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« Classical approaches for incident detection rely on some knowledge of the
system topology, such as in graph-based techniques and methods based on
traveling waves.

« With the introduction of PMUs, data-driven techniques started receiving more
attention, as in the case with SVD-based approaches [1].

* Qur proposed approach draws on Koopman operator theory, which accounts for
the causal relationship among multiple sensor data streams without prior
knowledge of the dynamic model.

Koopman Operator Theory

 The Koopman operator K is a linear operator for the dynamics of x(t) in the
observable space.
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Dynamics in Finite State Space Dynamics in Infinite Observable Space

 The Koopman operator is infinite-dimensional, making computation impractical.

 Extended Dynamic Mode Decomposition (EDMD) overcomes this issue by
providing a finite-dimensional approximation of Koopman operator.

« EDMD uses time-series data and hence it is suitable for data-driven frameworks.

* Incident detection method is formulated as a sparsity-promoting variant of EDMD.
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Methodology for Incident Detection

 We hypothesize that the relationship between different time-series data carries
more information than individual data streams.

* Instead of using raw data for the incident detection via Koopman operators, we
augment the data with the use of the Gaussian kernel function.
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* This nonlinear transformation lifts the data into a higher dimensional space by
giving a measure of similarity between states x;.

 The transformed data is used to compute a sequence of K matrices through a
sliding window, and significant changes in K indicates altered causality in states
(i.e., occurrence of incidents).
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Introduction Case Studies

 We considered the IEEE 8500-node Test feeder unbalanced radial network with 7
grid battery energy storage systems (BESS) added.

« BESS can perform Volt/VAR control and take real power dispatch commands.

 The data was generated in OpenDSS, assuming voltage magnitude and phase
measurements from PMUs were available at the nodes of 3 of these BESS.

« (Gaussian noise was added to the voltage magnitude (+0.01%) and voltage angle
(+0.01°) measurements.

* Fluctuations in load real and reactive power were considered in the feeder model.

« Changes in the sparsity pattern of the K matrices indicated the occurrence of an
incident.

* To confirm the K matrices had unique sparsity patterns for each scenario in which
the causality of the model was maintained, an offline analysis was performed
using k-means clustering to classify these matrices.

* Typical results showed misclassifications immediately after incidents occurred,
while remaining K's were correctly classified.

1) Detecting changes in battery discharge rate
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2) Detecting changes in battery controller parameters
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Conclusion

* In a distribution network with energy storage systems and advanced controls,
traditional monitoring and protection schemes are not well suited for detecting
anomalies such as malfunction of controllable devices.

* We propose a data-driven method that requires no prior knowledge of the network
dynamic model for the detection of these anomalies.

* The algorithm proposed is robust to load variations and noise measurements.
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