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ABSTRACT

This project explored large-scale nonlinear optimization approaches for simultaneous estimation of
epidemiological model parameters, unobserved SARS-CoV-2 infections, and impact of
nonpharmaceutical interventions (NPIs) from case data. Effective control of emerging infectious
diseases requires decision-making tools that can estimate epidemiological parameters and quantify the
impacts of intervention strategies. NPIs are a key tool for controlling the ongoing SARS-CoV-2 pandemic,
even with the development of vaccines for this disease. Well-informed policies for NPIs are critical to
mitigate COVID outbreaks and plan effective responses for COVID variants with new infectious
characteristics. Previous research supported an analysis of the efficacy of NPIs in the U.S. prior to
vaccine deployments, where unobserved infections were reconstructed from historical data. Here, we
consider large-scale optimization models that simultaneously estimate transmission parameters and
unobserved infections. Three models for the transmission parameters are considered: (1) models with
temporally varying transmission parameters for all counties, (2) linear models capturing dependence of
interventions on transmission parameters, and models with transmission parameters predicted by an
ML model informed by county-specific NPI policies (as inputs). This research employed the Pyomo
software to model these parameter estimation problems, and the scale of these problems motivated
enhancements to Pyomo for deep learning models.
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INTRODUCTION

This work focuses on estimation of unknown states and parameters in a discrete-time, stochastic,
SEIR model using reported case counts and mortality data. An SEIR model is based on
classifying individuals with respect to their status in regards to the progression of the disease,
where S is the number individuals who remain susceptible to the disease, E is the number of
individuals who have been exposed to the disease but not yet infectious, / is the number of
individuals who are currently infectious, and R is the number of recovered individuals [5, 1]. For
convenience, we include in our notation the number of infections or transmissions, 7, that
represents the number of individuals transitioning from compartment S to compartment £ over a
particular interval. Similarly, we use C to represent the number of reported cases.

In compartment models, the rate of new transmissions is often characterized with relationships
like the following:
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where H is the population size. The transmission parameter 3 represents the average number of
adequate contacts of an infected person during the infectious period, where an adequate contact
is one that is sufficient to spread infection [5]. The transmission parameter 3 depends on the
characteristics of the disease as well as the environment in which it spreads. Thus, the
transmission parameters may depend on several factors, including population behavior,
intervention and mitigation strategies, and population age structure. This parameter is related to
the reproductive number R, which is often approximated as R = [§/y where v is the mean
infectious period.

This report describes the research performed in the Sandia LDRD Project “Large-scale Nonlinear
Approaches for Inference of Reporting Dynamics and Unobserved SARS-CoV-2 Infections”.
The main goal of this project is to estimate changes in B over time and space as a decision-
making aid for policy makers. We are motivated by SEIR patch models like the
COVIDScenarioPipeline, which model all counties in the United States and account for
interactions between them [3, 6]. Analysis of these national-scale SEIR models require the
solution of large-scale parameter estimation problems, which is the central goal of this project.

Our preliminary research was performed as part of Sandia’s COVID-19 Inference Project, and
two publications provide detailed discussions of these early results [4, 8]. Additionally,
Addendum A includes slides presented at a Sandia review of these results.
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OVERVIEW

This project accomplished a variety of technical objectives, which are summarized here. Our
preliminary research was performed as part of Sandia’s COVID-19 Inference Project, which
formed the basis for the extensions developed in this project. In this project, we revised and
updated the documentation of these methods in a SAND report [4]:

1.

Reconstruction of Unobserved Transmissions: We estimate the time-profile counts of
each of the compartments (S-E-I'-I>-P-R) from reported cases or mortality data. We
consider both deterministic and stochastic procedures for estimating the population
counts within these compartments. These reconstructions provide initial conditions that
can be used for models like those in the COVIDScenarioPipeline.

Transmission Parameter Inference: We estimate changes in transmission parameters per
county over time throughout the United States, given inter-county mobility information
and estimates of time profiles for SEIR compartments over time. The transmission
parameters in these models represent the average number of contacts that are sufficient
for transmission. They depend on the disease and on the setting in which it spreads, and
changes in transmission parameters typically reflect, for example, changes in population
behaviors, such as those related to intervention strategies like social distancing policies.

A key differentiator of this approach is that the transmission parameters are estimated
across all counties simultaneously using a fully-coupled model that includes the impact of
mobility between counties.

In this project, the reconstruction methods were extended and used to generate estimates for the
progression of COVID-19 in the United States in 2020. This data was used by academic
collaborators to assess the efficacy of nonpharmaceutical interventions, which was published in
Nature Communications [8].

3. Assessing the Effects of Nonpharmacological Intervention (NPI) Policies: In

collaboration with others, we estimated the transmissibility of SARS-CoV-2 in 3,036 (out
of 3,142, 97%) US counties using a mechanistic meta-population model that incorporates
spatial coupling of transmission between counties to estimate weekly effective basic
reproductive numbers (i.e., Rep; the reproductive number adjusted for changes due to
factors other than population susceptibility, such as social distancing) from confirmed
cases and deaths from January 21 to July 5, 2020. We associated these R estimates with
NPIs and county level demographics, while accounting for, temporal variation,
autocorrelation, and uncertainty in our estimates. This analysis provides a concrete basis
for recommending NPIs in future policy implementations.
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Most of this project focused on extensions of this prior work, which are documented in this
report. We explored the application of large-scale optimization methods to two additional large-
scale formulations:

4. Simultaneous Estimation of Compartment Counts and Transmission Parameters:
Simultaneous estimation of compartment and transmission parameters results in a
nonlinear parameter estimation that is significantly more challenging than the
transmission parameter estimation problem we considered previously [4]. However, the
simultaneous estimation of parameters allows for more explicit management of error
estimates across different parts of the model, and provides significantly more flexibility
to explore richer models for reporting, vaccination, etc. We describe a nonlinear, fully-
coupled parameter estimation model that includes estimation of temporal profiles for
model noise terms (e.g., external transmissions, stochasticity) and transmission
parameters.

5. Simultaneous Estimation of Parameters and NPI Efficacy: We extend the previous model
and estimate the impact of NPIs on the transmission parameter profiles. In this
formulation, we estimate a linear model describing the impact of interventions on the
transmission parameters. Although there may be nonlinear dependence on the
interventions, this model provides a base case for investigating the performance and
effectiveness of more complex interactions.

These parameter estimation problems require the solution of large-scale nonlinear optimization
problems. Our research focused on two aspects of these problems that reflect performance
bottlenecks:

6. Data-Parallel Nonlinear Parameter Estimation: These inference formulations are large-
scale models at a national (county-level) scale, however, they are loosely coupled
between counties. Therefore, they are highly appropriate for decomposition-based
optimization strategies that can exploit parallel computing on HPC. We demonstrate
effective scale-up of parameter estimation using Parapint, which is a software package
based on PyNumero and Pyomo that implements a parallel interior-point method.
Structured optimization problems inherently induce structure in the linear systems solved
at each iteration of the optimization problem, and Parapint exploits this structure to
support parallel solution.

7. Accelerating Machine [earning Models in Pyomo: We considered an extension of our
parameter estimation model including a general machine learning model to capture the
efficacy of NPIs. However, this significantly increases the computational challenge of
both representing and solving the associated parameter estimation problem. We tailored
Pyomo’s problem representation to more efficiently express the dense, regular
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expressions that are commonly used in machine learning models. This tailored
representation significantly reduced the time needed to generate parameter estimation
models with machine learning equations.

METHODS, RESULTS, AND DISCUSSION

The following sections describe research accomplishments for the four technical objectives that
were the focus of this project (objectives 4-7 summarized above).

Simultaneous Estimation of Compartment Counts and Transmission Parameters

We extended our previous research [4] to explore the application of optimization methods to
large-scale formulations that simultaneously estimate transmission parameters, unobserved states
(compartment populations), and the impacts of intervention strategies on transmission. In the
following, we use the notation introduced in [4]. To simplify this research, we consider disease
propagation models that only have one compartment /, and we consider models that do not
include inter-county mobility. However, the methods described here can be generalized to
problems with those features.

The following optimization formulation simultaneously estimates compartment population
counts and transmission parameters over time, given data for the reported cases over time, C,:
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Formulation (1) includes L regularization terms in the objective for noise or errors in the
transmission expression (e.g., due to externally seeded transmissions or stochasticity) and
temporal changes in the transmission parameters ;. The regularization terms allow the
parameter values to adapt to rapidly changing dynamics. For example, we would expect
discontinuous changes in transmission parameters at points in time where public policies change
that impact disease transmission.
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We performed simulation studies to evaluate this formulation with known disease dynamics. Our
results demonstrate the ability of this formulation to robustly recover discrete changes in the
temporal profiles for both these terms in the model. Here, we illustrate the results from one of the

case studies. Simulated data was generated using disease parameters consistent with literature

values for Sars-CoV-2 (o = é, y = %), a seed of 5 external transmissions at day 10 (¢], = 5)

and a change of the transmission parameter from 0.75 to 0.55 for the days 70-90 in the
simulation. Figure 1 below shows the estimation results for €’ and f8 for this case study:
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Figure 1: Demonstration of the L1-regularized formulation to recover discrete changes in profiles of estimated
transmissions and transmission parameters. Simulation was performed using a seed of 5 external transmissions on
day 10 and a change in the transmission parameter from 0.75 to 0.55 for days 70-90.

Simultaneous Estimation of Parameters and NPI Efficacy

In general, we wish to characterize the impact of non-pharmaceutical interventions (NPIs) on
disease transmission. In Yang et al. [8], we provide a detailed retrospective assessment of the
impact of NPIs to manage the COVID-19 pandemic. This research involved the estimation of
transmission parameter profiles, and the correlation of those profiles with interventions. In this
work, we explore simultaneous estimation of the impact of interventions along with model
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parameters. This provides increased flexibility in the inference tools that allow more complex
models to be explored

We generalized Formulation (1) to integrate a linear model to predict the efficacy of NPIs:
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Here, A;;; is binary data where a 1 indicates that the i-th NPI is active at time # for county j and

the [S’iA variables represent the reduction in transmission as a function of the intervention.
Formulation (2) simultaneously estimates compartment counts, model parameters and the model
for the transmission rates. Although there may be nonlinear dependence on the interventions, this
model provides a base case for investigating the performance and effectiveness of more complex
interactions.

We demonstrate this formulation on a case study using simulated data. For this study, we
assumed three different non-pharmaceutical interventions, each with a different reduction in the
transmission parameter. We determine the base transmission parameter for each county ]9 used
in each simulation randomly (uniformly selected from 0.25-0.75). The timing of seeding of
external transmissions was determined to occur randomly between day 0 and day 30 for each
county. The number of external transmissions was set to 5 for each of the counties. The time
profiles for different interventions across the counties were also specified randomly. The
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duration of the intervention was uniformly drawn from 10-75 days, and the starting day of the
intervention was drawn uniformly from 10-140 days (minus the duration).

These specifications were used to generate simulation data for 100 counties. Noise (10%
standard deviation) was added to the reported cases from the simulation before passing this data
to the inference implementation. Table 1 below shows the simulated and estimated values for the
B2 parameters indicating the estimated reduction observed by the interventions. Additional
studies with less noise and more counties resulted in increased accuracy of the estimated

parameters.
Intervention True Impact on 8 Estimated Impact
(Simulation) on B (Inference)

NPI-1 -0.119 -0.115
NPI-2 -0.197 -0.229
NPI-3 -0.241 -0.232

Table 1. Simulated and estimated impact of different intervention strategies

Figure 2 shows the reported cases, estimated infections, and estimated transmission parameter
profiles for this case study. Our results indicate that NPI efficacy can be estimated
simultaneously with other parameters in an infectious disease model. Estimates of the impact of
interventions is improved with data from multiple regions (e.g. counties). Our results
demonstrate robustness to data errors, though there may be challenges with correlated errors.

Data-Parallel Nonlinear Parameter Estimation

Scalable methods for solving Formulation (2) is important for this large-scale problem as we
increase the size (time span and geographical discretization considered), and as we increase
model complexity (e.g., extending the model to track multiple variants, additional compartments
for vaccination status and reporting processes). Thus, we considered strategies for parallelizing
parameter estimation. In particular, we observed that Formulation (2) is a weakly-coupled model.
If the impact of interventions are specified (the 87 variables), then the remaining parameters can
be independently determined for each county. Consequently, this model is well-suited for
parallel solution with advanced decomposition-based optimization techniques.
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Figure 2. Estimation results from simulated data for 100 counties. Results shown for county #11. Figure (a) shows
the reported cases, figure (b) shows the simulated and estimated values of infections over time, and figure (c)
shows the simulated and estimated transmission parameter profiles.

We demonstrate the scalability of this inference problem using the parallel nonlinear
optimization package, Parapint [7]. Parapint implements an interior-point method, where the
dominant computational cost is the solution of a large linear system to compute the step direction
at each iteration of the algorithm. Parapint is built on the principle that a large-scale optimization
problem is inherently structured, and the structure of the problem will inherently induce structure
in the large linear system describing optimality conditions. Parapint is built on Pyomo and
PyNumero, which provides interfaces for building complex, performant optimization algorithms
in Python.

We implemented Formulation (2) with Pyomo and applied Parapint to perform data-parallel
parameter estimation on a test case with 1000 counties. Figure 3 below shows strong scaling
results on this problem, where Parapint is compared against the runtime performance of a serial
interior point solver. On 128 cores, this approach was able to achieve 94X speedup, obtaining a
solution in only 11 seconds. This fast runtime enables epidemiologists to interact with these
models and explore the impact of changes in model parameters.
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Figure 3. Strong scaling results with Parapint for a parameter estimation problem with 1000 counties.

Accelerating Machine Learning Models in Pyomo

Complex, nonlinear models for the impact of interventions on f5;; may be necessary to capture
nonlinear interactions between NPIs. For example, the transmission parameter could be
represented by a multilayer neural network model, for which the county baseline transmission
parameter (i.e., variables ﬁ](-)) and the intervention timing (i.e., the known values 4;;;) are inputs
to the network while the output layer is a single prediction of ;. Standard neural network
representations can be added to the Pyomo model directly as continuous, differentiable
expressions. Consequently, the optimization methods used for Formulations (1) and (2) should
be applicable to these new formulations.

Formulations (1) and (2) were implemented using the Pyomo optimization modeling software
[2]. Preliminary research representing machine learning models with Pyomo has highlighted
performance bottlenecks that limit the size of a neural network model that can be practically
expressed. This motivated this project to address performance bottleneckes in Pyomo to
accelerate the expression of machine learning models.
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Previous LDRD research has identified several representations of neural networks for embedding
in optimization problems in Pyomo models. In the full-space representation, all intermediate
variables from each layer are seen by the optimizer. Pyomo provides fast, sparse construction of
this representation, but these problems can be difficult to solve. In the reduced-space
representation, the parametric model is expressed in terms of inputs and outputs only, with deep
expression trees that substitute out the intermediate variables. These deep expression trees are
computationally expensive for Pyomo to generate, because its design is tailored for large, sparse
models.

This project focused on improvements to the Pyomo framework for translating dense expressions
from Pyomo to the NL format that used by many nonlinear optimization solvers. We used a
dense 3-layer neural network model with 100 nodes per layer to test Pyomo’s performance. Prior
to our improvements, the reduced-space representation of the neural network model took
approximately 42 seconds for translation to the NL format.

Pyomo was improved with three developments: (1) profiling the NL writer led to removal of
bottlenecks associated with deep expression trees, (2) the implementation was modified to
require only a single pass through the expression tree, and (3) intermediate, repeated expressions
are cached. After these improvements, this same neural network required only ~1.5 seconds for
translation, which is a 27 times reduction in computational time. These improvements are
implemented as part of the new NL writer in Pyomo

ANTICIPATED OUTCOMES AND IMPACTS

The main goal of this project is to estimate changes in infectious transmission over time and
space as a decision-making aid for policy makers. As part of early work on this project, we
refined and published earlier research, which led to the following publications:

e D. Cummings, W.E. Hart, B. Garcia-Carreras, C.D. Laird, E.C. Lee, J. Lessler, A. Staid,
Spatio-temporal Estimates of Disease Transmission Parameters for COVID-19 with a
Fully-Coupled, County-Level Model of the United States, Sandia National Laboratories,
September, 2021. (to appear)

e Yang, B., Huang, A. T., Garcia-Carreras, B., Hart, W. E., Staid, A., Hitchings, M. D, ...
& Cummings, D. A. (2021). Effect of specific non-pharmaceutical intervention policies
on SARS-CoV-2 transmission in the counties of the United States. Nature
communications, 12(1), 1-10.

This research demonstrated capabilities for estimating the unobserved state of a disease
progression, which could be used to initialize simulation models like COVIDScenarioPipeline.
Similarly, this capability was used to inform our assessment of the impacts of NPIs [8].
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Subsequent research in this project has focused on extending these demonstrations with more
sophisticated models that (1) simultaneously estimate compartment and transmission parameters,
and (2) simultaneously estimate compartment parameters and a predictive model for
transmission rates. These extensions provide a more flexible, integrated analysis of disease
progression, but they lead to significantly more complex, nonlinear parameter estimation
problems. We expect this research to inform ongoing collaborations academic collaborators at
CMU and U Florida, providing new insights into the relative utility of NPIs for the U.S. response
to the COVID-19 pandemic.

This research is an exemplar for the integration of data-informed models with algebraic models
that are commonly used in operations research (OR). The computational bottlenecks addressed
here reflect a broader challenge for the integration of machine learning and OR methods, relating
to both model generation and model optimization. This challenge has been recognized by a
variety of Sandia researchers, and the “Data-Informed Operations Research” LDRD proposal has
been submitted to address this challenge (NSIST, FY22-24).

CONCLUSION

The Sandia LDRD Project “Large-scale Nonlinear Approaches for Inference of Reporting
Dynamics and Unobserved SARS-CoV-2 Infections” has developed new strategies for modeling
the spread of infectious diseases to demonstrate nonlinear programming methods for
simultaneous estimation of unobserved states in the population, parameters describing disease
dynamics, and the impact of nonpharmaceutical interventions. With these tools it is possible to
simultaneous estimate these states and parameters within a flexible framework that supports
straightforward improvements and extensions of the compartment model. Furthermore, we
demonstrated that there is opportunity for performance improvements of these large-scale
inference problems with parallel nonlinear tools (i.e., Parapint).

The capabilities demonstrated in this project represent will catalyze future work in the analysis of
large-scale coupled infectious disease models. Given ongoing improvements of optimization
tools like Pyomo, there is also opportunity to directly estimate machine learning models
hybridized with the existing structure of the compartment model. Additionally, scalable
optimization solvers like Parapint will enable rapid interaction with national-scale models.
However, future research is needed to demonstrate these capabilities on real-world data and
inter-county interactions. Additionally, analysis of NPIs will require detailed information about
per-county policy executions. Collection of this information is currently prohibitively difficult in
most cases, but this capability could demonstrate the utility of this information and motivate its
collection by government agencies.
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2 I Summary

This project developed large-scale nonlinear optimization approaches for

simultaneous estimation of model parameters and unobserved SARS-CoV-2 infections

Motivation

> Well-informed policies for non-pharmaceutical interventions (NPIs) are critical to mitigate
COVID outbreaks and plan effective responses for variants with new infectious
characteristics.

> No estimation approaches exist that can simultaneously estimate time-varying transmission
parameters, reporting rates, and unobserved states with a fully-coupled all-county model of
the United States.

Goals

> Extend Sandia’s previous estimation approaches, which separately estimate unobserved
infections and transmission parameters

> Integrate a predictive model for the utility of NPIs to estimate the effect of NPI policies on
transmission rates

- Demonstrate scalable solution strategies on large, fully-coupled nonlinear formulations



3 I Overview and Accomplishments

Description_____________[Details _________________|Outcomes ______

Reconstruction of unobserved Finalized FY20 activities. Prepared SAND Report

transmissions new results for NPI journal article.

Transmission parameter inference  Finalized FY20 activities. SAND Report

Assessing the effects of NPI policies Revised estimates and submitted Journal Article (Nature
journal article Communications)

Simultaneous estimation of Developed new formulations. LDRD Report

compartment and transmission Demonstrated ability to track fast

parameters changes in transmission rates.

Simultaneously estimation with Developed new formulations. LDRD Report

prediction of NPI efficacy Demonstrated ability to identify

linear NPI relationships. Scalability
demonstration using Parapint.

Accelerating machine learning Optimized Pyomo model generation LDRD Report, Pyomo
models in Pyomo for machine learning models with software contributions
large, repeated subexpressions
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Objective: MLE fit for reported cases with 1-norm
regularization of the transmission noise

Transmissions follow common SEIR model with time-
varying transmission parameter and model noise

Spatially and temporally varying transmission
parameters

> Base transmission parameter value is county dependent
> Transmission parameter adjusted by interventions
> County-specific intervention timing

> Multiple counties needed to estimate intervention
impact

Reported cases subject to under-reporting

Large-scale nonlinear programming model
(# days x # counties)



5 ‘ Inference model — Comparison with Prior SNL Models
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6 ‘ Simulation-Estimation Studies Were Used to Test Estimation Methods
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Sjt+1 = St — 1
Eji1=FEj+Tj —oEj
L1 = 1 +oFEj — vl
Rjiv1 = Ry + 1t
Clt41 = poEj;

Bt =0

Sjo = H;

Ejo, L0, Rjo, Cjo = 0

Simulations with 3-1000 counties for 150 days

Disease model parameters from COVID-19 literature
(e.g., latent, infectious)

Base transmission parameters (ﬁ}’) for each county
uniformly distributed between 0.25-0.75
o R_eff: ~1-3

Intervention timing start and duration determined
randomly for each county

Simulations performed with significant stochastic
noise on reported cases

> increased accuracy with reduced noise
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Estimation Results with 100 Counties

Reported Cases (County: county 11)

40 4 — Simulated
—— Estimated
30 A
20 A
10 A
0 -
0 20 40 60 80 100 120 140
Infected (County: county 11)
140 A
—— Simulated
120 1 —— Estimated
100 A
80 A
60
40 -
20 A
O -

0 20 40 60 80 100 120 140

Transmission Parameter (County: county 11)

0.6

0.5

0.4

0.3 1

0.2 A

0.11 — Simulated

—— Estimated

0.0

T T T T T

0 20 40 60 80 100 120 140

Estimation of coupled parameters

. True Impact on 8 Estimated Impact
Intervention . .
(Simulation) on B (Inference)

NPI-1 -0.119 -0.115
NPI-2 -0.197 -0.229
NPI-3 -0.241 -0.232

Increased accuracy with reduced noise and more counties



g8 I Next Steps — Scaling Up the Analysis

National-Scale Models
> Require data from ~3000 counties
- Data for ~1.5 years

Model Initialization
> Nonlinear optimizers are sensitive to the initial point used for optimization
> We have used a per-county optimization for initialization, but faster methods are often possible

Mobility
> This models inter-county interactions and exposures
o Significantly increases the difficulty of parameter estimation

Nonlinear NPl Models
> We expect NPIs to have correlated effects

> The linear model of NPI effects could be replaced with machine learning models
> These introduction additional nonlinearities and estimation parameters

Next Steps Completed
- Data-parallel parameter estimation with Parapint

> Accelerating Pyomo for machine learning models
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Data-Parallel Parameter Estimation with Parapint

Goal: fast estimation to support
exploratory analysis of model parameters

|dea: Parallelize estimation using Parapint

> Originally developed for parallel solution of
dynamic optimization problems

> Structured decomposition can used for data-
parallel estimation problems

Scalability study

- Compute end-to-end runtime, including
model setup and initialization

- Computed solution time and speedup
relative to serial optimizer

> Solution on 128 cores in 11 seconds!

Solution Time (s)

—&— Parallel Time

Serial Time

1024

512

256 1

128 -

(@)}
N

W
N

=
(@)

oo

1 2 4 8 16 32 64 128
# of Processes

—W— Parallel Speedup

128

64

Parallel Speedup



10 | Accelerating Pyomo for Machine Learning Models

Goal: Enable nonlinear representation of NPI effects

Bjt =B + Z BXjie —  Bjt=NNet(B8Y,\j;w,b)

ieNPI
Full-space NNet representation
> Includes all intermediate variables from each layer
> Large problems that are challenging to solve _
Old Time 0.1s 42.0s

Reduced-space NNet representation New Time 0.1s 1.5s

> Consistent with tools like TensorFlow

> Express NNet as a single large expression tree
Comparison of time for NL writer

with 3-layer NNet model

Pyomo improvements for NL model writer (100 nodes)

> Reduce # of passes through the expression tree

s :
- Caching of intermediate repeated expressions New NL writer is 27x faster!



11 I PI’'s PROJECT LEGACY

Informing US COVID-19 Response
> The Nature Communications article informs future US policy on COVID-19 management

> Non-pharmaceutical interventions (NPIs) are a key tool for controlling the ongoing SARS-CoV-2
pandemic, even with the development of vaccines for this disease.

> Well-informed policies for NPIs are critical to mitigate COVID outbreaks and plan effective
responses for COVID variants with new infectious characteristics.

> The modeling extensions demonstrated in this project provide a strategy for partially automating
the assessment of NPI efficacy

Catalyzing future data-informed operations research (OR) applications

- The Pyomo enhancements will catalyze application of Pyomo in future machine learning (ML)
applications

> This will all support future efforts to develop hybrid OR-ML models using Pyomo

> The Parapint demonstration will catalyze future data-informed OR applications with this capability
- Data-parallelism can be exploited to solve large parameter estimation problems

> Modeling disease dynamics is an application exemplar for the proposed NSIST DI-OR LDRD

- Parameter estimation with NPI efficacy directly maps to one of the application exemplars in this project



12 I PROJECT OUTPUTS

* Intellectual Property
* None

* Publications

- Yang, B., Huang, A.T., Garcia-Carreras, B. et al. Effect of specific non-pharmaceutical
intervention policies on SARS-CoV-2 transmission in the counties of the United States. Nat
Commun 12, 3560 (2021). https://doi.org/10.1038/s41467-021-23865-8

- Hart, W.E., Laird, C.D., Staid, A. et al Spatio-temporal estimates of disease transmission
parameters for COVID-19 with a fully-coupled, county-level model of the United States.
Sandia National Laboratories, SAND 2021-XXXX, September, 2021.

- Hart, W.E., Bynum, M., Laird, C.D., Siirola, J.D. LDRD Final Report: Large-scale Nonlinear
Approaches for Inference of Reporting Dynamics and Unobserved SARS-CoV-2 Infections,
Sandia National Laboratories, SAND 2021-XXXXR, September, 2021.

* Presentations
* None

* Awards, professional leadership/recognition
* None



https://doi.org/10.1038/s41467-021-23865-8

13 I CAPABILITIES DEVELOPMENT

- Expected Impact of Capabilities on Future Work

o The new formulations integrating predictive models of NPI efficacy are an exemplar of
the type of data-informed operations research models that motivate the NSIST DI-OR
LDRD proposal.

o If funded, these models will be included in the library of application exemplars developed in that project.
o The Parapint demonstration illustrates the scalable application of Parapint for

parameter estimation
o Analysts can perform national-scale computations in seconds

o The new Pyomo model generation capabilities will be integrated into a future Pyomo
release. This capability will facilitate the application of Pyomo to future data-driven
applications.

- Career Development
o None



14 I TEAM BUILDING AND PARTNERSHIPS

« Carl Laird’s research team at CMU will continue this research with collaborators at U
Florida and Sandia. We expect this research to continue to support COVID-19 analyses
that support CDC/DHS policy decisions.

« The NSIST DI-OR LDRD proposal is a collaboration with Dr. Laird

- Joint journal article and SAND Report with collaborators at Hopkins and UF



15 1 |1A/PM PROJECT LEGACY

How did this project contribute to IA strategic goals and objectives?
« This research project is strongly aligned with CIS data science research priorities

» This research demonstrated scalable methods that enable rapid national-scale analysis
Fast computations will empower epidemiologists to explore model parameterizations to understand model predictions

It is unclear if this research will catalyze future COVID-centric funding
This reflects opportunities with external research programs rather than the innovative nature of this work

What are; the key results from this research that will be useful to other current and future
projects:

»  The Nature Communications article is expected to inform future US policy on COVID-19
management

- The Pyomo enhancements and Parapint demonstration will catalyze future data-informed
operations research applications

Technology insertion and follow-on funding for potential and realized ROI
Pyomo is widely used in SPP and DOE projects

The capabilities for data-informed operations research developed here will immediately support
IDAES (J. Siirola), REDLY LDRD (W. Hart), DI-OR LDRD (W. Hart, proposed), Carrier SPP (R. Smith)



Large-scale Nonlinear Approaches for Inference of Reporting

Dynamics and Unobserved SARS-CoV-2 Infections
Pl: William Hart, PM: John Feddema

Project goal(s) Mission Impact
Develop large-scale nonlinear optimization This research informs future US policy on
approaches for simultaneous estimation of model COVID-19 management and response

parameters and unobserved SARS-CoV-2 infections.

Predict the effect of nonpharmaceutical intervention The optimization qapabilities der_nonstrate here
(NPI) policies on transmission rates can be leveraged in future data-informed

operations research mission applications

Demonstrate scalable solution strategies for large, _
fully-coupled nonlinear formulations Transmission Parameter (County: county_11) Pyomo enhancements will resolve bottlenecks

o | J impacting any large, data-driven application

0.5 1 \

0.4 |

|
0.3 1 |
—

0.2 1 |

0.11 — simulated \

0.0 Estimated }

0 20 40 60 80 100 120 140

Key FY21 Accomplishments Transition Plan

IDAES — Additional Pyomo enhancements and

Assessing the effects of NPI policies (Journal Article) release of new Pyomo capabilities

Simultaneous estimation of compartment and transmission NSIST DI-OR LDRD — Proposal to develop new
parameters capabilities for data-informed operations
research

Simultaneously estimation with prediction of NPI efficacy

Accelerating machine learning models in Pyomo
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