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Abstract

Three new rejection sampling methods for generating samples from the adjoint Klein-Nishina

cross section are discussed: the two-branch rejection sampling procedure, the three-branch linear

rejection sampling procedure and the three-branch inverse rejection sampling procedure. These

methods have all been implemented in the Framework for REsearch in Nuclear ScIence and En-

gineering (FRENSIE). The efficiency and sample generation rate of each of these methods are

evaluated to characterize the methods and to make recommendations regarding their use. The use

of these methods in realistic transport simulations is also evaluated by incorporating a scattering

function into the sampling process. The results of an infinite medium problem are presented to

verify that the sampling procedure can be used in an adjoint Monte Carlo simulation to generate

results that are in agreement with an equivalent forward simulation.

Keywords — Adjoint, Rejection Sampling, Klein-Nishina, Monte Carlo
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I. INTRODUCTION

Several Monte Carlo codes have the capability to perform continuous energy adjoint photon

transport simulations [1, 2, 3]. While the work to bring the continuous energy adjoint photon

transport methods to parity with the forward methods is ongoing, one area that has been neglected

is the development of effective sampling methods for the adjoint Klein-Nishina cross section. As

will be shown shortly, the complex nature of the adjoint Klein-Nishina cross section compared

to its forward counterpart makes it more difficult to construct effective sampling methods. The

methods that will be discussed are by no means fully optimized, but they can be used to generate

samples efficiently and quickly from the adjoint Klein-Nishina cross section without having to use

importance sampling, as is currently done in some codes [2].

The next section of this paper highlights a few important features of the adjoint Klein-Nishina

cross section that impact the sampling methods. The relationship between the forward and adjoint

double differential cross section serves as a starting point in this discussion. The adjoint scattering

energy range that can be extracted from this cross section relationship contains a discontinuity that

must be characterized and avoided before sampling methods can be constructed. In section III,

the sampling methods for the adjoint Klein-Nishina cross section will be developed and discussed.

Section IV examines the sampling efficiencies and speeds of the methods. Finally in section V,

the results of an infinite medium problem generated using the Framework for REsearch in Nuclear

ScIence and Engineering (FRENSIE) [4, 5, 6], in which the new sampling methods have been

implemented, are presented.

II. THE ADJOINT KLEIN-NISHINA CROSS SECTION

The following relationship between the forward and the adjoint cross section can be used to

construct the adjoint Klein-Nishina cross section from the Klein-Nishina cross section:

d2σ†KN (E
′
, E, θ)

dΩdE
=
d2σKN (E,E

′
, θ)

dΩ′dE′ . (1)

This relationship can be constructed from a derivation of the adjoint transport equation [7]. It

indicates that the adjoint cross section can be constructed from the forward cross section by swap-

ping the variables that represent the incoming and outgoing quantities. For the remainder of this
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work, primed variables will be used to refer to quantities before the collision, while unprimed

variables will be used to refer to quantities after the collision. This convention will apply to both

forward and adjoint cross sections. It must also be noted that the exact relationship between an

adjoint cross section and a forward cross section includes incoming and outgoing directions. How-

ever, the Klein-Nishina cross section only depends on the cosine of the angle between the incoming

and outgoing directions, which will not change if incoming and outgoing direction variables are

swapped.

The Klein-Nishina cross section has the following form when photons have no net polarization

[8]:

d2σKN (E
′
, E, θ)

dΩdE
=
r2e
2

( α
α′

)2 [ α
α′ +

α
′

α
− 1 +

(
Ω̂ · Ω̂

′
)2]

δ

(
E − E

′

1 + α′(1− Ω̂ · Ω̂′)

)
. (2)

Note that in the above equation the scattering angle cosine has been represented as the dot product

of the incoming and outgoing directions. Several of the energy variables have also been replaced

with α variables. Each α variable is simply the ratio of the corresponding energy variable and the

electron rest mass energy. Finally, the value re is the classical radius of the electron.

The delta function in equation 2 indicates that there is a one-to-one correspondence between

the outgoing photon energy and scattering angle cosine. The outgoing photon energy from a

Compton scattering event with a free electron can be determined using conservation of energy and

momentum:

E =
E

′

1 + α′(1− cos θ)
. (3)

The double differential adjoint Klein-Nishina cross section can be constructed from equations

1 and 2 and is

d2σ†KN (E
′
, E, θ)

dΩdE
=
r2e
2

(
α

′

α

)2 [
α

′

α
+
α

α′ − 1 +
(

Ω̂
′
· Ω̂
)2]

δ

(
E

′
− E

1 + α(1− Ω̂′ · Ω̂)

)
. (4)

Before this equation can be used, the delta function must be modified so that the outgoing energy

is once again the independent variable. The following delta function identity can be used to modify

the delta function:

δ(cx) =
1

|c|
δ(x).
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After using the delta function identity and completing some algebraic manipulations, one

obtains the following for the delta function found in equation 4:

δ

(
E

′
− E

1 + α(1− cos θ)

)
=
( α
α′

)2
δ

(
E − E

′

1− α′(1− cos θ)

)
(5)

Note that during the modification of the delta function the relationship between the outgoing

adjoint photon energy and the scattering angle cosine is also derived:

E =
E

′

1− α′(1− cos θ)
. (6)

This equation can also be found by solving equation 3 for the incoming energy and swapping

primed and unprimed variables. Equation 6 will be discussed more shortly.

Using the delta function relationship from equation 5, a usable form of the double differential

adjoint Klein-Nishina cross section is created:

d2σ†KN (E
′
, E, θ)

dΩdE
=
r2e
2

[
α

′

α
+
α

α′ − 1 + cos2 θ

]
δ

(
E − E

′

1− α′(1− cos θ)

)
. (7)

Integrating over all outgoing energies will then yield the differential adjoint Klein-Nishina cross

section, where the one-to-one correspondence between the outgoing energy and the outgoing scat-

tering angle is implicit:

dσ†KN (E
′
, θ)

dΩ
=
r2e
2

[
α

′

α
+
α

α′ − 1 + cos2 θ

]
. (8)

Before methods for sampling an outgoing energy and scattering angle cosine can be created,

some observations regarding the relationship between the outgoing adjoint photon energy and the

scattering angle cosine, characterized by equation 6, are discussed. A similar analysis can be found

in work by Hoogenboom and Gabler et al [7, 1]. First, this equation exhibits a discontinuity when

cos θ = 1− 1

α′ .

Any value of cos θ less than the above value will result in nonphysical (negative) energies. Ac-

ceptable values of cos θ that approach the above value will result in very large outgoing adjoint
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photon energies. Because of the discontinuity in equation 6, it is more useful to characterize the

bounds of a single adjoint Compton scattering event using the range of possible scattering angles

instead of the range of possible outgoing energies, as is typically done with Compton scattering.

The minimum scattering angle cosine is

cos θmin =


−1 if α

′
< 1

2

1− 1
α′ if α

′ ≥ 1
2 .

(9)

The maximum scattering angle cosine is one, as it is with Compton scattering.

Second, this discontinuity introduces a singularity into the differential adjoint Klein-Nishina

cross section that is not integrable. As will be shown shortly, the creation of a PDF from equation

8 requires, in theory, the integrated adjoint Klein-Nishina cross section. To avoid this singularity in

the integration of the differential adjoint Klein-Nishina cross section a new parameter is introduced:

the maximum problem energy, Emax [7]. As every physical model will have a maximum source

energy, this new parameter is an acceptable requirement. Associated with this maximum energy

will be a new minimum scattering angle cosine:

Emax =
E

′

1− α′(1− cos θmin)
,

cos θmin =


−1 if α

′
< αmax

1+2αmax

1− 1
α′ + 1

αmax
if α

′ ≥ αmax
1+2αmax

.

(10)

With these characteristics of the adjoint Klein-Nishina cross section in mind, sampling proce-

dures are constructed. All of the sampling methods that are discussed in the following section have

been implemented in the Framework for REsearch in Nuclear ScIence and Engineering (FRENSIE)

[4, 5, 6].

III. SAMPLING METHODS

In this section adjoint Klein-Nishina sampling methods that have been developed will be

discussed. It will first be shown that a form of direct sampling from the adjoint Klein-Nishina

cross section, which is analogous to a form commonly employed with the Klein-Nishina cross
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section, is not possible at any energy. A brief derivation and construction of the rejection sampling

methods will then be provided.

III.A. Direct Sampling

To begin, the differential adjoint Klein-Nishina cross section will be converted to a variable

that expresses both of the outgoing parameters simultaneously, which is analogous to what is done

with Kahn’s and Koblinger’s differential Klein-Nishina cross section sampling methods [9, 10, 11].

The inverse energy gain ratio, x†, is one such parameter that can be used for this purpose:

x† =
α

′

α
= 1− α

′
(1− cos θ). (11)

After conducting the change of variable, the double differential adjoint Klein-Nishina cross section

becomes the following:

d2σ†KN (E
′
, x†)

dx†
= K†

[
A†x†2 +B†x† + C† +

1

x†

]
, (12)

where K† =
πr2e
α′ , A† =

1

α′2
, B† = 1 +

2(α
′ − 1)

α′2
and C† =

1− 2α
′

α′2
.

Now, a PDF for x† can be created if the double differential adjoint Klein-Nishina cross

section is divided by the integrated adjoint Klein-Nishina cross section. The integrated adjoint

Klein-Nishina cross section can be found by integrating the double differential adjoint Klein-Nishina

cross section shown in equation 12 from x†min to x†max = 1. Like the minimum scattering angle

cosine, the minimum inverse energy gain ratio is a function of the max problem energy to avoid

the aforementioned singularity:

x†min =


1− 2α

′
if α

′
< αmax

1+2αmax

α
′

αmax
if α

′ ≥ αmax
1+2αmax

.

(13)

The integration of the adjoint Klein-Nishina is quite complex, and since in practice it will not be

required for the sampling routine, there is no need to evaluate it.
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The PDF for x† can be defined as

p†KN (E
′
, Emax, x

†) =


H†
[
A†x†2 +B†x† + C† + 1

x†

]
if x†min ≤ x† ≤ 1

0 otherwise,

(14)

where H† =
K†

σ†KN (E′ , Emax)
.

Unfortunately, there is no range of energies where all of the terms of this PDF are simultaneously

positive (the B† and C† terms impose conflicting constraints), which means that it is not possible

to construct a direct sampling method analogous to Koblinger’s sampling method [11].

III.B. Rejection Sampling

As was done by Kahn with the differential Klein-Nishina cross section, the differential adjoint

Klein-Nishina cross section shown in equation 12 can be reorganized so that none of the terms are

negative at any energy [10]. The resulting PDF for the inverse energy gain ratio is the following:

p†KN (E
′
, Emax, x

†) =


H†
[(

1
x† − 1

)
+ x† + cos2θ

]
if x†min ≤ x† ≤ 1

0 otherwise.

(15)

Rejection sampling procedures can be constructed by splitting this PDF into either two terms or

three terms and there are merits to both approaches, as will be explained in the next section.

The specific rejection method considered for sampling from the adjoint Klein-Nishina cross

section assumes that the PDF of interest can be factored into several terms. The PDF is factored

into the following form, where m is the number of terms, pi is the probability of selecting term i,

Ti(z) is the rejection function for term i, ni(z) is a PDF used to sample a z value from term i and

κ is the theoretical efficiency of the sampling procedure [12]:

p(z) =

m∑
i

fi(z) =

∑m
i piTi(z)ni(z)

κ
. (16)

The number of terms, m, is arbitrary although splitting a PDF into more terms can often improve

the sampling efficiency since each term can more accurately represent a part of the PDF [10]. It

must be noted that each pi term must be in the interval [0,1] and that they must sum to one -
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i.e. they form a discrete distribution. The ni(z) PDFs can take any form that is desired. It must

be noted that Kahn’s Klein-Nishina rejection sampling procedure is an example of this technique

[10].

When carrying out this factorization into m terms, the following system of m+ 1 equations

and m+ 1 unknowns can be constructed to solve for the pi and κ terms once the Ti(z) and ni(z)

functions have been chosen:

pi
κ

=
fi(z)

Ti(z)ni(z)
, (17)

m∑
i

pi = 1. (18)

This system of equations can be simplified by introducing a constant of proportionality, Ci, for

each term:

CiTi(z)ni(z) = fi(z)

Ci =
fi(z)

Ti(z)ni(z)
=
pi
κ
. (19)

Using the last line of the system of equations, the κ term can be solved for:

κ =

(
m∑
i=0

Ci

)−1
. (20)

Finally, by using equation 17 and equation 19, the pi terms can be determined:

pi = κCi =
Ci∑m
i=0 Ci

. (21)

With the system of equations solved, the sampling technique is now completely defined.

To use this generalized rejection sampling technique, one must first sample a term i using

the pi terms. Since the pi terms form a discrete distribution, the term i can be sampled using a
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single uniform random number ε1 from the interval [0,1):

i =



1 if ε1 ≤ p1

2 if p1 < ε1 ≤ p1 + p2

...

m− 1 if
∑m−2

1 pi < ε1 ≤
∑m−1

1 pi

m otherwise.

(22)

Once a term i has been sampled, a value of z is sampled from the PDF ni(z) using another

uniform random number ε2 from the interval [0,1). Finally the sampled value of z is accepted if

the following equality holds, where ε3 is another uniform random number from the interval [0,1):

ε3 ≤ Ti(z).

If the value of z is rejected the entire sampling process must be restarted with the sampling of a

new term i.

III.B.1. Two-Branch Rejection Sampling

The first sampling procedure that will be developed is purposefully simple and serves as the

baseline for the speed and efficiency comparisons. As will be shown in the next section, despite this

method’s relatively low efficiency, its simplicity actually results in it having a superior sampling

speed in certain situations.

To derive this procedure, the PDF shown in equation 15 will be split into two terms and

expressed in a way that is similar to equation 16:

κp†KN (E
′
, Emax, x

†) = p1(E
′
, Emax)T1(E

′
, Emax, x

†)n1(E
′
, Emax, x

†)+

p2(E
′
, Emax)T2(E

′
, Emax, x

†)n2(E
′
, Emax, x

†).
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The constants of proportionality are the following:

C1(E
′
, Emax) = H†

(
1

x†
− 1

)
1

T1(E′ , Emax, x†)n1(E′ , Emax, x†)
, (23)

C2(E
′
, Emax) = H†

(
x† + cos2 θ

) 1

T2(E′ , Emax, x†)n2(E′ , Emax, x†)
(24)

For the first term, the simplest way to generate a sample is by first sampling x† from the uniform

distribution:

n1(E
′
, Emax, x

†) =
1

1− x†min
. (25)

The rejection function for the first term must then be the following:

T1(E
′
, Emax, x

†) =
x†min

1− x†min

(
1

x†
− 1

)
. (26)

Note that the maximum value of this rejection function occurs when x† = x†min. With n1 and T1

determined, the constant of proportionality C1 can now be calculated:

C1(E
′
, Emax) =

H†
(

1− x†min
)2

x†min
. (27)

For the second term, the simplest way to generate a sample is by first sampling x† from a

uniform distribution:

n2(E
′
, Emax, x

†) =
1

1− x†min
. (28)

The rejection function for the second term must then be

T2(E
′
, Emax, x

†) =
1

2

[
x† +

(
1− (1− x†)

α′

)2
]
. (29)

Note that the maximum value of this function occurs when x† equals one and correspondingly, the

scattering angle cosine equals one. The resulting constant of proportionality C2 is the following:

C2(E
′
, Emax) = 2H†

(
1− x†min

)
. (30)

With the constants of proportionality calculated the theoretical sampling efficiency can be
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determined:

κ =
x†min

H†
(

1− x†min
)(

1 + x†min

) . (31)

Finally, the pi terms can be calculated:

p1(E
′
, Emax) =

1− x†min
1 + x†min

, (32)

p2(E
′
, Emax) =

2x†min

1 + x†min
. (33)

This rejection sampling procedure, which will be referred to as the two-branch rejection sampling

procedure, is shown in figure 1.

Compute

x† = x†min + ε1(1− x†min)

Select ε1, ε2, ε3

ε2 <
1−x†

min

1+x†
min

ε3 <
x†
min

1−x†
min

[
1
x† − 1

] cos θ = 1− 1−x†

α′

ε3 <
1
2

(
x† + cos2 θ

)

Keep x†

yes no

yes yes

nono

Fig. 1. The two-branch adjoint Klein-Nishina rejection sampling procedure. This sam-
pling procedure is used to sample a value of x† from the differential adjoint Klein-Nishina cross
section. ε1, ε2 and ε3 are uniform random numbers from the interval [0,1).

III.B.2. Three-Branch Sampling Methods

The remaining two sampling procedures that will be developed prioritize sampling efficiency

over evaluation simplicity. These procedures can be created by splitting the PDF shown in equation
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15 into three terms:

κp†KN (E
′
, Emax, x

†) = p1(E
′
, Emax)T1(E

′
, Emax, x

†)n1(E
′
, Emax, x

†)+

p2(E
′
, Emax)T2(E

′
, Emax, x

†)n2(E
′
, Emax, x

†)+

p3(E
′
, Emax)T3(E

′
, Emax, x

†)n3(E
′
, Emax, x

†).

The constants of proportionality are the following:

C1(E
′
, Emax, x

†) = H†
(

1

x†
− 1

)
1

T1(E′ , Emax, x†)n1(E′ , Emax, x†)
, (34)

C2(E
′
, Emax, x

†) = H†
(
x†
) 1

T2(E′ , Emax, x†)n2(E′ , Emax, x†)
, (35)

C3(E
′
, Emax, x

†) = H†
(
cos2 θ

) 1

T3(E′ , Emax, x†)n3(E′ , Emax, x†)
. (36)

For the first term, there are two ways that one can efficiently sample a value of x†:

n1,lin(E
′
, Emax, x

†) =
2(1− x†)(
1− x†min

)2 , (37)

n1,inv(E
′
, Emax, x

†) =
−1

x ln(x†min)
. (38)

The first PDF is a linear distribution and the second PDF is an inverse distribution, hence the lin

and inv subscripts respectively. The corresponding rejection functions for the first term are the

following:

T1,lin(E
′
, Emax, x

†) =
x†min
x†

, (39)

T1,inv(E
′
, Emax, x

†) =
1− x†

1− x†min
. (40)

For both variations of the rejection function, the maximum value occurs when x† equals its mini-

mum value. With both forms of n1(E
′
, Emax, x

†) and T1(E
′
, Emax, x

†) determined, the two con-
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stants of proportionality can now be calculated:

C1,lin(E
′
, Emax) =

H†
(

1− x†min
)2

2x†min
, (41)

C1,inv(E
′
, Emax) = −H†(1− x†min) lnx†min. (42)

For the second and third terms, a direct sampling method can be constructed from the

following PDFs:

n2(E
′
, Emax, x

†) =
2x†

1− x†2min
, (43)

n3(E
′
, Emax, x

†) =
3(x† − 1 + α

′
)2

α′3 − (x†min − 1 + α′)3
. (44)

Given that x† values can be sampled directly for the second and third terms, there are no rejec-

tion functions associated with those terms. The constants of proportionality C2(E
′
, Emax) and

C3(E
′
, Emax) can now be calculated:

C2(E
′
, Emax) =

1

2
H†
(

1− x†2min
)
, (45)

C3(E
′
, Emax) = H†

α′3 −
(
x†min − 1 + α

′
)3

3α′2

 . (46)

Before the two variations of the sampling procedure can be completed the selection probabil-

ities must be calculated. The selection probabilities associated with the lin variation is calculated

first. The theoretical efficiency associated with the lin variation is the following:

1

κlin

(
2x†min
H†

)
=

[(
1− x†min

)2
+ x†min

(
1− x†2min

)]
+(

2x†min
3α′2

)[
α

′3 −
(
x†min − 1 + α

′
)3]

. (47)
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The pi,lin terms are therefore

p1,lin(E
′
, Emax) =

(
1− x†min

)2
/

[
1

κlin

(
2x†min
H†

)]
, (48)

p2,lin(E
′
, Emax) = x†min

(
1− x†2min

)
/

[
1

κlin

(
2x†min
H†

)]
, (49)

p3,lin(E
′
, Emax) =

(
2x†min

3α′

)[
α

′3 −
(
x†min − 1 + α

′
)3]

/

[
1

κlin

(
2x†min
H†

)]
. (50)

This rejection sampling procedure will be referred to as the three-branch linear rejection sampling

procedure and is shown in figure 2.

Select ε1, ε2

yes

no

yes

no
yes no

ε1 <
(1−x†

min)
2

(1−x†
min)

2
+x†

min(1−x†2
min)+

(
2x

†
min

3α
′2

)[
α′3−(x†

min−1+α
′)

3
]

ε1 <
(1−x†

min)
2
+x†

min(1−x†2
min)

(1−x†
min)

2
+x†

min(1−x†2
min)+

(
2x

†
min

3α
′2

)[
α′3−(x†

min−1+α
′)

3
]

Compute

y = 1− x†min
x† = 1− y√ε2

Compute

x† =

√
x†2min + ε2

(
1− x†2min

)
Compute

y = x†min − 1 + α
′

x† = 1− α′
+
(
ε2

[
α

′3 − y3
]

+ y3
) 1

3

Keep x†

Select ε3

ε3 <
x†
min

x†

Fig. 2. The three-branch linear adjoint Klein-Nishina rejection sampling procedure.
This sampling procedure is used to sample a value of x† from the differential adjoint Klein-Nishina
cross section. ε1, ε2 and ε3 are uniform random numbers from the interval [0,1).

The selection probabilities associated with the inv variation of the three-branch sampling

procedure will now be calculated. The theoretical efficiency associated with the inv variation is
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the following:

1

κinv

(
3α

′2

H†

)
=

[
−3(1− x†min) lnx†minα

′2 +
3

2

(
1− x†2min

)
α

′2

]
+[

α
′3 −

(
x†min − 1 + α

′
)3]

. (51)

The pi,inv terms are therefore

p1,inv(E
′
, Emax) = −3 lnx†min(1− x†min)α

′2/

[
1

κinv

(
3α

′2

H†

)]
, (52)

p2,inv(E
′
, Emax) =

3

2

(
1− x†2min

)
α

′2/

[
1

κinv

(
3α

′2

H†

)]
, (53)

p3,inv(E
′
, Emax) = α

′3 −
(
x†min − 1 + α

′
)3
/

[
1

κinv

(
3α

′2

H†

)]
. (54)

This rejection sampling procedure will be referred to as the three-branch inverse rejection sampling

procedure and is shown in figure 3.
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yes

no
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no yes no
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−3 ln x†

min(1−x†
min)α

′2

3
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min)α′2−3 ln x†
min(1−x†

min)α′2+α′3−(x†
min−1+α

′)
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′2+ 3
2 (1−x†2
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3
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min)α′2+α′3−(x†
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Select ε3
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Compute
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√
ε2

(
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)
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Compute
y = x†min − 1 + α
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x† = 1− α′
+
(
ε2

[
α

′3 − y3
]

+ y3
) 1

3

Keep x†

Fig. 3. The three-branch inverse adjoint Klein-Nishina rejection sampling procedure.
This sampling procedure is used to sample a value of x† from the differential adjoint Klein-Nishina
cross section. ε1, ε2 and ε3 are uniform random numbers from the interval [0,1).
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IV. SAMPLING EFFICIENCIES AND SPEEDS

To determine which sampling method should be used the sampling efficiency of each method

must be evaluated at a range of incoming adjoint photon energies and max problem energies. Due

to the large number of special functions and some non-integer exponents that appear in the three-

branch inverse rejection sampling procedure, which can be costly to evaluate, the sample generation

rate must also be evaluated. These data are shown in figure 4. The relative sample rate data shown

in this figure are noisy, which may be due to the granularity of system timing routines and the

resulting difficulties of using them for timing short segments of code. To aide in visualizing the

trends in the relative sample rate data, curve fits generated using a finite impulse response filter

are also plotted [13].

Based on figure 4 it is clear that, while the three-branch linear rejection sampling method does

not always have the highest efficiency at all energies, it usually has the highest sample generation

rate. Interestingly, the two-branch linear rejection sampling method often has a comparable sample

rate to the three-branch inverse rejection sampling method despite its significantly lower efficiency.

This rather unexpected result highlights the need to balance evaluation simplicity and sampling

efficiency.

Because there are energy ranges where each procedure outperforms the other two, there

is likely a more efficient, combined procedure that could be created that would utilize a given

procedure when optimal. This would likely require the development of tables that describe which

procedure to use at a given energy and max problem energy. Analyzing the theoretical efficiencies

to see where those functions cross for arbitrary energies and max problem energies could be useful

in the development of those tables.

IV.A. Bound Electron Effects

In most realistic simulations, the electrons are assumed to be bound. The primary way the

bound electron effects are accounted for with regards to the outgoing photon direction is through

the scattering function [14]. The scattering function is simply a correction factor that multiplies

the Klein-Nishina cross section, as shown in the following equation:

dσinc(E
′
, θ, Z)

dΩ
=
dσKN (E

′
, θ)

dΩ
S(E

′
, θ, Z). (55)
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Fig. 4. Differential adjoint Klein-Nishina cross section sampling procedure efficiencies
and relative sample rates with a max energy 100 keV (a), 1 MeV (b) and 10 MeV (c).
To generate the efficiency and sample rate data, 105 samples were generated three separate times
at each adjoint photon energy (about 1000 equally spaced energies on a log scale were chosen).
The average of the efficiency and the relative sample rate over the three trials are presented in this
figure. Because the relative sample rate data are noisy, curve fits are also provided to help visualize
trends.
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The scattering function ranges from a value of zero to Z, the atomic number of the atom that

the electrons are bound within. The resulting cross section is usually referred to as the incoherent

scattering cross section. The incorporation of this scattering function into the cross section has the

potential to decrease the sampling efficiency compared to the free electron case [15]. The particular

way that the sampling efficiency is negatively affected by the scattering function is important to

analyze when choosing a sampling method.

The construction of an equivalent adjoint incoherent cross section will use the same steps

that were outlined in section II for the construction of the adjoint Klein-Nishina cross section. The

resulting adjoint incoherent scattering cross section is the following:

dσ†inc(E
′
, θ, Z)

dΩ
=
dσ†KN (E

′
, θ)

dΩ
S(E, θ, Z). (56)

Note that in the adjoint incoherent scattering cross section the scattering function is evaluated at

the outgoing energy and not the incoming energy. For simplicity, the scattering function evaluated

at the outgoing energy will be referred to as the adjoint scattering function:

S†(E
′
, θ, Z) = S

(
E(E

′
, θ), θ, Z

)
. (57)

A sampling procedure for the outgoing photon energy and direction can be constructed by

converting equation 56 into a PDF and reorganizing terms:

p†(E
′
, Emax, cos θ, Z) =

1

σ†inc(E
′ , Emax, Z)

dσ†inc(E
′
, θ, Z)

dΩ

=
S†max(E

′
, Z)σ†KN (E

′
, Emax)

σ†inc(E
′ , Emax, Z)

[
S†(E

′
, θ, Z)

S†max(E′ , Z)

]
·[

1

σ†KN (E′ , Emax)

dσ†KN (E
′
, θ)

dΩ

]

=
1

κinc(E
′ , Emax, Z)

R†(E
′
, Emax, θ, Z)p†KN (E

′
, Emax, cos θ). (58)

To use this sampling method, one must first sample an outgoing scattering angle cosine from

the adjoint Klein-Nishina PDF, p†KN (E
′
, Emax, cos θ), using one of the procedures discussed in

the previous section. Once the scattering angle cosine has been sampled, the following rejection
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function must be evaluated to determine if the scattering angle cosine should be rejected:

R†(E
′
, Emax, θ, Z) =

S†
(
E

′
, θ, Z

)
S†max (E′ , Z)

=
S†
(
E

′
, θ, Z

)
S† (E′ , θmin, Z)

. (59)

The κinc term represents the theoretical sampling efficiency of this rejection function. This method

is analogous to the method developed by Persliden for incoherent scattering [15].

Figure 5 shows the efficiency of the overall sampling procedure, using the three-branch linear

rejection sampling procedure to sample from the adjoint Klein-Nishina cross section, for max prob-

lem energies of 100 keV, 1 MeV and 10 MeV and for a free electron, aluminum and lead. For lower

energies, energies very close to the max problem energy and higher atomic numbers, the adjoint

scattering function causes a large decrease in the efficiency of the sampling procedure compared

to the free electron case. Fortunately, the adjoint Klein-Nishina rejection sampling methods that

have been developed perform best, in terms of efficiency, in the regions where the adjoint scattering

function has the most deleterious affect on the sampling efficiency. This further indicates that the

methods developed in the previous section are well suited to realistic simulations.

V. RESULTS

In the previous section, it was shown that the three-branch linear rejection sampling procedure

can generate samples the fastest for most energies and max problem energies. To verify that this

rejection sampling procedure is indeed suitable for use in a Monte Carlo simulation, the results

of an infinite medium simulation generated using FRENSIE and this new adjoint Klein-Nishina

rejection sampling procedure are examined. One advantage of this geometry, which is shown in

figure 6, is that spherical and translational symmetries allow the adjoint simulation to be set up

(nearly) identically to the forward simulation. Care must be taken when constructing the adjoint

source energy distribution as it will differ from the forward source [17].

Photon flux results will be shown on the surface of a sphere of four centimeter radius centered

on the source point. To be consistent with the efficiency and speed data that was discussed in the

previous section, mono-energetic source energies of 100 keV and 1 MeV were considered. 10 MeV

was not considered due to the importance of pair production at this energy, which is outside the

scope of this discussion. For each simulation, 109 particle histories were simulated. The generation

20



0.50

0.60

0.70

0.80

0.90

1.00

10
-3

10
-2

10
-1

Free Electron

Al

Pb

E
ff

ic
ie

n
c
y

Energy (MeV)

(a) Emax = 100 keV

0.50

0.60

0.70

0.80

0.90

1.00

10
-3

10
-2

10
-1

10
0

Free Electron

Al

Pb

E
ff

ic
ie

n
c
y

Energy (MeV)

(b) Emax = 1 MeV

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10
-3

10
-2

10
-1

10
0

10
1

Free Electron

Al

Pb

E
ff

ic
ie

n
c
y

Energy (MeV)

(c) Emax = 10 MeV

Fig. 5. Differential adjoint incoherent cross section sampling procedure efficiencies for
a max problem energy of 100 keV (a), 1 MeV (b) and 10 MeV (c). For every scattering
center, the three-branch linear rejection sampling procedure was used to sample from the adjoint
Klein-Nishina cross section. The Waller-Hartree scattering function was used in the rejection
function of the incoherent scattering sampling procedure [16].
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Fig. 6. The infinite medium geometry and the symmetries used to construct a nearly
identical adjoint simulation. A mono-energetic, isotropic point source is located at the center
of a sphere with a 4 cm radius. The spatial domain extends to infinity in all directions. A surface
flux estimator is placed on the spherical surface. Because the spatial domain is infinite, spherical
and translational symmetries exist with respect to the point source. These symmetries allow the
adjoint simulation to be set up in a nearly identical way to the forward simulation.

of secondary particles and atomic relaxation were also disabled in these simulations.

Figure 7 shows the photon flux spectrum on the four centimeter spherical surface using a

forward and adjoint simulation and the two source energies of interest. This figure also shows

the ratio of the flux calculated using an adjoint simulation and a forward simulation, with the

associated one sigma error bars (FA-WH/FF-WH) to facilitate comparisons between the spectra.

At both source energies, the flux ratios indicate that there is good agreement between the adjoint

simulation result and the forward simulation results.

The total photon flux on the four centimeter spherical surface using both simulation modes

and both source energies is shown in table I. The forward and adjoint flux results are within two

sigma at both source energies and the percent difference between the forward and adjoint results

is no greater than 0.003%. Interestingly, the adjoint simulation takes between 2.31 and 3.67 times

longer than the forward simulation. It is difficult to determine if this is due to the three-branch

linear rejection sampling procedure or some other aspect of the adjoint simulation that differs from

the forward simulation (e.g. the different source energy distribution or the required energy point

detector to account for the discrete source energy [1]). A more detailed performance analysis

of the adjoint simulation in FRENSIE will be done in the future to determine the cause of this
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Fig. 7. Flux spectrum per source particle on the 4 cm radius sphere in an infinite lead
medium resulting from a 100 keV source (a) and a 1 MeV source (b) The three-branch
linear rejection sampling procedure was used in the adjoint simulations. All simulations accounted
for binding effects of electrons using the Waller-Hartree scattering function for lead. The ratio
of the flux calculated in FRENSIE using an adjoint simulation and a forward simulation is also
shown in this plot. The good agreement between the forward and adjoint simulation flux results
indicates that the three-branch linear rejection sampling procedure can indeed be successfully used
in an adjoint simulation.

performance difference.

TABLE I
Infinite Lead Medium Results

Se (MeV) Mode Total Flux Flux σ % Diff. Rel. Sim. Time

0.1 Forward 4.70400 0.00050 0.0 1.0
0.1 Adjoint 4.70413 0.00048 0.0028 3.67
1.0 Forward 49.88453 0.00049 0.0 1.0
1.0 Adjoint 49.88505 0.00039 0.0010 2.31

VI. CONCLUSION

Three new rejection sampling methods have been developed for generating samples from the

adjoint Klein-Nishina cross section: the two-branch rejection sampling procedure, the three-branch

linear rejection sampling procedure and the three-branch inverse rejection sampling procedure. Each

of these methods have been implemented in FRENSIE. While there are energy ranges where each

of these methods can generate samples faster than the others, the three-branch linear rejection
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sampling procedure can consistently generate samples the fastest and is therefore recommended.

The three-branch inverse rejection sampling procedure can consistently generate samples the most

efficiently, but it is expensive to use and only outperforms the speed of the three-branch linear

rejection sampling procedure in limited energy ranges. A combined method could be created that

always uses the fastest method. However, given the complex nature of the adjoint Klein-Nishina

cross section, this combined method will likely be difficult to construct for a general energy and

max problem energy.

To verify that the recommended three-branch linear rejection sampling procedure can be used

in a Monte Carlo simulation to generate samples from the adjoint Klein-Nishina cross section, the

results of an infinite medium simulation generated using FRENSIE and this rejection sampling

procedure were provided. The results of the adjoint simulations were shown to be in good agreement

with the results of the forward simulations, which indicated that the three-branch linear rejection

sampling procedure is indeed an effective sampling procedure for the adjoint Klein-Nishina cross

section. Further performance analysis of the adjoint simulations must be done in FRENSIE to

determine the cause of the longer adjoint simulation times compared to the forward simulations.

It is not clear if the performance differences are due to the new adjoint Klein-Nishina sampling

procedure or some other aspect of the adjoint simulation that differs from the forward simulation.

While these new methods allow one to efficiently and quickly generate samples from the

adjoint Klein-Nishina cross section, even in realistic problems, there are likely better methods

that could be discovered by completing a more detailed analysis of the adjoint Klein-Nishina

cross section. The extremely thorough work by Mathews on the Klein-Nishina cross section could

provide many valuable insights regarding ways to create new sampling methods for the adjoint

Klein-Nishina cross section beyond the work that has been presented here [18].
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