫
dϕN (ϕ | 0, I)f(ϕ) and

Q[f ] =
1

2k + 1

(
f(0) +

k∑
i=1

f(eiρ) + f(−eiρ)

)

for some ρ > 0 so that N [f ] ≈ Q[f ]. This construction is invariant under all signed
permutations of the k coordinates, the actions of the Coxeter group Bk.
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Because the normal distribution is even in each coordinate, the quadrature exactly
integrates any basis function that separates into an odd function of at least one coordinate,

Q
[
f(ϕj)g(ϕ1, . . . ,ϕj−1,ϕj+1, . . . ,ϕk)

]
= N

[
f(ϕj)g(ϕ1, . . . ,ϕj−1,ϕj+1, . . . ,ϕk)

]
= 0,

for any j ∈ [k] when f(·) is odd, thus including all first-order and third-order monomials.
Clearly, the quadrature weights (2k+1)−1 also correctly integrate the unit function, Q[1] =
N [1] = 1. It only remains to solve the distance ρ to correctly integrate quadratic monomials.
Since we have

N
[
ϕ2
j

]
= 1 and Q

[
ϕ2
j

]
=

2

2k + 1
ρ2 , it follows ρ =

√
k +

1

2
.

Because both N [·] and Q[·] are linear functionals, the fact that Q[·] exactly integrates a
basis for third-degree polynomials in Rk implies that this equal-weight quadrature integrates
all third-order polynomials exactly.

We can find an affine coordinate transformation from N (ϕ | 0, I) to any Gaussian
N (z | z0,Γ) where the eigenvalue decomposition of the covariance is Γ = U diag(σ)2UT

so that z = z0 +U [σ ~ϕ]. If the basis vectors are U = [u1 u2 · · · uk] then the modified
quadrature for the critical subspace is

Q[f ] =
1

2k + 1

f(z0) +

k∑
j=1

f(z0 + ujσjρ) + f(z0 − ujσjρ)

 .

Menegaz et al. (2015) provides a review of this and other variants of sigma point con-
struction.

2.5 Moment-Mapping Posterior Approximation

The primary challenge remains to combine our local likelihood approximation with dis-
cretized prior belief in a way that allows us to efficiently describe and integrate a local
posterior approximation. Since the actual posterior is discrete, and not differentiable, we
can formulate the NLPo in terms of first moments as approximate Rao-Blackwellizations
of the posterior. We find this approach attractive because, given J(z), we can easily af-
ford to compute the corresponding posterior within a single coordinate, provided all other
coordinates are held fixed—or approximately Rao-Blackwellized. This technique draws on
the mechanism employed by Gibbs sampling wherein, for a given parameter state, we form
the posterior distribution in a single dimension conditioned on holding all other coordinates
fixed. Gibbs sampling then proceeds by drawing updates in each dimension and iterating
over all coordinates many times until it converges to a sample of the posterior.

The problem with Gibbs sampling is that high posterior perturbations become increas-
ingly rare when they require coordination in high dimensions. Consequently, this sampling
approach generates highly correlated Markov chains that take extremely long time scales
to converge to the posterior. Instead, our approach allows us to identify correlations within
a critical subspace by seeing how an approximate posterior mean, say ẑ, would induce
Rao-Blackwellizations, constructed independently in each coordinate, that then yield a new
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posterior mean approximation, ẑ′. This will allow us to form a Laplace approximation of
the local posterior.

This analysis proceeds by evaluating our likelihood approximation, J(z), for perturba-
tions in a single coordiante, zi, conditioned on evaluating all other coordinates at ẑ. Taking
ẑ as the quadratic expansion point gives the gradient ĝ = g0 +UCUT (ẑ − z0), so that

− log q(D | z) = const + (z − ẑ)T ĝ +
1

2
(z − ẑ)TUCUT (z − ẑ).

This allows us to easily express perturbations in zi. Let ẑci represents the fixed complement
to zi, i.e. evaluating all coordinates except i at ẑ, so that

− log q(D | zi, ẑci ) = − log q(D | z = ẑ + (zi − ẑi)ei)

= const + (zi − ẑi)TeTi ĝ +
1

2
(zi − ẑi)2eTi UCUTei.

To incorporate our prior belief in an approximate NLPo, we must evaluate this distribution
at all possible representations and add the NLPr, or corresponding representation lengths.
Recalling that we are using a reparameterization, θ = τ ~ z, the representable locations
are zi = rj/τ i for j ∈ m. We can construct a representation perturbation matrix for all
coordinates as Rij = rj/τ i − ẑi. This allows us to simultaneoulsy compute the conditional
NLPo approximations in each coordinate as rows of the matrix

Kij = `(rj) +Rij

(
ĝi +

1

2
Rij

k∑
`=1

(UC)i`U i`

)
= consti − log q(zi =

rj
τ i
| D, ẑci ).

Each posterior slice is formed by taking the elementwise negative exponential and normal-
izing over rows, i.e. q(zi | D, ẑci ) = softmax(−eTi K). Taking the joint distribution defined
by combining the conditionals independently allow us to obtain an updated posterior mean

m(z | D, ẑ) =
d∏
i=1

q(zi | D, ẑci ) so that ẑ′ = Em(z|D,ẑ) [z] .

Rather than updating the mean, however, it will be more useful to solve a perturbed
distribution for which ẑ becomes a true Rao-Blackwellization, so that ẑ′ = ẑ is a fixed
point.

2.6 Weak Gradients from Minimum Information Perturbations

By constructing a minimum information perturbation to m(z | D, ẑ) for which a parameter
state maps back to itself, ẑ′ = ẑ, we obtain a weak gradient over posterior moments, despite
the fact that true posterior gradients do not exist. This analysis is similar to the entropy-
maximizing analysis due to Jaynes (1957). We seek a minimum information perturbation
m∗(z) from m(z | D, ẑ), as measured using the the Kullback-Leibler divergence (Kullback
and Leibler, 1951), that yields our desired first moment

m∗(z) = argmin
q(z)

D[ q(z) ‖m(z | D, ẑ) ] such that Eq(z)[z] = ẑ.
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Algorithm 1 Posterior Rao-Blackwellized Distributions
Require: The vector of allowable parameter representations is r and each value has encoding

length `(rj) natural units. The NLL is approximated as J(z) = J0 + (z − z0)Tg0 + 1/2(z −
z0)TUCUT (z − z0). Reparameterization scales are τ so that θ = z ~ τ . An optional pertur-

bation gradient c is added to the gradient at the evaluation point ẑ.

Ensure: q(θi = rj | D, ẑci ) is the posterior distribution over allowable representations of θi condi-

tioned on evaluating the likelihood function in all other coordinates at ẑci .

1: function PosteriorRB(r, `(r), τ , z0, J0, g0,U ,C, c, ẑ)

2: Construct the perturbation matrix, Rij = rj/τ i − ẑi.
3: Construct the NLL gradient at ẑ as ĝ = g0 +UCUT (ẑ − z0)− c.
4: Construct the coordinatewise log posterior matrix,

Kij = `(rj) +Rij

(
ĝi +

1

2
Rij

k∑
`=1

(UC)i`U i`

)

5: Compute coordinatewise posterior distributions q(θi = rj | D, ẑci ) = softmax(eTi K)j .

6: end function

We can derive the form of m∗(z) using variational analysis. Let q(z) = m∗(z) +
εη(z), where m∗(z) is the normalized optimizer, ε is a differential element, and η(z) is
normalization-preserving,

∫
dz η(z) = 0, but an otherwise arbitrary perturbation. We con-

struct the Lagrangian as

ω[q(z), c] =

∫
dz q(z)

[
log

(
q(z)

m(z | D, ẑ)

)
− cT (z − ẑ)

]
and note that, at the optimizer, the variational principle must be satisfied for arbitrary
directional derivatives with respect to η(z) and with respect to the vector of Lagrange
coefficients c.

∂

∂ε
ω[q(z), c]

∣∣∣∣
ε=0

=

∫
dz η(z)

[
log

(
m∗(z)

m(z | D, ẑ)

)
− cT (z − ẑ) + 1

]
= 0.

As this must hold for arbitrary η(z), in domains for which m∗(z) > 0, the term in brackets
must be constant. Thus,

m∗(z) ∝m(z | D, ẑ)ec
T (z−ẑ).

This analysis shows that the perturbation factor simply contributes an additional gra-
dient to the NLPo approximation, −∇z log m∗(z) = −∇z log m(z | D, ẑ)− c. Since we are
interested in constructing a Laplace approximation, p(z | D) ≈ N (z | ν,Λ−1), we observe
that the gradient of the perturbed Gaussian would be

−∇z log m∗(z) = −∇z logN (z | ν,Λ−1)− c
= Λ(z − ν)− c.

12
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For ẑ to be the mean of the perturbed distribution, the gradient would have to vanish so
that c = Λ(ẑ−ν). In other words, c serves the same role as evaluating the gradient of a log
Laplace approximation at ẑ, thus allowing us to reconstruct the Laplace approximation. In
this sense, it is a weak gradient of the discrete posterior corresponding to an approximate
first moment. Just as we were able to probe the structure of the precision matrix at sigma
points to construct a likelihood approximation, we can use the same technique to probe and
reconstruct a local posterior approximation.

We must solve the Lagrange coefficients using a sequence of Newton iterations, c(t), that
converges in a few steps t = 1, 2, · · · . Initializing c(0) = 0, so that the perturbed likelihood
gradients at ẑ become ĝ(t) = g0 +UCUT (ẑ − z0)− c(t), we compute mean updates as

ẑ
′(t) = Em(z|D,ẑ,c(t)) [z]

Note that the expectation in each coordinate, ẑ′i, only depends on ci. Taking the gradient
of the expectation error with respect to ci gives

∂

∂ci
(ẑ′i − ẑi) = Em(z|D,ẑ,c(t))

[
(zi − ẑi)2

]
= λ−1i ,

or the second moment centered at the target expectation ẑ. We use this notation because,
at convergence, λ becomes the diagonal of the posterior precision matrix. Thus we solve
the update as

ẑi = ẑ
′(t)
i + λ−1i (c

(t+1)
i − c(t)i ) or c(t+1) = c(t) + (ẑ − ẑ′(t)) ~ λ.

Note that when we compute λ, if the likelihood function becomes tightly constrained
around a single representation, the variance may vanish to numerical precision and cause
this computation to become unstable. We can easily prevent this problem, however, by
recognizing that each prior discretization is an approximation that represents a distribu-
tion. Suppose our belief in a single coordinate is described by a convex combination of
distributions

p(x) =

m∑
j=1

αjqj(x) where αj ≥ 0 for all j ∈ [m] and

m∑
j

αj = 1.

If each distribution has mean Eqj(x) [x] = µj and variance Eqj(x)

[
(x− µj)2

]
= σ2j , then the

mean and variance of p(x) are easily obtained as Ep(x)[x] =
∑m

j=1 αjµj = µ and

Ep(x)[(x− µ)2] =

m∑
j=1

αj Eqj(x)

[
(x− µj + µj − µ)2

]
=

m∑
j=1

αj
(
σ2j + (µj − µ)2

)
.

When we compute the variance from the discrete posterior distribution, it is as though
we are only accounting for the second term in the convex sum. By associating each rep-
resentable location with an intrinsic variance, σ2

j , and remembering to correctly scale for
reparameterization, we prevent the precision diagonal from diverging. Algorithm 2 provides
details.

13
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Algorithm 2 Weak Gradient of Posterior Laplace Approximation
Require: The vector of allowable parameter representations is r and each value has encoding

length `(rj) natural units. The NLL is approximated as J(z) = J0 + (z − z0)Tg0 + 1/2(z −
z0)TUCUT (z−z0). Reparameterization scales are τ so that θ = z~τ . The posterior gradient

will be approximated at the evaluation point ẑ. Optional intrinsic variance for each representa-

tion rj is σ2
j .

Ensure: c serves as the gradient of a Laplace approximation of the posterior, c = −∇z log q(z =

ẑ | D), and λ approximates the precision diagonal.

1: function WeakPosteriorGradient(r, `(r), τ , z0, J0, g0,U ,C, c, ẑ,σ)

2: Initialize c = 0.

3: for Newton steps t = 1, 2, . . . , 5 do

4: Evaluate conditional posteriors at ẑ with gradient perturbation c,

q(θi = rj | D, ẑci ) = PosteriorRB(r, `(r), τ , z0, J0, g0,U ,C, c, ẑ)

5: Evaluate mean update,

ẑ′i =

k∑
j=1

rj
τ i

q(θi = rj | D, ẑci ).

6: Compute precision diagonals, λ−1i =
∑k
j=1

(
rj/τ i − ẑ′i

)2
q(θi = rj | D, ẑci ).

λ−1i =

k∑
j=1

[
σ2
j

τ 2
i

+ (
rj
τ i
− ẑ′i)2

]
q(θi = rj | D, ẑci ).

7: Update weak gradient, c← c+ (ẑ − ẑ′) ~ λ.

8: end for

9: end function

2.7 Diagonal Plus Low-Rank Posterior Precision

Actually, we can go a bit further and include the diagonal of the precision matrix, in addition
to a low-rank approximation of critical dimensions, in our posterior approximation. This
requires little extra cost because we already have λ at each sigma point. As with the
likelihood approximation, when we take differences of weak gradients at sigma point, we
are effectively computing X = UTΛU , where Λ is the full posterior precision matrix.
Since we can approximate diag(Λ) = Q[λ], our diagonal plus low-rank approximation,
Λ ≈ diag(d) +U∆UT , must simultaneously satisfy

Q[λ] = d+ diag
(
U∆UT

)
and X = UT diag(d)U + ∆.

A simple iterative scheme easily accomplishes this. We initialize d(0) to a minimum
precision by setting the NLL to zero to obtain the localized precision of prior belief. Each
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approximate diagonal d(t) then induces an approximate core of the low-rank precision com-
ponents

∆(t) = X −UT diag(d(t))U .

A robust implementation requires diagonalization, ∆(t) = V diag(δ)V T , to remove negative
eigenvalues. This ensures that the low-rank contribution only increases precision. We can
then absorb the orthogonal matrices into an updated basis, W = UV , and evaluate the
residuals, s, of the full precision diagonal

s = d(t) + diag(W diag(δ)W T )−Q[λ]

= d(t) + diag(W [V TXV −W T diag(d(t))W ]W T )−Q[λ] .

We can then compute the gradient of each residual element with respect to the corresponding
diagonal as

γi =
∂

∂d
(t)
i

si = 1− eTi WW Teie
T
i WW Tei = 1−

 k∑
j=1

W 2
ij

2

.

Thus, a suitable Newton update solves

0 = s+ γ ~ (d(t+1) − d(t)) so that d(t+1) = d(t) − s� γ.

Blinders and Reparameterization

We found that there is high risk associated with allowing posterior updates to move too
far from the hyperplane z0 + span(U), within which we have reasonable knowledge of the
likelihood structure. This is because we have, at best, only a rough analytic approximation
of how the likelihood might react to such perturbations. Thus, it may be prudent to restrict
posterior moment correction in dimensions that are orthogonal to the LIS. This can be
accomplished by attaching a quadratic penality to the approximate negative log posterior
in all dimensions orthogonal to U . If we have iteratively concentrate Hessian eigenvalues
through symmetric eigenvalue decompositions that retain the maximal eigenvalues, we can
safely assume that all orthogonal dimensions will have an eigenvalue that is less than the
minimum eigenvalue within the precision-maximizing subspace.

To improve implementation simplicity, we can always express the posterior precision
matrix as identity plus low rank, Λ = I + U∆U , provided we reparameterize to absorb
the diagonal elements, d, from the diagonal plus low-rank approximation above. We may
rewrite the NLPo approximation as

K(z) = K0 + (z′ − z0′)Tc0′ +
1

2
(z′ − z0′)T

[
I +W ′ diag(c)W

′T
]

(z′ − z0′)

where z′i = zid
1/2
i , c0

′
i = c0

′
id
−1/2
i , and W ′

ij = W ijd
−1/2
i .

To maintain θ = z ~ τ = z′ ~ τ ′, we simply update τ ′ = τ ~ d−1/2. We must also recon-
struct an orthonormal basis by reorthogonalizing W ′ = QR using the QR decomposition
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Algorithm 3 Diagonal Plus Low-Rank Posterior Precision
Require: The NLL is approximated as

J(z) = J0 + (z − z0)Tg0 + 1/2(z − z0)TUCUT (z − z0).

Ensure: Approximate the NLPo as

K(z) = (z0 − z)T c0 + 1/2(z0 − z)T
[
diag(d) +W diag(δ)W T

]
(z0 − z).

1: function ApproximateNLPo(r, `(r), τ , z0, J0, g0,U ,C, c, δ,σ)

2: Initialize quadrature radius, ρ =
√
k + 1/2 and scaling factors σ = 1�

√
1 + δ.

c = WeakPosteriorGradient(· · · , ẑ = z0)

3: for each basis vector j = 1, 2, . . . , k do

4: Weal NLPo gradient at j points,

{c−,λ−} = WeakPosteriorGradient(· · · , ẑ = z0 − u(j)ρσj)

{c+,λ+} = WeakPosteriorGradient(· · · , ẑ = z0 + u(j)ρσj)

5: Update running sums, c← c+ c− + c+ and λ← λ+ λ− + λ+.

6: Update column j of precision projection, x(j) = 1
2ρσj

(c+ − c−).

7: end for

8: Compute means, c0 ← 1
2k+1c and λ← 1

2k+1λ

9: Symmetrize core, X ← 1/2(X +XT ).

10: Initialize precision diagonal d term to minimum.

11: for Newton steps t = 1, 2, . . . , 5 do

12: Approximate low rank core ∆ = X −UT diag(d)UT .

13: Diagonalize core, ∆ = V diag(δ)V T .

14: Updated basis, W = UV , and residuals, s = d+ diag(W diag(δ)W T )− λ.

15: Compute residual gradients, γi = 1− (
∑k
j=1W

2
ij)

2.

16: Update precision diagonal, d← d− s� γ.

17: end for

18: end function

and rediagonalizing the corresponding core, R∆RT = V diag(δ)V T . Then we finish the
basis update as U ′ = QV and ∆′ = diag(δ). Since we also maintain the likelihood approx-
imation, we update the gradient, g0

′ = g0 ~ d
−1/2, and the core, C ′ = V TRCRTV , to be

compatible with the new scaling and basis.
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Figure 2: Visualization of likelihood to posterior updates in two dimensions. Each arrow
shows how a likelihood mean at the given location would map to a posterior
mean with discretized prior belief. The dashed circled represents 90% of the nor-
malized likelihood probability and the solid elipse represents 90% of the updated
posterior approximation for a specific example. Notice that as the likelihood do-
main becomes sharper, the posterior mapping allows for increasing specificity of
outcomes, rather than only shifting toward the origin.

3. Main Algorithms

In order for training to begin, we often have to start with randomized parameters. Due to
the high symmetry of the origin of a neural network parameterization, it is prone to be a
critical saddle point in many dimensions. As a consequence, it is particularly difficult to
obtain a reasonable quadratic approximation of the likelihood at the origin.

Further, we need efficient discovery of high likelihood domains to find good posterior
approximations, which means it will not be sufficient to merely optimize our belief approx-
imations with Newton steps. Instead, training must be formulated to allow discovery of
better likelihood domains that are not captured by a local approximation. Even so, having
the local curvature allows us to frame discovery without using tuned learning rates. This
mechanism is explained first.

Next we show how after a discovery phase, we correct the local likelihood approximation
so that we can construct a robust local posterior approximation. Our numerical experiments
showed that aggressively optimizing the local posterior fails to allow the parameters to move
to higher likelihood domains. Therefore, during posterior optimization, we must only take
tentative steps that, while allowing convergence within a convex basin of attraction, would
nevertheless allow the parameter state to drift to higher likelihood domains if discovered.

3.1 Exploration and Discovery

Discovering high likelihood domains requires an iterative strategy that will allow us to cor-
rect and optimize our local NLL approximations. Likelihood annealing gradually increases
the degree to which our data have been taken into account by factorizing the posterior

17



J. A. Duersch and T. A. Catanach

distribution as

p(z | D, α) =
p(D | z)αp(z)

p(D | α)
where p(D | α) =

∫
dz p(D | z)αp(z).

The posterior easily follows after the complementary likelihood is taken into account,

p(z | D) =
p(D | z)1−αp(z | D, α)p(D | α)

p(D)
with p(D) =

∫
dz p(D | z)p(z).

The likelihood exploration phase begins from the current position z0 and an annealed
quadratic NLL approximation. If we have a quadratic NLL approximation, − log p(D |
z) ≈ J(z), then the annealed likelihood simply requires us to scale each term

J0
′ = αJ0 , g0

′ = αg0 , and C ′ = αC

so that − log p(D | z)α ≈ J ′(z). For the first epoch, we have α = 0 and all likelihood terms
are zero.

Our likelihood exploration framework alternating expansion and extraction iteration
similar to that of large sparse eigenvalue solvers (Duersch et al., 2018). After computing the
average gradient over the first k dimensions, we can extract and normalize the remaining or-
thogonal component to finish extending the basis. Note that basis expansion dimensions al-
ways use the maximum scaling factor within the tracked subspace, σmax = (1+min(δ))−1/2.
Although our basis expansion is constructed from a single orthogonal gradient component, a
block formulation—potentially evaluating mini batches of data and generating orthonormal
blocks at once—is an obvious extension of this basic approach.

After each evaluation the posterior precision is concentrated with so that U and ∆ =
diag(δ) has descending eigenvalues. This allows us to extract a concentrated likelihood
curvature approximation, the maximal precision eigenvalues, as well as the corresponding
basis dimensions with limited memory and computational resources. When the center of
our approximation z0 moves, the quadratic approximations are easily shifted to the updated
expansion point as

J(z) = J0 + (z − z0)Tg0 +
1

2
(z − z0)TUCUT (z − z0)

=

[
J0 + (z0

′ − z0)Tg0 +
1

2
(z0
′ − z0)TUCUT (z0

′ − z0)

]
+ (z − z0′)T

[
g0 +UCUT (z0

′ − z0)
]

+
1

2
(z − z0′)TUCUT (z − z0′).

The exploration phase continues by iterating over all cases in the training dataset using
Algorithm 4 to accumulate new likelihood components, − log p(d | z)1−α for each d ∈ D,
with the annealed likelihood starting values.

3.2 Correction and Posterior Optimization

The approximate posterior updates in Algorithm 4 are very rough, but the proceedure
successfully moves z0 to high likelihood domains. To better account for discretized prior
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Algorithm 4 Explore Case

Require: The current view is r(z) = N (z | z0,Γ = [I + U diag(δ)UT ]−1). Basis matrices, U ,

contain k orthonormal columns corresponding to increased precision δ > 0. The basis should be

extended as needed to also include important states in the span, Z =
{
z(s)

}
∈ span(U).

Ensure: Accumulate likelihood contribution p(d | z)1−α within quadratic NLL and NLPo approx-

imations. Take exploration step.

1: function ExploreCase(d, z0, J0, g0,U ,C, δ)

2: Initialize quadrature radius, ρ =
√
k + 3/2, scaling factors σ = 1�

√
1 + δ.

3: Use sigma point quadrature to integrate NLL, gradient, and precision core,

J = − log p(d | z0) and g = −∇z log p(d | z0).

4: for each basis vector j = 1, 2, . . . , k, k + 1 do

5: Evaluate NLL and gradient at j points,

J− = − log p(d | z0 − u(j)ρσj) J+ = − log p(d | z0 + u(j)ρσj)

g− = −∇z log p(d | z0 − u(j)ρσj) g+ = −∇z log p(d | z0 + u(j)ρσj).

6: If j = k + 1, extract final orthonormal basis extension from g and evaluate as above.

7: Update running sums, J ← J + J− + J+ and g ← g + g− + g+.

8: Update column j of precision projection, c(j) = 1
2ρσj

(g+ − g−).

9: end for

10: Compute means, J ← J
2k+3 and g ← g

2k+3 . Symmetrize core, C ← 1/2(C +CT ).

11: Update approximations, J0 ← J0 + (1− α)(J − 1
2 tr(C diag(σ)2)),

g0 ← g0 + (1− α)g, C ← C + (1− α)C,

c0 ← c0 + (1− α)g, ∆←∆ + (1− α)C.

12: Diagonalize posterior precision ∆ and update basis U accordingly.

13: Compute 3
2 Newton step, z0 ← z0 − 3

2 (1− α)(I +U∆UT )−1g.

14: Update quadratic approximation for new expansion point.

15: end function

belief, however, we must use the techniques in Sections 2.6 and 2.7. Unfortunately, the
domain shifts also reduce the accuracy of J(z). Thus, before we update our posterior
distribution, we reconstruct a more accurate likelihood.

This is easily accomplished by using an algorithm very similar to Algorithm 4 that
simply avoids movement and new basis extensions. Resetting J0 = 0, g0 = 0, and C = 0,
we can construct a better local NLL approximation by iterating Algorithm 5 over the full
training dataset.
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Algorithm 5 Correct Case

Require: The current view is r(z) = N (z | z0,Γ = [I + U diag(δ)UT ]−1). Basis matrices, U ,

contain k orthonormal columns corresponding to increased precision δ > 0. The basis should

still be extended to include Z ⊂ span(U).

Ensure: Reconstruct quadratic NLL approximation from full contributions, p(d | z).

1: function CorrectCase(d, z0, J0, g0,U ,C, δ)

2: Initialize quadrature radius, ρ =
√
k + 1/2, scaling factors σ = 1�

√
1 + δ.

3: Use sigma point quadrature to integrate NLL, gradient, and precision core,

J = − log p(d | z0) and g = −∇z log p(d | z0).

4: for each basis vector j = 1, 2, . . . , k do

5: Evaluate NLL and gradient at j points,

J− = − log p(d | z0 − u(j)ρσj) J+ = − log p(d | z0 + u(j)ρσj)

g− = −∇z log p(d | z0 − u(j)ρσj) g+ = −∇z log p(d | z0 + u(j)ρσj).

6: Update running sums, J ← J + J− + J+ and g ← g + g− + g+.

7: Update column j of precision projection, c(j) = 1
2ρσj

(g+ − g−).

8: end for

9: Compute means, J ← J
2k+1 and g ← g

2k+1 . Symmetrize core, C ← 1/2(C +CT ).

10: Update approximations, J0 ← J0 + (J − 1
2 tr(C diag(σ)2)),

g0 ← g0 + g, C ← C +C.

11: end function

With this, we can construct a better NLPo approximation and take a step to move z0
towards higher posterior domains. We find, however, that aggressively moving toward the
local posterior maximizer, a full Newton step, interfers with the ability of subsequent epochs
to move towards higher likelihood domains that would eventually dominate the posterior.
By taking half steps, we still ensure that an equilibrium will be reached that balances
likelihood exploration with posterior optimization, but still allows the center of our belief
approximation to drift to high likelihood domains early on.

4. Numerical Experiments, Discussion, and Summary

Our training experiments use a small neural network, with 1114 parameters, to classify
MNIST (LeCun et al., 1998) digits from only 200 randomly selected images. The discretized
prior contains 31 representations that correspond to all Gaussian subintervals formed by
taking from 0 up to 4 bisections, thus having a maximum to minimum prior probability
ratio of 16:1 for the shortes (zero) to longest encodings.
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The likelihood and posterior approximations concentrate precision in a 30-dimensional
subspace. This basis is extended to include the 6 most recent parameters states, which
include states that result from either full exploration epoch or the posterior update that
follows it. Each training run includes 20 posterior updates, amounting to 40 passes over
the data if we include likelihood corrections.

When we compare our training algorithm to SGD, with a learning rate and L2 regu-
larization tuned with cross-validation, we see in Figure 3 that our algorithm navigates the
parameter space much more efficiently to generalizable prediction domains. It is impor-
tant to note, however, that each epoch of our algorithm is significantly more expensive to
evaluate.

Figure 3: Training comparison of our algorithm to SGD tuned using cross-validation with
additional data to optimize both the learning rate and L2 regularization weight.
We see that despite finding an SGD learning rate that optimizes initial loss de-
scent, our algorithm is able to navigate through the parameter space more ef-
ficiently. In this particular case, our algorithm also shows better performance
on holdout data where were not used during optimization. We note, however,
that the prediction quality varies significantly over the typical basins of posterior
attraction both algorithms are subject to discover.

The posterior ensemble is formed from 120 training runs. Figure Figure 4 shows that
the ensemble predictions, formed by simply averaging the predictions obtained from each
individual model, outperforming all of the individual models.

4.1 Sensitivity of Training Trajectories

During the course of our experiments with generating ensembles of models, we find that
both the initial position of z0 as well as the random ordering of the training data can
affect the quality of the basin of posterior attraction to which the model converges. This
difference in quality is often stark and observable within the first few epochs. It may be
useful in future work to consider that optimizing an initial ensemble may be more beneficial
than using substantial computational resources to optimize a training trajectory that could
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Figure 4: Ensemble prediction quality is measured using both accuracy and holdout loss, the
negative log likelihood applied to unseen data. We see that ensemble averaging
yields predictions that are better, by both metrics, than any individual model.

have been pruned early on. More generally, we would like to consider methods that reduce
the dependence of the final ensemble quality on the stochastic qualities of training.

4.2 Dimensionality Reduction

If the true posterior distribution has nontrivial dependence in several dimensions of a given
architecture, we cannot avoid the computationally difficult task of characterizing the poste-
rior dependence in each of those dimensions in order to obtain a reasonable approximation
of the posterior-predictive distribution for robust uncertainty quantification on new data.
The fact that many standard practices work well without attempting to capture such a
comprehensive description of the posterior indicates that it should be possible to efficiently
discover manifolds that dominate the posterior, and thus posterior-predictive integrals, that
would significantly reduce the amount of computation needed to obtain robust predictions.

4.3 Summary

We developed a training approach that is fundamentally designed to limit the amount of in-
formation that may be contained within trained network parameters. This is accomplished
by allowing only a limited set of specific parameter representations, which can then be
efficiently encoded. Moreover, the discretization we proposed contains codes of increasing
length to efficiently represent increasing specificity. Encodings with a given level of speci-
ficity are distributed evenly across the space and codes of increasing length are interleaved
to gradually increase the density of representations between shorter codes.

Within the theory of algorithmic probability, optimizing the posterior probability of
such models allows us to construct an ensemble that approximates the posterior-predictive
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integral. As anticipated by the theory of algorithmic probability, we demonstrated that
combining our training subroutine with ensemble averaging allows us to obtain predictions
that generalize better than any individual model discovered. In order to compute individ-
ual models within the ensemble, we investigated mechanisms to navigate the parameter
space efficiently. While the original formulation of Algorithmic Probability is computation-
ally challenging, perhaps even intractible, the methods we developed are able to tractably
suppress information through simplified parameters.

Training proceeds by approximating and optimizing quadratic approximation of the
negative log likelihood using sigma point quadratures that are exact to 3rd-order within a
critical hyperplane and 1st-order otherwise. The critical hyperplane is iteratively improved
by concentrating likelihood precision with a sequence of truncated eigenvalue decomposi-
tions. Futher, we also track additional key dimensions that training encounters over the
most recent epochs in order to better accurately capture structure in the dominant direc-
tions of improvement. We then explained how to merge our continuous quadratic likelihood
with discretized prior belief to obtain a quadratic approximation of the log posterior. This
approximation is designed to perserve the structure of first moments that arise from the
discrete posterior, rather than directly within the space of representations.

We incorporated these techniques into a training algorithm that iteratively improves
posterior approximations, which can then be used to form an ensemble of models. Our
experiments show that this training technique moves through the parameter more efficiently
that tuned stochastic gradient descent to find basins of high posterior probability, allowing
us to construct ensembles that generalize to yield superior predictions. This provides an
important step towards limiting our dependence on cross-validation during training, which
becomes highly problematic when we only have small datasets.

This work required a substantial investment to understand essential properties of effi-
cient parameter navigation subject to discretized prior belief and design compatible subrou-
tines with computationally efficient approximations. Although our experiments are promis-
ing, additional investigation is still required to see if these methods are robust under a
variety of contexts. Given the implemenation difficulty of these approaches, we anticipate
investigating simplifications to both architectures and information suppression methods to
improve the adoption and impact of this work.

Appendix A. Appendix

A.1 First Alternative Posterior Approximation

We also developed an alternative form of the Laplace approximation of the posterior driven
by analysis of the unperturbed distribution m(z | D, ẑ). Suppose we have a Gaussian
distribution

N (z | µ,Λ−1) ∝ exp

(
−1

2

[
(z − µ)TΛ(z − µ)

])

We consider holding all coordiantes fixed at ẑ except one. Without loss of generality, let us
write the free coordinate as y1 = z1−µ1 and and evaluate the complementary coordinates
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at the fixed location ẑ, written as x2 = ẑ2 − µ2, so that

z − µ 7→
[
y1
x2

]
and compatibly partition Λ =

[
λ1 Λ12

Λ21 Λ22

]
This gives

− log q(y1 | x2) = c1 +
1

2
y21λ1 + y1Λ12x2

= c1 +
1

2
(y1 − a1 + a1)

2λ1 + (y1 − a1 + a1)Λ12x2

= c2 +
1

2
(y1 − a1)2λ1 + (y1 − a1) [λ1a1 + Λ12x2]

where we have absorbed constants independent of y1 into the definitions of c. The quadratic
term contains all y1 dependence if we set a1 = −λ−11 Λ12x2, which must be the mean of
y1 as conditioned by holding all other coordinates at x2. Noting that Λ12x2 = eT1 Λx −
λ1x1, we can write the vector of all such means, each formed independently by holding the
complementary coordinates fixed, as a vector

a = x− diag(λ)−1Λx

It easily follows that the updated mean ẑ′ would be

ẑ′i = Eq(zi|ẑci )[zi] = eTi (µ+ a)

= eTi
(
z − diag(λ)−1Λ(z − µ)

)
or simply ẑ′ = ẑ − diag(λ)−1Λ(ẑ − µ). Thus, we can construct precision matrix-vector
products, as we did for the likelihood, if we have an approximation for the precision diagonal
λ ≈ diag(Λ). That is, diag(λ)(ẑ − ẑ′) = Λ(ẑ − µ). If we evaluate ẑ at a point in the
hyperplane containing z0, so that ẑ = z0 +Uϕ, we have

diag(λ)(ẑ − ẑ′) = Λ(z0 +Uϕ− µ)

= c0 + ΛUϕ where c0 = Λ(z0 − µ).

Thus we can reconstruct an approximate gradient and low-rank precision centered at the
expansion point z0 as before.

A.2 Second Alternative Posterior Approximation

We also examined a posterior approximation method that operates in two steps. First,
we approximate the posterior covariance as a simple composition of Gaussians to obtain a
simple approximation of principal components of the posterior precision. Then we compute
an update to each component using a quadrature formula that is designed to replicate power
iteration against the covariance matrix.

If we had a normal prior, N (z | 0, I), and an improper Gaussian likelihood with low-rank
precision, q(D | z) = exp

[−1
2 (z − µ)TU diag(δ)UT (z − µ)

]
, normalization easily yields the

composite distribution N (z | Uν,Γ) with ν and Γ computed as follows. Arguments to the
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diagonal matrix constructions below, diag(·), are always evaluated elementwise. Further,
U⊥ is a complementary orthonormal basis to U so that UT

⊥U⊥ = I and UT
⊥U = 0. We

have,

ν = diag(
δ

1 + δ
)UTµ and Γ =

[
U U⊥

] [diag( 1
1+δ ) 0

0 I

] [
UT

UT
⊥

]
.

Note that the improper precision eigenvectors ui remain eigenvectors of the composite
covariance and we can represent the result as a product of independent Gaussians with a

simple basis transformation, c =

[
UT

UT
⊥

]
z so that

N (z | ν,Γ) =
r∏
i=1

N (ci | νi,
1

1 + δi
)

n∏
i=r+1

N (ci | 0, 1)

and z =
[
U U⊥

]
c. This allows us to separate and evaluate integrals in each c dimension

independently.

Our objective is to find a mechanism to approximate the principal components of the
composite covariance where p(z) is discrete, rather than the standard normal approxima-
tion. Since we already have a method to evaluate expectations coordinate by coordinate
from the parsimonious prior composed with an improper Gaussian likelihood, we can com-
pute these components as the eigenvector scaled by the corresponding standard deviation

uiσi =

∫
dz (z −Uν)

[
(z −Uν)Tuiσ

−1
i N (z | Uν,Γ)

]
.

We found that the first-order moment kernel, in brackets, may be approximated as a dif-
ference of two Gaussians

(ci − νi)Tσ−1i N (ci | νi,
1

1 + δi
)

≈ constN (ci | 0, 1)

(
exp

[
−(1 + 12δi)

22

(
ci −

12δiu
T
i µ+ 6

√
1 + δi

1 + 12δi

)2
]

− exp

[
−(1 + 12δi)

22

(
ci −

12δiu
T
i µ− 6

√
1 + δi

1 + 12δi

)2
])

where the constant of proportionality normalizes the composition of the standard normal
factor with each improper Gaussian in the difference.

Within this eigenspace, the leading moments of the original kernel are∫
dci (ci − νi)m

[
(ci − νi)Tσ−1i N (ci | νi,

1

1 + δi
)

]
(1){

0,
1

(1 + δi)1/2
, 0,

3

(1 + δi)3/2
, 0

}
(2)
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for m = {0, 1, 2, 3, 4}, respectively. In comparison, the corresponding moments, centered at
νi, of each normalized Gaussian in the difference above are{

1,
1

2(1 + δi)1/2
,

7

6(1 + δi)
,

3

2(1 + δi)3/2
,

95

24(1 + δi)2

}
and (3){

1,
−1

2(1 + δi)1/2
,

7

6(1 + δi)
,

−3

2(1 + δi)3/2
,

95

24(1 + δi)2

}
, respectively. (4)

Thus, this difference of Gaussians exactly integrates 4th-order polynomials. When we re-
place the standard normal Gaussian with the discretized prior, p(z), we can construct each
expectation in the difference as before, coordinate by coordinate.

Figure 5: Visualization of continuous first-order eigenvector kernel and our approximation
as a difference in Gaussians. The approximation is exact to 4th order and we
observe no visually discernable difference. At the right, we see the correspond-
ing discrete kernel and note the slight correction accounting for representational
simplicity.
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