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, | The Need for Credible Explainability _

ML is being used in an increasingly number of high-consequence applications.

ML explainability has emerged as field that seeks to build trust.
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The Need for Credible Explainability

ML is being used in an increasingly number of high-consequence applications.

ML explainability has emerged as field that seeks to build trust.

Can we trust the explanation?

«Computational shortcuts
*Assumes some understanding of machine learning
*Lack verifiable foundations




Current ML Explainability Methods

Sensitivity Analysis Guided Explainability

Correlated Feature

Training Data Statistics Preserving Sampling

Gaps and Limitations
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Machine Learning (Supervised) Classification

Model Diagram
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« | ML Explainability _

Attempt to describe the decision process that a machine learned model uses to make a prediction I

Interpretable models

« Can inspect the model

* Models that are relatively easy to interpret (linear regression models,
shallow decision trees)

White-box/Integrated

Interpretability
« Can inspect the model, but the model is sufficiently complex Methods

» Gini-importance for decision trees
» Gradient-based methods for deep learning models (Saliency maps)

Black-box/Post-hoc

Black Box

« Do not inspect the model, instead evaluates feature importance Model
» Create a surrogate model that is interpretable
« Often perturb the data and observe how the output changes

ii learn



7 | LIME: Local Interpretable Model-agnostic Explanation [1] _
Perturbation Based Method |

For ¥ € RY*™ (a new realization)

1. Sample m observation in a neighborhood of %, assuming that each feature of % is I
independent and normally distributed. Resulting in: {Z!} fori =1 .../

2. For each of the samples, get the original ML model prediction fr(Z%) = 7

3. With the derived sample dataset T = {Zi|j7i}, learn a linear regression model,

957 (%6(7)) = z a; %

JE{1,...m}

"4 e
I

|!+, ® LIME feature importance index =
+ e Pj = ) *X;

Complex Non-linear

Simple Linear I
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SHAP: SHapley Additive exPlanations [2]
Based on Cooperative Game Theory ®
’ ‘ 50m’

N : the set of features
S g N 2nd Floor

jJEN
v(S) : the total value of the S features ’ ’ .
Som’ ik

(V(S U {]}) — V(S)) for S C N\{]} . 2nd Floor
marginal contribution of feature j to set S ’
50m’ E :

SHAP feature importance index:
ISI'(N —|S] —1)! .
b= ) = (S U - v(S))
SSN\{j} |

One Computational Approximation:

 To approximate (v(S U {j}) — v(S)) without retraining the model, “noise” is used as a

surrogate for feature removal.
» “noise” is replicated as independent bootstrap samples from the training data

2nd Floor




» . Summary of Black-Box Explanation Methods _

Dependencies and Assumptions Observed Deficiencies [3]
» Dependent on a process for sampling  Descriptive Accuracy: Match when features
the data are removed '
* Require distance on output—how much « Instability: Produces different
it changes explanations on the same input
« Assumes independence and linearity « Completeness: Generate explanations for

all possible input vectors

« Efficiency: Can be slow to calculate
especially as the dimensionality increases

No agreed upon definition of explainability or
what constitutes an explanation



o | Can We Trust the ML Explanation??

Goal of explainability: provide credibility evidence by describing the decision process that a

model considers for a prediction.

BUT....

LIME

= [ntroduces a surrogate model without assessing the fidelity of that surrogate in relation to the
black-box model.

= |mplements perturbation of the input uncertainty assuming independence and normally distributed
random variates...which is uncharacteristic of the true statistics from the training dataset.

SHAP

= Has the most theoretical guarantees available to us today, but computational heuristics for the
approximations break those theoretical guarantees.

= Bootstrapping from the training dataset to replicate ”"noise”...but is ”noise” an appropriate
replicate for removing a feature??

Can we use Sensitivity Analysis Guided Explainability to mitigate these
challenges??



Current ML Explainability Methods

Sensitivity Analysis Guided Explainability

Correlated Features

Training Data Statistics Preserving Sampling

Gaps and Limitations
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Global Sensitivity Analysis: Notational Example
The apportionment for the contributions of input uncertainties on output uncertainty. [4]

Modeling Flow Diagram

Nominal Parameter Model of the Real Deterministic
Values World Outcome

6 ={a,B,v} f(x,0) y € RY

Example: Infectious Disease Modeling

a = seroprevalence

dx
o f(xr 6):

|
1
f = infection rate x =11 Loodt
1
1

y = [infectious duration]-! R xo= g(0)
. W,

Uncertainty Quantification of Model Forecast for the Infection Rate Curve

_[ali :81' yl] _

LI 8 _A_| — [%r[ig;)’z]

I [as, Bs, ¥s] |

Sensitivity of the Infection Rate Curve with respect to the Parameters of the Model

Total | Sum of ALL
Variance # 1 Ml other combined
of y )  contributions



Experimental Design for Sensitivity Analysis

Experimental Design is a scientific approach for identifying the inputs to a process that are most
influential to the outcome of that process; following particular design decisions.

Inputs:
Uncertainty in Parameters

Design Decision |

Sampling

Sampling sufficient discrete
realizations that preserve the statistics
and introduces only marginal standard
error.

i [aS'ﬁSJ)/S]

[a1, B1, V1]
[azyég»)fz]

Process:
Mathematical Model

Design Decision Il

Controlled/Uncontrolled Random
Behavior

Controlled: Sources of Variance
Uncontrolled: Random behaviors
inherent to the model

Outcome:
Uncertainty in Model Output

Design Decision Il

Quantity of Interest (Qol)

For the intended use case, what output
from the model maps to quantitative
metric for that intended purpose.




Experimental Design for ML Explainability

Original Modeling Flow Diagram
Nominal Parameter

Deterministic

Values

... .8 =105,V .

Translation to ML Classification

New (unlabeled)
Observations
f = ]Rlxn

Training Data
T = [X]Y]
X e Rmxn’Y = Rmxl

Machine

Outcome

Class
Prediction

Learned Model

fr(X,0(7))

y € {A,B,(C}

Inputs:
Uncertainty in Features

Sampling

Preserving the statistical properties of
the training data: non-Gaussian,
discrete, correlated, and sparse

Process:
Machine Learned Model

Controlled/Uncontrolled Random
Behavior

Outcome:
Uncertain Model Predictions

Quantity of Interest (Qol)

Running sufficient replicates for the
random behavior of stochastic machine
learned models.

What is the appropriate Qol for which a
sensitivity analysis will provide insight
for ML explainability?

Methods to apportion the influence of sources of input uncertainty across output uncertainty, accounting for higher-
order interactions in a model and input correlations.




Current ML Explainability Methods

Sensitivity Analysis Guided Explainability

Correlated Features

Training Data Statistics Preserving Sampling

Gaps and Limitations
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Correlated Features Provide Discriminative Power

Design of Experiments was used to the debunking the myth that correlated variables only provide

redundant information.

o Used synthetic data to control the amount
of correlation as the distinguishing
characteristic between classes

o Nailve Bayes is the baseline for linear
relationships

Most explainability methods assume
independence

o Incongruent explanations for the learned
model

o LIME uses a linear model

o SHAP makes independence and linear
assumptions

o Tested with quadradic regression

Accuracy
o
~

Test-Set Accuracy’

[ | Random Forest
Multilayer Perceptron
[ Naive Bayes

. ; /}/’l\\) | .\ |
KXXTY

jJ .\“
)
[0k 57 L5 oA L3 0.2 a1 0.0
Conrelation Coefficient:




Current ML Explainability Methods

Sensitivity Analysis Guided Explainability

Correlated Features

Training Data Statistics Preserving
Sampling

Gaps and Limitations
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Training Data Statistics Preserving Sampling

Current sampling approaches can create unrealistic data points

(Do not preserve correlations or distributions)
Features 3 and 4 from the iris data set (correlated features)

oy .#ic

-: .."Ql*'t e
% % 'i:&l? .a..l ®
Bos

) 8 -l.:'::'h"-'- & °
Bootstrapping

Developed Sampling methods that preserve correlations and generate
realistic data pQic




Current ML Explainability Methods

Sensitivity Analysis Guided Explainability

Correlated Feature Influence

Training Data Statistics Preserving Sampling

Gaps and Limitations




0 | Blockers to using GSA on ML Models for Explainability _

* Dependence in our feature space, which defines our sources of uncertainty

« Appropriate Quantity of Interest that will map to an explanation.

« Expedient Computational Methods for our correlation and distribution |
preserving sampling technique.

Questions to the Working Group:

« Are there scalable methods for approximating the Shapley indices?
 How are dependent sources of uncertainty currently handled by the
research community?

Continued Research Directions:

« Extensions of Sobol indices for dependent features. [5,6] .
« Verification of computational estimators for SHAP feature importance
indexes. I
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