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Introduction

• Classical approaches for incident detection rely on some knowledge of the
system topology, such as in graph-based techniques and methods based on
traveling waves.

• With the introduction of PMUs, data-driven techniques started receiving more
attention, as in the case with SVD-based approaches [1].

• Our proposed approach draws on Koopman operator theory, which accounts for
the causal relationship among multiple sensor data streams without prior
knowledge of the dynamic model.

Koopman Operator Theory

• The Koopman operator IC is a linear operator for the dynamics of x (t) in the
observable space.
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Dynamics in Infinite Observable Space
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• The Koopman operator is infinite-dimensional, making computation impractical.
• Extended Dynamic Mode Decomposition (EDMD) overcomes this issue by

providing a finite-dimensional approximation of Koopman operator.
• EDMD uses time-series data and hence it is suitable for data-driven frameworks.
• Incident detection method is formulated as a sparsity-promoting variant of EDMD.
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Methodology for Incident Detection

• We hypothesize that the relationship between different time-series data carries
more information than individual data streams.

• Instead of using raw data for the incident detection via Koopman operators, we
augment the data with the use of the Gaussian kernel function.

g(xj, xj) = exp  
2a

• This nonlinear transformation lifts the data into a higher dimensional space by
giving a measure of similarity between states xi.

• The transformed data is used to compute a sequence of IC matrices through a
sliding window, and significant changes in IC indicates altered causality in states
(i.e., occurrence of incidents).
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Case Studies

• We considered the IEEE 8500-node Test feeder unbalanced radial network with 7
grid battery energy storage systems (BESS) added.

• BESS can perform Volt/VAR control and take real power dispatch commands.
• The data was generated in OpenDSS, assuming voltage magnitude and phase

measurements from PMUs were available at the nodes of 3 of these BESS.
• Gaussian noise was added to the voltage magnitude (+0.01%) and voltage angle

(+0.01°) measurements.
• Fluctuations in load real and reactive power were considered in the feeder model.
• Changes in the sparsity pattern of the IC matrices indicated the occurrence of an

incident.
• To confirm the IC matrices had unique sparsity patterns for each scenario in which

the causality of the model was maintained, an offline analysis was performed
using k-means clustering to classify these matrices.

• Typical results showed misclassifications immediately after incidents occurred,
while remaining x's were correctly classified.

1) Detecting changes in battery discharge rate

IC sparsity
pattern changes
after incident
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2) Detecting changes in battery controller parameters

IC sparsity
pattern changes
after incident
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Conclusion

• In a distribution network with energy storage systems and advanced controls,
traditional monitoring and protection schemes are not well suited for detecting
anomalies such as malfunction of controllable devices.

• We propose a data-driven method that requires no prior knowledge of the network
dynamic model for the detection of these anomalies.

• The algorithm proposed is robust to load variations and noise measurements.
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