
Opportunities and limitations of Quality-of-Service
(QoS) in Message Passing (MPI) applications on
adaptively routed Dragonfly and Fat Tree networks

Jeremiah J. Wilke
Scalable Modeling and Analysis
Sandia National Laboratories

Livmore, CA, USA
jjwilke@sandia.gov

Abstract—Avoiding communication bottlenecks remains a crit-
ical challenge in high-performance computing (HPC) as systems
grow to exascale. Numerous design possibilities exist for avoiding
network congestion including topology, adaptive routing, conges-
tion control, and quality-of-service (QoS). While network design
often focuses on topological features like diameter, bisection
bandwidth, and routing, efficient QoS implementations will
be critical for next-generation interconnects. Even if adaptive
routing makes hotspots rare events, scaling to thousands of
endpoints can make "rare events become likely. HPC workloads
are dominated by tightly-coupled mathematics, making delays in
a single message manifest as delays across an entire parallel
job. QoS can spread traffic onto different virtual lanes (VLs),
lowering the impact of network hotspots by providing priorities
or bandwidth guarantees that prevent starvation of critical
traffic. Two leading topology candidates, Dragonfly and Fat Tree,
are often discussed in terms of routing properties and cost, but
the topology can have a major impact on QoS. While Dragonfly
has attractive routing flexibility and cost relative to Fat Tree, the
extra routing complexity requires several VLs to avoid deadlock.
Here we discuss the special challenges of Dragonfly, proposing
configurations that use different routing algorithms for different
service levels (SLs) to limit VL requirements. We provide
simulated results showing how each QoS strategy performs on
different classes of application and different workload mixes.
Despite Dragonfly's desirable characteristics for adaptive routing,
Fat Tree is shown to be an attractive option when QoS is
considered.

Index Terms—interconnects, topology, adaptive routing,
message-passing (MPI), quality-of-servce (QoS), dragonfly

I. INTRODUCTION

Network communication remains a critical challenge for
extreme-scale science and engineering applications. High-
performance interconnects provide both high bandwidth and
low latency. Much of system interconnect design is dominated
by topology and adaptive routing. High bandwidth is provided
by scattering traffic along idle non-minimal paths, increas-
ing the available bandwidth between two endpoints. Low

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA-0003525.

Joseph P. Kenny
Scalable Modeling and Analysis
Sandia National Laboratories

Livmore, CA, USA
jpkenny@sandia.gov

latency is similarly provided by avoiding long queuing delays
along congested paths. Network delays can harm performance
even in latency-sensitive applications which only exchange
small amounts of data and are not generally considered
"communication-bound." Tightly-coupled simulations that are
common in science and engineering applications often only
proceed as fast as the slowest process [1]. Intermittent network
delays in a small subset of processes can quickly propagate to
delays across the entire simulation [2].

Adaptive routing is not the only tool for mitigating long
queuing delays. Quality-of-Service (QoS) has been available
in Ethernet [3] and Infiniband [4] networks and is a prominent
feature of the new Cray Slingshot interconnects [5]. QoS can
assign priority or bandwidth guarantees to different service
levels, providing low latency to traffic even along highly-
congested network paths. While QoS cannot generally increase
total network throughput (this falls to adaptive routing), QoS
can prevent starvation of latency-sensitive traffic. QoS and
adaptive routing are therefore highly complementary in op-
timizing latency for large HPC workloads.

Message-passing (MPI) is the dominant network program-
ming model for HPC applications [6] (although the lessons
here are equally applicable to non-MPI frameworks, e.g.
GASNet [7]). Within a single application, MPI has several
traffic types than can benefit from prioritization. Collectives
exchange data amongst all processes in a set, creating large
synchronization points. Collectives with many processes and
small data (e.g. the ubiquitous all reduce of a single element)
can be prioritized, guaranteeing low latency regardless of
current network contention. For both collective and point-
to-point traffic, data exchange protocols also involve a mix
of small control messages and bulk RDMA transfers. Again,
these small control messages could be given higher priority
with lower priority given to bulk transfers.
In mixed workloads with multiple MPI applications, a

network congested from one application might temporarily
starve traffic from another application. QoS also can mitigate
such network bottlenecks through bandwidth guarantees rather
than priorities. Even if queues are completely full for one

SAND2020-9475C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

service level, the other application can still make progress with
50% of the bandwidth.
When designing the network topology, features like hard-

ware cost, routing, diameter, and bisection bandwidth are
usually the main focus. Dragonfly, for example, has a low
diameter and excellent path diversity for adaptive routing [8]
while Fat Tree has higher diameter and requires extra core or
director switches. Topology and routing, however, can have
an enormous impact on the QoS implementation. The most
effective Dragonfly routing schemes allow mis-routing at each
hop rather than just selecting routes at the source [9]. This
adaptive routing can require several virtual channels (VCs) to
avoid deadlock cycles in the network [8], [10]. These virtual
channels must be mapped to independent virtual lanes (VLs)
provided by the network switches. Service levels must also
be mapped onto virtual lanes (VLs), with each VL having
different priorities and bandwidth shares. Assigning a unique
VL to each combination of QoS and deadlock VC could
quickly exceed the number of VLs available in the system.
While Dragonfly has more complex deadlock avoidance rules,
Fat Tree may only require a single VC. Despite Fat Tree's
larger diameter and extra switches, QoS implementation can
shift the cost/benefit tradeoffs of the topology.
The interaction of MPI implementation, routing and topol-

ogy presents a complex set of choices for how to leverage
QoS. Here we map out this design space, demonstrating the
cost/benefit tradeoffs of different QoS approaches for different
topologies. Although we consider only Dragonfly and Fat
Tree, these can be considered extreme cases in terms of cost
and number of VCs required. The lessons should therefore
be transferrable to other topologies like Dragonfly+ [11],
HyperX [12] or SlimFly [13] We begin by proposing different
QoS strategies that could be employed by existing MPI imple-
mentations [6], [14], [15]. We examine these strategies across
a set of single application and mixed workload scenarios.
Our results illustrate the challenge of selecting a "universally
beneficiar QoS strategy that can prioritize traffic from one
application without harming the performance of others. We
show topology-specific requirements for these QoS strategies.
In particular, we show for Dragonfly that if different routing
algorithms are used for difference service levels then the
number of VLs required can be greatly reduced. Fat Tree is
shown to be an attractive option when QoS is considered, even
when tapering to reduce the total cost.

II. RELATED WORK

Several QoS studies have considered inter-job interference,
separating applications into different service levels [16], [17]
to reduce contention. Intra-job QoS strategies prioritizing
small control traffic were considered in [18], along with more
coarse-grained inter-job traffic differentiation. These studies
inform the QoS strategies in the current work, but do not
consider the broader implications of topology and routing
on QoS. A recent study on Megafly considered different
prioritizing collectives over point-to-point transfers [19], but
did not consider more fine-grained prioritization of control

messages within the point-to-point protocols. Megafly was
considered as a Dragonfly alternative requiring fewer VCs,
which could better support QoS. We instead propose mixed
routing methods for Dragonfly that still enable QoS within
a limited number of virtual lanes (VLs). We further consider
tapered Fat Tree as a cost-effective alternative with even fewer
VCs required than Megafly.

QoS has been available on Infiniband networks [3], [4],
which support two priorities (low and high) and bandwidth
weights for different service levels. Cray Slingshot, although
not widely available yet in Top 500 systems, will support
QoS [5]. Ethernet (and its RDMA interface RoCE [?]) have
long supported flexible QoS configurations [3], although it is
less common in HPC systems. Blue Gene systems provided a
collective tree network, which was implemented using virtual
lanes within the main torus topology [20].

Beyond QoS, several studies have examined runtime vari-
ability or inter-job interference on production systems [21],
[22] or via simulation [2]. These have considered both regular
application traffic and I/0 traffic [23]. Subramoni et al. con-
sidered using virtual lanes, without service differentiation, to
reduce head-of-line (HoL) blocking in networks [24]. Samuel
et al. used routing keys for application-specific routing to avoid
contention, which shares some similarities with QoS [25].
Software-defined networks (SDN) with application-specific
routing tables have been considered — notably for Dragon-
fly [26] — which again avoids inter-job contention.

We do not perform a detailed survey of Dragonfly routing
algorithms Our Dragonfly routing allows misrouting at each
step similar to On-the-Fly Adaptive Routing (OFAR) [27],
although we do not use escape networks. More detailed
treatments of adaptive routing on Dragonfly can be found in
[27], [28], [29], [30]. The original source-based UGAL algo-
rithm [8] often fails to detect congestion at the source, which
has led to proposals for piggybacking congestion information
on packets [9].

MPI Send

Send Eager
Message

MPI_Recv

Header Arrives
in Mailbox
Copy to

Destination

Fig. 1: Mailbox (eager) protocol that can asynchronously send
to a pre-allocated buffer on the receiver. This protocol is
generally reserved for small messages.

MPI_Send

ACK

Returns

Send RDMA
Header

RDMA Get

41- ------
ACK

(-1

MPI_Recv

RDMA Done

Recv Returns

Fig. 2: Rendezvous RDMA protocol for zero-copy transfer
from send buffer to receive buffer. A control message exchang-
ing RDMA metadata is sent to the receiver, which then issues
an RDMA get. A control message acknowledging completion
is sent back to the sender.

III. QOS AND MPI

A. Message-Passing Implementation

There are numerous traffic types in the MPI implemen-
tations that could be prioritized. At a coarse-grained level,
collective traffic could be prioritized over point-to-point traffic
— or at least given its own virtual lane (VL) with minimum
bandwidth weight. More fine-grained QoS could be used
within each point-to-point send. Depending on message size,
different protocols for exchanging data are used. For small
messages (Figure 1), data can be first copied into a send buffer
and then sent into a pre-allocated "mailbox" on the receiver,
making the transfer asynchronous and only requiring a single
network trip. This "mice traffic can likely be prioritized
without harming throughput of larger messages. For larger
messages, a rendezvous protocol is used to enable zero-copy
transfers without intermediate buffers (Figure 2). This requires
first sending an RDMA header followed by a bulk RDMA
transfer and then ACK to the sender. The initial header and
ACK are high-priority mice traffic while the bulk RDMA get
can be a low-priority "elephanr flow. This fine-grained use
of QoS also applies to individual messages within collectives,
which are often implemented as a sequence of point-to-point
sends [31].

B. Quality-of-Service (QoS)

Quality-of-Service (QoS) allows network packets to be
assigned to different traffic classes (TCs) or service levels
(SLs). These service lvels can be mapped to different priorities
or bandwidth weights within a priority. Small latency-sensitive
traffic (mice traffic), for example, can be given high-priority
while large bandwidth-sensitive flows (elephant traffic) can
be given lower priority to prevent it starving other traffic.
Service levels with the same priority can each be assigned
a bandwidth weight, e.g. guaranteeing each SL 50% of the
available bandwidth, which again prevents starvation of other
application traffic. Infiniband provides two priorities (low and
high) and implements bandwidth weights with weighted round
robin (WRR) arbitration [32].

VLO

(a) QoS = None: All traffic uses a single FIFO on all ports

VLO

Pt-2-Pt
Elephant

VL1

Collective
Elephant

Pt-2-Pt Collective
Mice

lit'VL2 VL3

Mice

Low-priority rMedium Priority I I High Priority rierT-highPrTrit71

I 25% BW Weight I 1 25% BW Weight 1 125% BW Weight' 25% BW Weight I

(b) QoS = Split-Priority: Mice has priority over elephant, collective
priority over pt-2-pt. Each VL is assigned 25% bandwidth weight.

Pt-2-Pt
Elephant

VLO

Collective
Elephant

Low-priority

25% BW Weight I 25% BW Weight 25% BW Weightl I 25% BW Weight 1

Pt-2-Pt Collective
Mice Mice

VL21 I VL3

1
r High Priority

(c) QoS = Bandwidth-Weight: Mice has priority over elephant.
Collective and pt-2-pt have same priority, but collectives are assigned
25% bandwidth guarantee.

Fig. 3: Different QoS strategies for prioritizing mice/elephant
or collective/pt-2-pt flows.

Figure 3 shows the main QoS strategies considered in the
current work. The first (QoS = None) puts all traffic into the
same SL, which effectively makes all buffer queues a single
FIFO. QoS=Split-Priority distinguishes point-to-point, collec-
tive, and control traffic using 4 different priorities. RDMA
headers and ACKs (mice traffic) are given high-priority while
large data flows (elephant traffic) are given lower-priority.
Within each traffic type (mice and elephant), collectives are
given higher priority than point-to-point. The third strategy
(QoS=Bandwidth-Weight) assumes hardware only supports 2
different priorities. Mice traffic is again given higher priority
than elephant flows. While collectives and point-to-point have
the same priority, they are sent on different virtual lanes.
The collective VL is given a minimum bandwidth weight to
avoid starvation. Not shown in Figure 3, we also consider
QoS=Isolate which gives each application its own VL. All
applications have the same priority, but each is given a
bandwidth weight proportional to its share of the machine. All
messages within an application - both small control messages
and large data flows - use the same priority and same VL.

IV. TOPOLOGIES

A. Dragonfly

The Dragonfly topology [8] arranges switches into all-to-
all connected groups (Figure 4). At least one inter-group link
connects each pair of groups. Inter-group pairs are selected
based on a fixed pattern like circulant or palm tree [28]. Intra-
group flows require only a single hop while inter-group flows
will require two or three hops for minimal routing. Minimal
routes can quickly become congested. Adaptive routing or

Minmal Route

Non-minimal Adaptive Route

Fig. 4: Depiction of Dragonfly topology and adaptive routing.
Topology is composed of 8-port switches in 4 groups of 4.
Each switch has 2 connected endpoints (omitted for clarity).

misrouting schemes are can be source-based (misroute at
initial switch) or progressive (misrouting allowed on each
hop) [9]. UGAL is the most common source-based [8] routing
while OFAR [27] allows more flexible misrouting. Minimal
routing requires two virtual channels (VC) to avoid deadlock
cycles between intra- and inter-group traffic. UGAL routing
requires a third virtual channel to avoid deadlock cycles from
non-minimal inter-group traffic. More flexible mis-routing may
require as many VCs as the maximum number of hops (usually
5-7). OFAR tries to reduce VC requirements with escape
networks, which adds extra complexity. In the current work
we consider only Progressive Adaptive Routing (PAR), which
allows misrouting at each step without escape networks.

Despite the overloaded terms in the literature, we refer to
virtual lanes (VLs) on the switches that provide independent
buffers and flow control while virtual channels (VCs) are
abstract channels in a routing algorithm. To implement a
particular routing algorithm, a VC must be mapped to a
particular VL in the switch hardware. This, however, overlaps
with traffic classes (TCs) or service levels (SLs) in QoS. Each
SL is assigned a particular priority and bandwidth weight,
which then also requires mapping SLs to independent VLs on
the switches. Combining deadlock channels and service levels
now requires mapping (VC,SL) pairs to VLs. Each (VC,SL)
pair should ideally be independent from all other VCs to avoid
deadlock and all other SLs to ensure priority/bandwidth. This
potentially requires a full VCxSL cross-product. For just 4
SLs with adaptive routing, this could be as many as 24 VLs!

We test two Dragonfly implementations, each assuming
4 SLs. Dragonfly-PAR uses adaptive routing for all traffic,
and we assume a theoretical switch hardware supporting a
large number of VLs. Dragonfly-MIN/PAR uses progressive
adaptive routing for low-priority SLs 0 and 1 and minimal
routing for high-priority SLs 2,3, which limits the number of
required VLs to 16.

Topology No. Switches Port Config

FatTree 640 32 up/32 down
FatTree-TAPER 480 27 up/36 down
Dragonfly-PAR 512 16 injection, 32 intra-

group, 16 inter-group
Dragonfly-MIN/PAR 512 16 injection, 32 intra-

group, 16 inter-group

TABLE I: Topology configurations

B. Fat Tree

Fat Tree arranges switches into rows of leaf, aggregation,
and core switches (Figure 5). In the diagram, each leaf and
aggregation switch has 4up/4down ports connecting the rows.
Tapered configurations are possible, with more down than
up ports and fewer aggregation/core switches [33]. Tapered
designs are feasible when there is far more traffic on leaf ports
than core ports.

- Default Route
 Adaptive Route

Fig. 5: Depiction of Fat Tree topology and adaptive routing.
Topology is arranged in leaf, aggregation, and core switches.
Each leaf switch has 4 connected endpoints (omitted for
clarity).

Certain leaf and aggregation switches comprise "subtrees"
within the topology. Minimal routes are 2-4 hops, depending
on whether they are intra- or inter-subtree. While minimal
routes are longer than Dragonfly, Fat Tree has numerous
"minimar routes between endpoints. We therefore do not refer
to minimal and non-minimal for Fat Tree, but instead "default"
and "adaptive" routes. If all traffic follows a simple up-
down pattern (never changing direction), there are no deadlock
cycles even with adaptive routing. Fat Tree therefore only
requires a single VC for deadlock avoidance.

Fixed routing schemes like D-Mod-K are often used with
Fat Tree [34]. However, we assume Fat Tree has equivalent
adaptive routing capabilities as Dragonfly. We therefore imple-
ment a "progressive adaptive" Fat Tree that adaptively routes
on each hop. Traffic still only routes up/down and requires
no extra VCs for deadlock avoidance, which allows a direct
correspondence between SL and VL. Recall that we test a
QoS=Isolate strategy that assigns each application a unique SL
and VL. Although we assume a Dragonfly-PAR with a huge
number of VLs for a theoretical comparison, it may only be
practical to implement QoS=Isolate on a Fat Tree.

V. METHODOLOGY

A. Topologies

We assume 64-port switches and a total system size of 8192
nodes (endpoints). Each Dragonfly implementation has 512

T
h
r
o
u
g
h
p
u
t
 (
G
B
/
s
)

Dragonfly-PAR
10

poS

8
• No Background
• None

6 # Split-Priority

4

•
•

Bandwidth-Weight
Isolate • •

2 • 4: •
* •

0 * *

•
 M
I
I
I
M
X

I
t
•

10
1:

10-2 10 -1 10° 101 102 103
Size (KB)

FatTree
10

8 •
QoS
No Background
None x

•
iz
x

6 • Split-Priority
Bandwidth-Weight

4 Isolate
*

2 ♦

0 ♦ * • •
10-2 10-1 160 161 162

Size (KB)
103

10
Dragonfly-MIN/PAR

Qos
No Background

Ca 8
CD • None •

6
0_

•
, .

Split-Priority
Bandwidth-Weight

x

_C 4 +
3

2
• g

T
h
r
o
u
g
h
p
u
t
 (
G
B
/
s
)

0

10-2

+ +

M
N

I
M
M
O
 M
t

C
+

10-1 10° 101 102
Size (KB)

FatTree-TAPER

103

10 -

8-

6-

4-

2-

0-,

QoS
• No Background
• None
• Split-Priority
• Bandwidth-Weight

•• Isolate
•

•

♦ • -

•
 E
x
 N
E
 •

3
•

3
C
*
E
l
l
u
o

10-2 10-1 10° 101 102
Size (KB)

163

Fig. 6: Ping-Pong throughput for varying message sizes for different QoS strategies with Halo3D background.

6 -

Topology
• Dragonfly-MIN/PAR
• Dragonfly-PAR

16-3. 160 161 162 163
Size (KB)

Fig. 7: MPI Ping-Pong throughput varying sizes on Dragonfly
topologies for QoS=Priority with Halo3D background.

switches and concentration 16 (Table I). The 512 switches
are organized into 16 groups of size 32. At this scale, every
switch has at least one connection to every other group and
the Dragonfly actually has a minimal diameter of 2. The full
Fat Tree has 640 total switches. 256 leaf switches each have
concentration 32, which connect to 256 aggregation and 128
core switches. A tapered Fat Tree is also considered for a fairer
comparison to Dragonfly with fewer switches. The tapered
configuration has 228 leaf switches with concentration 36,
which tapers to 171 aggregation switches and 81 core switches.

Workloads were run either as a foreground application or
background traffic. Each workload is selected to cover a range
of use cases: bandwidth vs. latency sensitive and collective vs.
point-to-point traffic. Background traffic was spawned on the
system to create a fragmented allocation [22] and run for a
warmup period. The foreground application was then launched

on the remaining nodes in the system. While the job launcher
exploits as much locality as possible in placing individual
ranks on the system, the foreground ranks will still be scattered
on whatever fragmented allocation is available. Foreground
apps were run on either 1024, 2048, or 4096 nodes of the
8192 total. Each application assumes MPI+X parallelism with
one MPI rank per node. For each run, a total of 4-7 background
apps of size 1024 were launched on the system.

1) Halo3D: Halo3D is a bandwidth-intensive application
dominated by point-to-point traffic between neighbor pro-
cesses. Large halo regions (2MB) are exchanged along shared
faces in a 3D grid.

2) Fast Fourier Transform (FFT): FF I is a proxy for a
bandwidth-intensive collective. The FFI application performs
all-to-all exchanges amongst processors in the same "row" in
a 3D grid. Eeach rank in, e.g., row (X, Y, 0), (X, Y, N)
forms a subcommunicator on which all-to-all communication
is performed. Each MPI rank contributes 32-64 KB to each
all-to-all in the current study.

3) Sweep3D: Sweep3D is a proxy for a more latency-
sensitive point-to-point pattern. Sweep3D models wavefront
propagation across a 3D space. Like Halo3D, data is ex-
changed between neighboring processes. Processes cannot
send to neighbors, though, until they receive data from their
predecessor wavefront. Sweep3D sends much smaller mes-
sages (10-40KB) than Halo3D, which makes Sweep3D far
more latency-sensitive than Halo3D.

4) Global Allreduce: The allreduce performs a global sum
of a single element. Each rank exchanges data with its partners
in a spanning tree. Performance is entirely latency-bound.

IT;

0.0030

0.0025

0.0020

0.0015

0.0010

Background FFT Background Halo3D
- Dragonfly-MIN/PAR FatTree-TAPER
- Dragonfly-PAR
- F4tTree

•
• •

— No Congestion

♦ 1 41

r•
ce SS',

y9,6,
6

42v

••
•

.7•;•
awr

<6,' 4e

Qos

„e

♦

•

ce

• "

•

♦

• • "

\9°

ce

Background None

QoS DoS

Fig. 8: Distribution of iteration times for Halo3D foreground app running on 1024 nodes on system with 8192 nodes
different background traffic.

B. Simulation

All simulations were performed using the Structural Sim-
ulation Toolkit 10.0 release [35] . Application codes were
"skeletonize& to communication-only benchmarks using the
Clang-based auto-skeletonzier [36] in the SST/macro element
library [37]. Switch contention models are implemented in
the SNAPPR component of SST/macro (Simulator Network
for Adaptive Priority Packet Routing). Background apps were
started first and run continuously for an unlimited number of
iterations. Foreground apps were started after a brief warmup
period. Simulations were terminated when the foreground
application completed a fixed number of iterations.

0.00250

0.00225

0.00200

0.00175

0.00150

Background FFT Background Halo3D Background None

• None
x Split-Priority
• Bandwidth-Weight

1024 2048 4096 1024 2048 4096 1024 2048 4096
Foreground # Nodes

(a) Halo3D/Dragonfly-MIN/PAR
Background FFT Background Halo3D Background None

0.00250

.7,1.0.00225

w
E 0.00200

• None
x Split-Priority
• Bandwidth-Weight
• Isolate

0.00175 1==memoneel1=1=N 1, 1 -I
0.00150

1024 2048 4096 1024 2048 4096 1024 2048 4096
Foreground # Nodes

(b) Halo3D/FatTree-TAPER

Fig. 9: Performance scaling of Halo3D foreground with dif-
ferent QoS strategies and backgrounds.

VI. RESULTS AND DISCUSSION

A. MPI Ping-Pong

Before proceeding into application use cases, it is instructive
to consider a ping-pong benchmark. Figure 6 shows observed
throughputs for the different QoS strategies on the Dragonfly-
PAR network. The spread over all repeated iterations is shown.
QoS=None, QoS=SplitPriority and QoS=Bandwidth-Weight
all show a high degree of scatter and similar performance.
By far the highest and most stable throughput is QoS=Isolate

with

which assigns all ping-pong traffic to a unique VL with
bandwidth guarantee.

A more subtle (and critical point to later discussion of
Dragonfly) is seen comparing Dragonfly-PAR to Dragonfly-
MIN/PAR. Figure 7 shows throughputs for QoS=Split-Priority,
which now shows the average performance and 95% con-
fidence interval ranges. Despite using minimal routing for
small traffic, Dragonfly-MIN/PAR provides essentially the
same performance as Dragonfly-PAR for most cases. There
is one notable region around 15KB messages, however, where
Dragonfly-PAR provides consistently higher throughputs. De-
spite RDMA headers having high priority in the rendezvous
protocol (Figure 2), adaptive routing still seems to provide
a benefit. High-priority messages can still experience some
delay on congested minimal paths. The weighted round-
robin arbitrator cannot immediately respond to a high-priority
request. Even if a high-priority packet is the very next selected,
it still has to wait for the the already arbitrated flits or packets
to send. As such, there may still be situations where taking a
quieter, non-minimal path can have lower latency.

B. Halo3D

Halo3D is primarily bandwidth-bound, exchanging large
(several MB) messages between neighboring processes. Rather
than a single median or average, we plot the complete distribu-
tion of iteration times across all MPI ranks in Figure 8. Since
tail latency is a critical performance driver, a QoS strategy
should ideally reduce not only the median/mean iteration time
for all MPI ranks, but also the outliers. Figure 8 includes
several important baselines for comparison.

• Performance with no service levels (QoS = None). All
traffic fills a single FIFO queue on each port.

• Performance with no background traffic. All contention
is within the application itself.

• Performance with no contention. Queue delays are ig-
nored in network switches, simulating "idear perfor-
mance where each packet sees a quiet network (NIC
queue delays are still included).

The box plots show quantiles out to 99% while the remaining
outliers are shown as points. Across topologies, Dragonfly-
MIN/PAR is competitive with Dragonfly-PAR, often showing

0.0020

— 0.0015

1=E 0.0010

0.0005

Background FFT

- Dragonfly-MIN/PAR FatTree-TAPER
- Dragonfly-PAR No Congestion
m. FatTree

4++4,- +++++ +4+

,r'S<2>
>9. 6" „VA
QC'

34e'

QoS

Background Halo3D Background None

I 4++, 04-+
• e'

QoS

\43

444++ 4,444 -I-HH- +4+

ce
ao

•qcs 6".ef
x.

QoS

\`',°

Fig. 10: Distribution of iteration times for FFT foreground app running on 1024 nodes with different background traffic.

0.0025
Background FFT Background Halo3D Background None

0.0020 • None
x Split-Priority

w 0.0015 • Bandwidth-Weight

lz 0.0010

0.0005

1024 2048 4096 1024 2048 4096 1024 2048 4096
Foreground # Nodes

(a) FFT/Dragonfly-MIN/PAR

0.0025
Background FFT Background Halo3D Background None

0.0020 • None
x Split-Priority

0.0015
• Bandwidth-Weight
• Isolate

0.0010

0.0005
1024 2048 4096 1024 2048 4096 1024 2048

Foreground # Nodes
4096

(b) 1/FatTree-TAPER

Fig. 11: Performance scaling of FFT foreground with different
QoS strategies and backgrounds

slightly improved performance. Fat Tree generally outperforms
Dragonfly, even in the tapered configuration whether or not
service levels are used. Although the FF1 benchmark sends
some large messages, Halo3D seems relatively insensitive
to FFT background traffic even with QoS=Split-Priority that
prioritizes collective traffic — consistent with previous re-
sults [19]. Halo3D foreground performance degrades with
Halo3D background since both bandwidth-intensive applica-
tions contend for limited bandwidth.

Prioritizing control traffic provides little obvious perfor-
mance benefit for Dragonfly - with or without background
traffic. Prioritizing control traffic has the effect of increasing
injection rate, cutting down the delay between MPI_Send
being called and the RDMA transfer beginning. For an already
bandwidth-limited application, this provides no benefit. In
fact, this could accomplish a "reverse congestion control"
by allowing RDMA transfers to begin faster. For Fat Tree
(with more switches and more bandwidth), prioritizing control
traffic does reduce median iteration times, but the outliers still
remain The QoS=Isolate strategy gives each application its

4 n ss:bBo. teown service level with bandwidth guarantee #0ddoes e

Giving bandwidth-weights and removing HoL-blocking with
separate VLs provides little benefit, though, since performance

is entirely limited by aggregate bandwidth.
Scaling of the approach is illustrated in Figure 9 for a subset

of the topologies. The results remain fairly consistent as the
foreground app is increased to 4096 nodes. For Dragonfly,
QoS becomes less helpful as the foreground app occupies a
larger fraction of the system and the app begins to experience
more intra-job contention and less inter-job contention.

C. FFT

FFT performs subcommunicator all-to-all collectives, ex-
changing medium-sized (10-100KB) messages. The FFT
benchmark shows obvious contention effects when contending
with Halo3D background (Figure 10). Self-interference with
no background or interference from other FFT jobs seems
to have a limited impact on performance. For Fat Tree,
performance even approaches the no congestion baseline. Fat
Tree again outperforms Dragonfly, even for tapered config-
urations. Dragonfly-MIN/PAR is again competitive with and
often performs better than Dragonfly-PAR. Prioritizing control
traffic shows no appreciable benefit when FFT runs with no
background or other FFT jobs as background.

QoS=Split-Priority shows the largest improvement for FFT,
as expected, since collective traffic is prioritized. However,
the Bandwidth-Weight strategy also drastically reduces FFT
outliers for all topologies. Large collective messages are
only given bandwidth weight guarantees, not special priority.
Likewise, for QoS=Isolate collectives do not have increased
priority but guaranteed bandwidth share. While prioritizing
collective traffic obviously reduces FFT iteration times, the
most important reduction comes just from minimal bandwidth
weighting and avoiding HoL-blocking.

Scaling for FF1 shows a similar story to Halo3D scaling
in Figure 11. Performance remains stable scaling to 4096
nodes while differences in QoS become less significant as the
foreground app occupies a larger fraction of the system.

D. Global Allreduce

We show performance of a global all-reduce collective for
a single element. Again, only bandwidth-intensive Halo3D
traffic provides significant network contention. While the vast
majority of observed iteration times are relatively low, the
outliers are an order of magnitude slower. The Fat Tree
topologies actually manage to keep contention low enough to

0.0015

3.1.; 0.0010
E

I— 0.0005

0.0000

Background FFT Background Halo3D

- Dragonfly-MIN/PAR FatTree-TAPER
- Dragonfly-PAR No Congestion
- FatTree

a° s̀▪ °
14?

QoS

+-Fe-

\riP

4

cs"

Qt ,s6"‘,4.c

(bv*e'

\riP

—41-4—t-

Background None

• 66'
c5S •4;,

.a ""

QoS QoS

Fig. 12: Distribution of iteration times for Allreduce foreground app running on 1024 nodes with different background traffic

0.0150

0.0125

0.0100
E
0.0075

0.0050

0 0025

Background FFT Background Halo3D

- Dragonfly-MIN/PAR FatTree-TAPER
- Dragonfly-PAR No Congestion
- FatTree

fifft +HI+ I ! I +. iffff .if
6,;s' ae

V •

Cos

S*.%6
.6`"

<2*
6 .4t,

<27"cle

poS

iijif
‘,0 .6\

ce**
g,"AA°

Background None

poS

1-1-!-
4fre

\yo

Fig. 13: Distribution of iteration times for Sweep3D foreground app running on 1024 nodes with different background traffic

completely avoids these outliers. Dragonfly, however, produces
distant outliers. All QoS strategies remove the outliers, with
QoS=Split-Priority (which prioritizes collectives) providing
the best performance.

E. Sweep3D

Sweep3D sends small and medium-sized messages (10-
50KB) between neighbor processes. Unlike Halo3D, Sweep3D
simulates a propagation from one corner of a domain across
the whole domain. While in Halo3D all processes can begin
immediately, in Sweep3D processes can only being when their
preceeding wavefront is complete. This makes Sweep3D much
more latency-sensitive than Halo3D. Sweep3D shows little
sensitivity to FFT background traffic. Halo3D background,
however, has a major impact on Sweep3D performance. While
contention in the full Fat Tree remains relatively low, both
Dragonfly and tapered Fat Trees show serious contention
slowdowns without QoS.

Interestingly, all QoS strategies largely reduce the perfor-
mance degradation. For QoS=Isolate, this is achieved by giving
Sweep3D minimal bandwidth weights and its own VL. For
QoS=Split-Priority, in contrast, this achieved only by giving
small messages and control traffic priority. In all cases so far,
Dragonfly-MIN/PAR has matched or even outperformed the
Dragonfly-PAR routing. For Sweep3D with QoS=Split-Priority
or QoS=Bandwidth-Weight, Dragonfly-MIN/PAR now shows
larger iteration times. Whereas Halo3D sends large messages
(several MB), Sweep3D sends medium messages in the 10KB-
40KB range. Recalling Section VI-A, there were particular

cases where non-minimal routing of small messages improved
throughput.

NIC 0
Data

credits

Hn

E

Switch

eiDr`eii

0 idle: No packet to send frorn Tx buffer

()Active: Packet actively sending from Tx buffer to open Rx buffer

0 Stalled: Packets available in Tx buffer, but no open Rx buffer

Fig. 14: Illustration of three different states of network ports:
active, idle, and stalled. Simulator counts total time (number
of cycles) spent in each state for every port.

F. Performance Counters

Fat Tree — even the tapered configuration — performed
surprisingly well compared to Dragonfly for all use cases
considered. We examine detailed performance counters to
better understand where the performance gain comes from.
Figure 14 illustrates the performance counters we consider.
Every port in the system is either 1) idle (nothing to send), 2)
actively sending, or 3) stalled (packets queued, but waiting on
credits). The simulator logs the number of cycles spent by each
port in a given state. Stalled cycles indicate ports overwhelmed
by contention. Adaptive routing ideally reduces the number
of idle cycles (traffic should be distributed to underutilized
ports). Ports that spend too much time active indicate network
hotspots. Aggregate activity is also lowest when all packets

15000

10000

7423
0 5000

0

xmit_active

e
A°c0 4°

xmit_idle xmit_stall

t
'R-- e,e,

‘(". &‘'..3- 4C' kc
;CN' '-..V <esi-
e 4' <,

•6,` 0' ,
e<1' 0e?

0<6

qP

Fig. 15: Distribution plots (violin histograms) showing time spent by ports in active, idle, or stalled states in each topology.
Lower is better for each performance counter. Each violin is a rotated histogram binning all ports in the system by time spent
in a given state. Result shows Halo3D foreground with Halo3D background for QoS=Split-Priority.

route minimally since mis-routing increases the number of
hops required.

Figure 15 shows vertical histograms (violins) for all the
ports in the network. Distribution width indicates the number
of ports in a given bin (time spent in a given state). Dragonfly
sees a bimodal distribution of active ports. The upper tail
corresponds to hotspot ports more active than the rest of the
network. The Fat Tree topologies — even the tapered version
— avoid this "hotspot tair in the distribution. Although stalls
occur only a small fraction of the time in Dragonfly, they are
almost completely absent in the Fat Tree topologies.
We can consider again the routing diagrams in Figures 4

and 5. When Dragonfly routers detect congestion, they must
choose a non-minimal path to avoid the hotspot. Selecting
which non-minimal path to take is non-trivial as the router
may have incomplete congestion information. Misrouting also
increases the path length, which can make contention worse.
In fact, for uniform random traffic, minimal routing is actually
the best possible scheme. Fat Tree can adaptively route along
many equivalent minimal paths. Even oblivious, round-robin
schemes can distribute load across all these minimal paths.
Selecting adaptive routes in Fat Tree is therefore much simpler
and does not increase the path length.
We emphasize here that the results only apply to our par-

ticular implementation of Dragonfly. More complex schemes
involving, e.g. congestion piggy-backing could potentially
improve Dragonfly's adaptive routing [9]. Our study instead
shows that 1) Fat Tree enables simple QoS and routing
schemes with excellent performance and 2) QoS greatly im-
proves Dragonfly performance over its baseline.

VII. CONCLUSIONS

Quality-of-Service (QoS) can be a powerful mechanism for
preventing starvation of certain application traffic on highly-
contended networks. QoS, however, has important interactions
with topology and routing. Dragonfly and Fat Tree, considered
here, represent two extremes of interconnects common with
high-radix switches. Dragonfly has low diameter and excellent
adaptive routing potential, but requires extra virtual lanes.

Fat Tree has larger minimal diameter, but with much simpler
routing rules and fewer virtual lanes required. Because QoS
is provided by differentiating priority and bandwidth share
across different virtual lanes, QoS becomes more difficult on
Dragonfly. We explored a scheme selectively mixing adaptive
and minimal routing (Dragonfly-MIN/PAR) that shows gen-
erally good performance, allowing multiple different service
levels for Dragonfly even with limited virtual lanes. While
QoS strategies that prioritize different types of MPI traffic
can improve performance, the most consistent benefit is seen
with QoS=Isolate where every application receives a dedicated
virtual lane and bandwidth share. Even with the reduced
VL requirements for Dragonfly-MIN/PAR, this QoS=Isolate
strategy likely cannot provide enough unique service levels
on Dragonfly. Such a strategy is likely only feasible on a Fat
Tree, which can implement adaptive routing on a single virtual
lane.

Fat Tree provides consistently better performance, even
when QoS and background traffic are not considered. This
performance benefit is seen even for tapered trees with fewer
total switches than Dragonfly. Given that a more complete
exploration of Dragonfly routing algorithms is not done here
this should not be considered definitive evidence that tapered
Fat Tree is better than Dragonfly — only that tapered Fat
Tree should be considered in future work as a simpler and
competitive alternative.

ACKNOWLEDGMENT

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department
of Energy's National Nuclear Security Administration under
contract DE-NA-0003525. Specials thanks to Drew Lewis and
Scott Hemmert for useful discussion.

REFERENCES

[1] F. Petrini, D. J. Kerbyson, and S. Pakin, "The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the

8,192 Processors of ASCI Q," in Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, 2003, p. 55.

[2] X. Yang, J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan, "Watch Out
for the Bully! Job Interference Study on Dragonfly Network," in SC
'16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2016, pp. 750-760.

[3] S. Reinemo, T. Skeie, T. Sodring, O. Lysne, and O. Trudbakken,
"An overview of QoS capabilities in infiniband, advanced switching
interconnect, and ethernet," IEEE Commun. Magazine, vol. 44, pp. 32-
38, 2006.
J. Pelissier, Providing quality of service over Infiniband architecture
fabrics, 2000.
(2019) SLINGSHOT: THE INTERCONNECT FOR
THE EXASCALE ERA. [Online]. Available:
https://www.cray.com/sites/defaultffiles/Slingshot-The-Interconnect-
for-the-Exascale-Era.pdf

[6] W. Gropp, "MPICH2: A New Start for MPI Implementations," in
Proceedings of the 9th European PVM/MPI Users' Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing
Interface, 2002, p. 7.
U. Consortium, "GASNet Specification, Lawrence Berkeley National
Lab Tech Report LBNL-6623E," 2013.
J. Kim, W. J. Dally, S. Scott, and D. Abts, "Technology-Driven, Highly-
Scalable Dragonfly Topology," in ISCA '08: International Symposium
on Computer Architecture, 2008, pp. 77-88.
N. Jiang, J. Kim, and W. J. Dally, "Indirect Adaptive Routing on
Large Scale Interconnection Networks," in ISCA 2009: 36th Annual
International Symposium on Computer Architecture, 2009, pp. 220-231.

[10] W. J. Daily, "Virtual-Channel Flow-Control," IEEE Transactions on
Parallel Distrib. Syst., vol. 3, pp. 194-205, 1992.

[11] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdomov, B. Gafni, and E. Zahavi,
Dragonfly+: Low Cost Topology for Scaling Datacenters, 2017.

[12] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
"HyperX: topology, routing, and packaging of efficient large-scale
networks," in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009, pp. 1-11.

[13] M. Besta and T. Hoefler, "Slim Fly: A Cost Effective Low-Diameter Net-
work Topology," in SC '14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2014, pp. 348-359.

[14] R. L. Graham, T. S. Woodall, and J. M. Squyres, "Open MPI: A Flexible
High Performance MPI," 2006, pp. 228-239.

[15] J. Liu, J. Wu, and D. K. Panda, "High performance RDMA-based MPI
implementation over infiniBand," Int. J. Parallel Program., vol. 32, pp.
167-198, 2004.

[16] L. Savoie, D. K. Lowenthal, B. R. D. Supinski, K. Mohror, and
N. Jain, "Mitigating Inter-Job Interference via Process-Level Quality-of-
Service," in 2019 IEEE International Conference on Cluster Computing
(CLUSTER), 2019, pp. 1-5.

[17] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero,
M. Valero, G. Rodriguez, J. Labarta, and C. Minkenberg, "On-the-Fly
Adaptive Routing in High-Radix Hierarchical Networks," in Parallel
Processing (ICPP), 2012 4Ist International Conference on, 2012, pp.
279-288.

[18] H. Subramoni, P. Lai, and D. K. Panda, "Designing QoS Aware MPI
for InfiniBand - Techinical Report?'

[19] M. Mubarak, N. McGlohon, M. Musleh, E. Borch, R. Ross, R. Hugga-
halli, S. Chunduri, S. Parker, C. Carothers, and K. Kumaran, "Evaluating
Quality of Service Traffic Classes on the Megafly Network?' 2019.

[20] A. Faraj, S. Kumar, B. Smith, A. Mamidala, and J. Gunnels, "MPI
Collective Communications on The Blue Gene/P Supercomputer: Al-
gorithms and Optimizations?' in 2009 17th IEEE Symposium on High
Performance Interconnects, 2009, pp. 63-72.

[21] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri,
and K. Kumaran, "Run-to-run variability on Xeon Phi based cray XC
systems?' in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2017, p.
Article 52.

[22] A. Jokanovic, J. C. Sancho, J. Labarta, G. Rodriguez, and
C. Minkenberg, "Effective Quality-of-Service Policy for Capacity High-
Performance Computing Systems?' in 2012 IEEE 14th International
Conference on High Performance Computing and Communication &
2012 IEEE 9th International Conference on Embedded Software and
Systems, 2012, pp. 598-607.

[4]

[5]

[7]

[8]

[9]

[23] M. Mubarak, P. Cams, J. Jenkins, J. K. Li, N. Jain, S. Snyder,
R. Ross, C. D. Carothers, A. Bhatele, and K. Ma, "Quantifying 1/0 and
Communication Traffic Interference on Dragonfly Networks Equipped
with Burst Buffers?' in 2017 IEEE International Conference on Cluster
Computing (CLUSTER), 2017, pp. 204-215.

[24] H. Subramoni, P. Lai, S. Sur, and D. K. Panda, "Improving Application
Performance and Predictability Using Multiple Virtual Lanes in Modem
Multi-core InfiniBand Clusters," in 2010 39th International Conference
on Parallel Processing, 2010, pp. 462-471.

[25] A. Samuel, E. Zahavi, and I. Keslassy, "Routing Keys," in 2017 IEEE
25th Annual Symposium on High-Performance Interconnects (HOTI),
2017, pp. 9-16.

[26] P. Faizian, M. A. Mollah, Z. Tong, X. Yuan, and M. Lang, "A
comparative study of SDN and adaptive routing on dragonfly networks?'
in SC17: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2017, pp. 1-11.

[27] M. Garcia, E. Vallejo, R. Beivide, M. Valero, and G. Rodriguez,
"OFAR-CM: Efficient Dragonfly Networks with Simple Congestion
Management?" in High-Performance Interconnects (HOTI), 2013 IEEE
21st Annual Symposium on, 2013, pp. 55-62.

[28] C. Camarero, E. Vallejo, and R. Beivide, "Topological Characterization
of Hamming and Dragonfly Networks and Its Implications on Routing?'
ACM Trans. Archit. Code Optim., vol. 11, pp. 1-25, 2014.

[29] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, and M. Valero,
"Efficient Routing Mechanisms for Dragonfly Networks?" in 2013 42nd
International Conference on Parallel Processing, 2013, pp. 582-592.

[30] D. Xiang, B. Li, and Y. Fu, "Fault-Tolerant Adaptive Routing in Drag-
onfly Networks?' IEEE Transactions on Dependable Secure Comput.,
vol. 16, pp. 259-271, 2019.

[31] R. Thakur and W. Gropp, "Improving the Performance of Collective
Operations in MPICH," in lOth European PVM/MPI Users' Group
Meeting (Euro PVM/MPI 2003), 2003.

[32] Z. Xue, N. Guiqiang, J. Fenglin, and L. Bin, A New WRR Algorithm
Based on Ideal Packet Interval Time, 2011.

[33] G. Michelogiannakis, K. Z. Ibrahim, J. Shalt J. J. Wilke, S. Knight, and
J. P. Kenny, "APHiD: Hierarchical Task Placement to Enable a Tapered
Fat Tree Topology for Lower Power and Cost in HPC Networks?' in
Cluster Cloud and Grid Computing (CCGRID), 2017, pp. 228-237.

[34] J. K. Jacobs, "D-Mod-K Routing Providing Non-Blocking Traffic for
Shift Permutations on Real Life Fat Trees?' 2010.

[35] G. Voskuilen et al. (2016) SST/macro GitHub. [Online]. AvMlable:
https://github.com/sstsimulator

[36] J. J. Wilke, J. Kenny, S. Knight, and S. Rumley, "Compiler-assisted
Source-to-Source Skeletonization of Application Models for System
Simulation," in (To appear) International Conference on Supercomput-
ing (ISC '18), 2018.

[37] J. J. Wilke, J. Kenny, S. Knight, and G. Michelogiannakis, "The Pitfalls
of Provisioning Exascale Networks: A Trace Replay Analysis for Un-
derstanding Communication Performance?' in (To appear) International
Conference on Supercomputing (ISC '18), 2018.

