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2 The Need for Credible Explainability •

ML is being used in an increasingly number of high-consequence applications.

ML explainability has emerged as field that seeks to build trust.



3 The Need for Credible Explainability ■

ML is being used in an increasingly number of high-consequence applications.

ML explainability has emerged as field that seeks to build trust.

Can we trust the explanation?
•Computational shortcuts

•Assumes some understanding of machine learning

•Lack verifiable foundations



Current ML Explainability Methods

Sensitivity Analysis Guided Explainability
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Correlated Feature

,

Training Data Statistics Preserving Sampling

•

Gaps and Limitations

11 IL— W1E.

"•11111111.11Merao..._



Machine Learning (Supervised) Classification
5 Model Diagram •
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6 ML Explainability
Attempt to describe the decision process that a machine learned model uses to make a prediction

Interpretable models

• Can inspect the model

• Models that are relatively easy to interpret (linear regression models,
shallow decision trees)

White-box/Integrated

• Can inspect the model, but the model is sufficiently complex

• Gini-importance for decision trees

• Gradient-based methods for deep learning models (Saliency maps)

Black-box/Post-hoc

• Do not inspect the model, instead evaluates feature importance

• Create a surrogate model that is interpretable

• Often perturb the data and observe how the output changes

•

Humans

doh inform

Interpretability
Methods

Surrogate

Black Box
model

fliill l ea r n



7 LIME: Local Interpretable Model-agnostic Explanation [1] •

Perturbation Based Method

For x E tlxn (a new realization)

1. Sample fii, observation in a neighborhood of x, assuming that each feature of z is
independent and normally distributed. Resulting in: rill for i = 1 ...

2. For each of the samples, get the original ML model prediction fg-(20 = j7i

3. With the derived sample dataset = learn a linear regression model,

g , e(T) = a

Complex Non-linear

LIME feature importance index =
(/)_/ = crj *

Simple Linear



8 SHAP: SHapley Additive exPlanations [2]
Based on Cooperative Game Theory 

N : the set of features
J E N
S g N

v(S) : the total value of the S features

(10 u {j}) — v(S)) for S g N\{j} :
marginal contribution of feature j to set S

SHAP feature importance index:

= 
Isl! 

N!

151 — 1)! 
(v(S U {j}) — v(S))

Sg/V\{j}

One Computational Approximation:

• To approximate (v(S u (j)) — v(S)) without retraining the model, "noise" is used as a
surrogate for feature removal.

• "noise" is replicated as independent bootstrap samples from the training data

50m2

1111 50m2

2nd Floor

2nd Floor

2nd Floor

50m

2nd Floor



9 Summary of Black-Box Explanation Methods

Dependencies and Assumptions

• Dependent on a process for sampling
the data

• Require distance on output—how much
it changes

• Assumes independence and linearity

■

Observed Deficiencies [3]

• Descriptive Accuracy: Match when features
are removed

• Instability: Produces different
explanations on the same input

• Completeness: Generate explanations for
all possible input vectors

• Efficiency: Can be slow to calculate
especially as the dimensionality increases

No agreed upon definition of explainability or
what constitutes an explanation



10 Can We Trust the ML Explanation?? ■

Goal of explainability: provide credibility evidence by describing the decision process that a
model considers for a prediction.

BUT....

LIME

■ Introduces a surrogate model without assessing the fidelity of that surrogate in relation to the
black-box model.

■ Implements perturbation of the input uncertainty assuming independence and normally distributed
random variates...which is uncharacteristic of the true statistics from the training dataset.

SHAP

■ Has the most theoretical guarantees available to us today, but computational heuristics for the
approximations break those theoretical guarantees.

■ Bootstrapping from the training dataset to replicate "noise"...but is "noise" an appropriate
replicate for removing a feature??

Can we use Sensitivity Analysis Guided Explainability to mitigate these
challenges??



Current ML Explainability Methods

Sensitivity Analysis Guided Explainability

Correlated Features

Training Data Statistics Preserving Sampling

,

Gaps and Limitations
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12 Global Sensitivity Analysis: Notational Example
The apportionment for the contributions of input uncertainties on output uncertainty. [4]

Nominal Parameter
Values

9 = fa, ,

Example: Infectious Disease Modeling

= seroprevalence dx

9),)6' = infection rate
[a

y = [infectious duration]-1
J

x 
=r11

Ri
=dt  f(x

x0= g (0)
1111110.

y = F (x)

Uncertainty Quantification of Model Forecast for the Infection Rate Curve

[
[al) fli) Yi]
[cr2, i32) -112]

[as, 13 s ys]

f (x, 0) 373 1121

Ys i

Sensitivity of the Infection Rate Curve with respect to the Parameters of the Model

[ Total
Variance sc

sfly Sum of ALL
other combined

-fla contributions jof y so, • 



13 Experimental Design for Sensitivity Analysis
Experimental Design is a scientific approach for identifying the inputs to a process that are most
influential to the outcome of that process; following particular design decisions.

•

[
[at, fli, Yi]

[a2, )62, Y21

[as, 13s, Ys1

[71

Y2

Ys

MI Eli

,o3o1

inputs:
Uncertainty in Parameters

rDesign Decision I 

Sampling

Sampling sufficient discrete
realizations that preserve the statistics
and introduces only marginal standard
error.

1 
Process:
Mathematical Model

Design Decision 11 

Controlled/Uncontrolled Random
Behavior

L
Controlled: Sources of Variance
Uncontrolled: Random behaviors
inherent to the model

Outcome:
Uncertainty in Model Output

Design Decision 111 

Quantity of Interest (Qol)

For the intended use case, what output
from the model maps to quantitative
metric for that intended purpose.

L



14 Experimental Design for ML Explainability

Original Modeling Flow Diagram
,
i Nominal Parameter
I
I
:

1
•

Values
r) = ta,fi, y}  -

Translation to ML Classification

,
, Model of the Real 

,
1

World
L  f Cx, 0)

Training Data1 = 
[XIII

x E irnxn, y E irnx1

New (unlabeled) Machine
Observations Learned Model

fT (k, 9 (T))
i- E Rlxn

Inputs:
Uncertainty in Features

Sampling

Preserving the statistical properties of
the training data: non-Gaussian,
discrete, correlated, and sparse

i Deterministic
Outcome.

iOP 
‘  

y E iikv

Process:
Machine Learned Model

Controlled/Uncontrolled Random
Behavior

Running sufficient replicates for the
random behavior of stochastic machine
learned models.

Class
Prediction
y E fA, B, C)

Outcome:
Uncertain Model Predictions

Quantity of Interest (Qol)

What is the appropriate Qol for which a
sensitivity analysis will provide insight
for ML explainability?

Methods to apportion the influence of sources of input uncertainty across output uncertainty, accounting for higher-
order interactions in a model and input correlations.



Current ML Explainability Methods
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Sensitivity Analysis Guided Explainability

Correlated Features

Training Data Statistics Preserving Sampling

Gaps and Limitations
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16 Correlated Features Provide Discriminative Power

Design of Experiments was used to the debunking the myth that correlated variables only provide
redundant information.

a Used synthetic data to control the amount
of correlation as the distinguishing
characteristic between classes

O Naïve Bayes is the baseline for linear
relationships

Most explainability methods assume
independence
. Incongruent explanations for the learned

model
. LIME uses a linear model
. SHAP makes independence and linear

assumptions
. Tested with quadradic regression

•

I Random Forest

Multilayer Perceptron

l Naive Bayes

, , MO



Current ML Explainability Methods
* —"t

Sensitivity Analysis Guided Explainability

j+e----,A -A 11,1

Correlated Features

•

Training Data Statistics Preserving

Sampling.

Gaps and Limitations

•
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18 Training Data Statistics Preserving Sampling

Current sampling approaches can create unrealistic data points
(Do not preserve correlations or distributions)

Features 3 and 4 from the iris data set (correlated features)

•
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Current ML Explainability Methods

Sensitivity Analysis Guided Explainability

Correlated Feature Influence

Training Data Statistics Preserving Sampling

Gaps and Limitations
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20 Blockers to using GSA on ML Models for Explainability

• Dependence in our feature space, which defines our sources of uncertainty
• Appropriate Quantity of Interest that will map to an explanation.
• Expedient Computational Methods for our correlation and distribution

preserving sampling technique.

Questions to the Working Group:

• Are there scalable methods for approximating the Shapley indices?
• How are dependent sources of uncertainty currently handled by the

research community?

Continued Research Directions:

• Extensions of Sobol indices for dependent features. [5,6]
• Verification of computational estimators for SHAP feature importance

indexes.

■
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