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ABSTRACT:

We use a nascent data-driven causal discovery method to find and compare causal relationships in
observed data and climate model output. We consider ten different features in the Arctic climate
collected from public databases on observational and Energy Exascale Earth System Model (E3SM) data.
In identifying and analyzing the resulting causal networks, we make meaningful comparisons between
observed and climate model interdependencies. This work demonstrates our ability to apply the PCMCI
causal discovery algorithm to Arctic climate data, that there are noticeable similarities between
observed and simulated Arctic climate dynamics, and that further work is needed to identify specific
areas for improvement to better align models with natural observations.

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:

The Arctic is changing rapidly and feedbacks between the ocean, atmosphere, and sea ice may be
accelerating that change [12]. Accurate predictions of the future sea ice extent in the Arctic depend on
understanding the impacts of greenhouse gas forcing and the superimposed internal variability of the
complex Earth system. In particular, sea ice loss in the Arctic has been shown to have a linear
relationship with global average surface temperature in both observational data and simulation data,
with most predictions indicating that the Arctic will be seasonally ice free by mid-century [12,13]. The
correlation is generally explained by a common dependency of temperature and sea ice concentration
on greenhouse gas concentration, but causality has not typically been assessed. Other studies have
found that internal variability in the climate system can accelerate or impede sea ice loss and there is
currently no consensus on the dominant processes in the ocean and atmosphere that have the largest
impact [14, 15, 16].

Earth system models (ESMs) are critical to our understanding of climate change, but the complex nature
of the interactions between atmosphere, ocean, ice, and land can obscure causal relationships. Here, we
investigate the causal relationships between Arctic climate features to better understand the complex
feedbacks that result in rapid Arctic change and sea ice loss. This effort extends our feature analysis that
identified features important for predicting yearly minimum sea ice concentration and compared
feature importance between simulations and observations [1].

In [2], a recent review of causal discovery methods for complex systems, they argue that causal
discovery is well-suited to improving climate models. In [3], authors provide an example analysis of a
global climate model, though focus on a single feature in many separate regions of the globe. This work
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builds on these publications by extending this nascent field to the U.S. Department of Energy’s Energy
Exascale Earth System Model (E3SM) [4] and including a multiple feature analysis within one common
region. E3SM is a coupling of atmospheric, ocean, river, land, land ice, and sea ice numerical models. Its
stated goal is to use exascale computing to output high-resolution simulations of natural and
anthropogenic effects in the climate.

Commonly, causality is determined and quantified by interventionist experiments, usually in randomized
trials. Because of the magnitude, complexity, and uniqueness of the Earth's climate, there are significant
feasibility and ethical problems with controlling and intervening in the climate for experimentation. For
this reason, climate science is largely studied with ESMs, which are coupled numerical models. Each
model encapsulates subsystems and subprocesses coupled together to approximate the long-term
climate.

The status-quo in ESM evaluation is based on descriptive statistics, like mean, variance, climatologies,
and spectral properties of model output derived from correlation and regression methods [2]. These
methods can be simple to implement and interpret but are often ambiguous or misleading; resulting
associations can be spurious and the directions of effects is fundamentally unknown.

In recent decades, a rigorous mathematical framework has been developed for observational causal
inference by Spirtes, Glymour, Scheines, Pearl, Rubin, and others [5, 6, 7, 8]. The framework for causal
discovery is largely based on Reichenbach's [9] Common Cause Principle: that if two variables are
statistically dependent, there must be a causal relationship between the two, or a third common driver
of the two. Most importantly, causal discovery methods attempt to identify the direction of observed
effects between variables and detect spurious correlations. Effectively understanding the causal drivers
in the Arctic climate system is requisite for understanding the future of our climate and how we can
mitigate or intervene in climate change.

In previous work, we used a random forest feature analysis to determine which summertime features in
the Arctic are most predictive of yearly sea ice extent minimums in September [1]. We then compared
results from observed data and simulation output data. This approach allowed us to discover and
compare nonlinear relationships in the climate systems. Random forest feature importance values are
correlations and direction can only be inferred from each feature to the single predictand. Therefore,
inter-feature relationships in the model cannot be interpreted causally. This research expands on our
previous work by identifying causal relationships in the data and comparing causal networks from
historical simulations and observations.

Causal discovery of observational data is notoriously difficult because spurious correlations and
incomplete data leads to spurious inferences. In this work we use conditional independence-based
causal discovery, which relies on several assumptions for estimating causal links. One of which is causal
sufficiency, that all confounding variables are observed. Because the complex dynamics of the Arctic
system are actively researched, and there is no strong consensus on the dominant processes in the
Arctic climate, we cannot validate causal sufficiency. We chose our variable set because of their strong
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correlation with sea ice extent and their success in predicting sea ice extent [17, 18, 1], and they serve as
a good hypothesis for a sufficient set.

In our analysis, we were able to fit a network depicting conditional dependencies between features to
each of six data sets, observed and five simulated. We then applied a similarity score to evaluate how
well the simulated datasets agree with the observed data and each other. Finally, we discuss the next
steps for this work and how to derive meaningful differences between the networks.

DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND
METHODOLOGY:

Data

We collected ten features of the Arctic climate. Each was a timeseries of monthly mean values, averaged
spatially over the region above 60 degrees North latitude. The observed dataset consisted of natural
observations and output from reanalysis products. Simulated data was from the five members, or runs,
of the E3SM historical ensemble [4]. The historical ensemble is a set of runs simulating the Earth system
from 1850 to 2014. These runs were initialized by a 500-year-long pre-industrial control simulations,
named piControl. The selected features are a subset of the quantities E3SM models and were chosen to
match observable natural quantities and have been shown in previous work to have strong correlations
with sea ice extent [17, 18, 1]. Resulting are six separate datasets, one observational and five E3SM
simulation datasets.

The specific quantities we used were mostly the same as outlined in our plan (as seen in Addendum A).
We did choose to change a few details. Rather than limit each variable to the same temporal range,
1979-2014, we instead included all the data available for each. We used the entire 150-year span of the
E3SM data. The observational timeseries’ date range varied by each feature, though they all start in
1979 and continue at least through 2017. Additionally, the full 150-year surface zonal and meridional
wind timeseries were not readily available, so we opted to use surface wind magnitude, SWind, in their
place, which does not include a directional component. Lastly, we included monthly precipitation rate
data from E3SM and from the National Centers for Environmental Prediction for the observational
dataset. Full data details are in Addendum C.

Preprocessing

The method detailed below, PCMCI, assumes the data is statistically stationary, i.e., its summary
statistics do not change in time. First, we tested each timeseries for stationarity. This consisted of using
the Kwiatkowski—Phillips—Schmidt—Shin (KPSS) and augmented Dickey-Fuller (ADF) hypothesis tests.
KPSS tests the null hypothesis that a timeseries is stationary around a deterministic trend while ADF
tests the null hypothesis that a timeseries is nonstationary around a deterministic trend. If KPSS fails to
reject the null hypothesis, and the ADF test rejects, then we considered a timeseries stationary. We used
an alpha value of 0.05 to determine significance and found that most features were nonstationary. To
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keep dependencies and inferences consistent, we applied a 12-month differencing transform to every
timeseries. A 12-month difference transform is the process of subtracting a timeseries by itself lagged 12
months. Resulting is a timeseries of the original’s change from one year to the next. Differencing
removes trend and choosing 12-months will remove yearly seasonality in the data.

Causal network learning

Causal discovery is the process of reconstructing the causal structure from purely observational data
[10]. Traditional causality research to determine the causal effect, inferences about the strength of
effects between variables, is done when the causal structure is already known. Causal discovery is used
when the causal structure is mostly unknown. The causal structure discovered is often represented as a
directed acyclic graph in which the nodes represent observed variables, and the edges represent causal
relationships.

Causal discovery generally makes four major assumptions: (1) the causal Markov assumption, that if two
nodes, X and Y, are d-separated in a graph G, given a conditioning set Z, then X and Y are conditionally
independent in their joint probability distribution, given Z; (2) the faithfulness assumption, that if two
variables, X and Y, are conditionally independent, given a set of variables, Z, then their nodes in a graph,
G, must be d-separated, given Z; (3) causal sufficiency, that there are not any unobserved confounding
variables of any variables in the graph; and (4) acyclicity, that there are no cycles in the graph.

In this work, we applied the PCMCI algorithm [11]. PCMClI is an extension to the PC causal network
learning algorithm [5], named for its authors Peter Spirtes and Clark Glymour. PC is known for a
relatively high false positive rate and struggles with high dimensional, autocorrelated data [11]. In [11],
Runge et al. adapted PC to use its skeleton discovery phase for condition selection and then utilize a
momentary conditional independence (MCI) phase. PCMCI estimates the causal links between all
variable pairs, including their temporal lags.

The first important determination in applying PCMCl is to choose a conditional independence test. The
authors have implemented three, the partial correlation, a linear parametric test, gaussian process
regression and distance correlation, a nonlinear parametric test, and conditional mutual information
with a k-nearest-neighbors estimator, a nonlinear nonparametric test. Generally, the functional form of
the dependencies in the feature set needs to be assumed and the appropriate test is chosen. In our case
though, we knew it was likely that nonlinear dependencies existed in the data but could not assume if
they remained after the data was transformed.

To estimate the dependencies’ functional form, we plotted each feature with another one in a scatter
plot. The resulting plot depicts how each feature varies with the other. With this, linearities and
nonlinearities can be found by eye. Applying this process to the untransformed data, we indeed found
several nonlinearities of various forms as well as linear dependencies. Applying it to the transformed
data revealed no clear nonlinearities, and multiple clearly linear relationships. With this discovery, we
selected the partial correlation parametric linear conditional independence test.
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PCMCI has two primary hyperparameters for tuning. The first is the maximum lag, T,,4,, the maximum
lag to evaluate for each variable. 7,4, is an estimate of the maximum time that every variable may have
an effect on the others. The estimation of 7,,,,, may come from prior knowledge or by analyzing the
linear dependence of each variable with every other variable at a range of lags. The second parameter
to estimate is the alpha significance threshold for edges in the graph. Every pairwise dependence is
determined with conditional independence tests and has an associated p-value for its significance. Alpha
is the threshold for whether the p-value of each link is small enough to be included in the final graph.

To estimate T,,4x, We plotted the cross-dependencies between each variable at lags between 0 and 24
months and looked for dependence to reach zero for every graph. See Figure 1 for an example from the
observed dataset. We repeated this process for each dataset and found that 7,,,,, = 12 months was
adequate for each variable pair. To estimate alpha, we followed the procedure in [3], which selects from
the list {0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} by computing the Akaike information criterion
(AIC) of the models fit by each value in the list. That list is slightly more extensive than in [3] because we
found each graph was selecting 0.05 and wanted to be sure it was not just selecting the smallest
available value.
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Figure 1: Plots of each feature as a function of each other feature's lags. The vertical axes denote linear dependence, and the
horizontal axes denote the number of lags in months.
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Causal network comparison

We utilized the F; score used in [3] to compare each pair of graphs. The F; score is a graph similarity
metric with bounds [0,1], with 0 indicating no similarity and 1 indicating perfect similarity. The metric is
computed from the precision, P, and recall, R, of a graph in comparison to a reference graph. Precisely,
these values are computed as:

F_Z-P-R
7 P+R
where
b TP
" TP +FP
. TP
" TP+ FN

and TP is the number of true positives, FP is the number of false positives, and FN is the number of false
negatives. These terms often assume a ground truth, although because the observed graph is an
estimated causal graph and not ground truth, it is important to consider this metric as a relative score
and not absolute.

RESULTS AND DISCUSSION:

Before analyzing the results, we filtered links from each network with less than 0.001 significance. For
each dataset, PCMCI independently selected pc-alpha value to be 0.05 via AIC. PCMCI evaluated lags
between 0 and 12 months for each feature. The simplified graphs in Figure 2 and Figure 3 hide the
nodes of each features’ lags and only presents a single node per variable. The full timeseries graphs
inferred by PCMCI include nodes for each feature’s lags up to the maximum lag of 12 months. Because
the date ranges on simulated and observed data are not the same, we present results from networks
learned from the fully available date ranges, as well as from a homogenous range, 1979 to 2014.
Although the algorithm has less data to learn from, this may be a fairer comparison to observed
dynamics.

Simplified graphs label links with a list of the lags with significant dependency in order of magnitude.
Node color depicts a feature’s auto-dependency, how dependent a feature is on its lags. Edge color
depicts cross dependency, how dependent a feature is on another feature. Negative, or blue, cross
dependency indicates that as the parent’s value increases or decreases, the child’s value changes
inversely. Positive dependence indicates parent and child values increase and decrease together.
Because we used a linear conditional independence test, these relationships are linear. Since these
colors span many lags, the color chosen for the simplified graphs is the maximum absolute link between
two features or a feature and itself.

Figure 2 is a simplified causal network estimation, trained from the full range of observed data.
Resulting is relatively sparse partially directed acyclic graphs, with only 5.3% of all possible links existing
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in the graph. Directed links represent discovered dependencies between features. Undirected links
represent contemporaneous dependencies.

Observed
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Figure 2: Simplified graph resulting from applying PCMCI with the partial correlation test on observational data in the fully
available date range. The pc-alpha parameter was selected by AIC to be 0.05, the links are defined by a significance threshold of
0.001.

0.0
cross-MCl (links)

Figure 3 is the simplified graph fit by simulation 1 of the E3SM historical ensemble in the fully available
date range. Although many similar links exist in this graph, it contains many more than the observed
data graph. The remaining simulation graphs can be found in the Addendum C. They all differ but are
more alike than the observed data graph and contain more links. An average of 8.6% of all possible links
exist in the simulation graphs.
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Figure 3: Simplified graph resulting from applying PCMCI with the partial correlation test on simulation 1's data in the fully
available date range. The pc-alpha parameter was selected by AIC to be 0.05, the links are defined by a significance threshold of
0.001.

To better quantify the similarity between each graph, we computed the F; score of each pair of graphs.
For this analysis, we included the fully detailed networks. These include a node for each lag of each
feature. Figure 4 shows these results for the fully available date range graphs. The simulation networks
are the most similar with each other, while the observed network is the most different from all other
networks. The average simulation to simulation F; score is 0.83. The average simulation to observed F;
score is 0.7.
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Figure 4: Matrix of F; similarity scores of each pair of graphs for the fully available date range graphs.

The homogenous date range changed the observed graph minimally but altered the simulated graphs
noticeably. 5.5% of all possible links exist in the observed graph, while an average of only 4.8% exist in
the simulation graphs for this date range. Figure 5 shows the F; similarity scores for the homogenous
date range, 1979-2014. In this, the simulation networks lose some similarity, dropping to an average
value of 0.71 simulation to simulation. The average similarity to the observed network increases slightly
though, to 0.73. It is intuitive that the simulations would diverge in later years, after having been
initialized equivalently, and eliminating the early years makes this apparent in their similarity scores.
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Figure 5: Matrix of F, similarity scores of each pair of graphs for the homogenous date range, 1979-2014.

In this work, we developed a strong foundation for applying conditional independence-based causal
discovery algorithms. The differencing transforms we applied to the data were important for removing
seasonality and trend, which removes the unobserved confounders driving them. We have found that
we can apply causal discovery algorithms to Arctic climate data and find strong consistencies between
observed and simulated timeseries. Although we cannot validate the causal sufficiency assumption with
certainty, we can see that discovered conditional dependencies are similar in each dataset. In future
work, we can develop and apply node-to-node similarity metrics to find which nodes are most
responsibility for dissimilarity between graphs.

It is important to remember that each feature was transformed to create stationary timeseries. The 12-
month differencing transform means that each timeseries is a series each month’s deltas from that
month’s previous year. This means that a directed link from feature X to feature Y would be interpreted
as the change in Y from year to year is dependent on the change in X from year to year.

The primary limitation of our findings is the inability to justify the causal sufficiency assumption. The
remaining assumptions can be considered satisfied as they assume that an underlying causal structure
exists in the data, and that cause and effect does not occur instantaneously. That is assured by the
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physical and temporal nature of these quantities. The challenge of causal sufficiency exists in any open
complex system. We plan to apply causal discovery algorithms that do not rely on the causal sufficiency
assumption, such as the Fast Causal Inference algorithm [5] or Latent PCMCI (LPCMCI) [19]. LPCMCI
augments PCMCI to discover causal links in the presence of latent, or unobserved, features.

ANTICIPATED OUTCOMES AND IMPACTS:

During this project we presented our findings to the International Conference on Machine Learning
(ICML) in the form of a workshop paper (as seen in Addendum A) and an online poster presentation. We
also gave another presentation internally to the Validation and Verification of Machine Learning Models
discussion group (as discussed in Addendum B). Later this fall there will be presentation at the
Chesapeake Large-Scale Analytics Conference (CLSAC) about this work. These presentations allowed us
to network with other groups around the labs and externally; organizations include 5493, 1463, 0515,
and professors at the University of New Mexico (as discussed in Addendum B).

The major lesson learned in this project was that ground truth for artic climate dynamics is an ongoing
research problem, which this work depends on for validating our results are causal. Currently we are
relying heavily on climate experts to validate our causal models, but to fully develop metrics for
comparing our models we need a concrete understanding of arctic climate dynamics as well as global
dynamics. Once these climate dynamics are sufficiently validated, we can utilize these causal models to
help us improve our simulated models.

This work will continue in the CLimate impact: Determining Etiology thRough pAthways (CLDERA) Grand
Challenge project starting in FY22. We plan on improving and adding metrics for comparing similarities
and differences between causal models. We are also looking into determining how well a given model
fits the data used for training. Some other research areas we want to explore include incorporating
spatial data features into our analysis. The work done in this project used averaged values over the
entire arctic. We could have divided the data into subregions of the arctic, but with this being a Late-
Start LDRD with limited time we decided it was best to simplify the problem space. This will be
important for CLDERA because we will be working with data on a global scale and averaging values over
the whole globe would not work as easily.

CONCLUSION: (400 word limit)

In this work, we found strong similarities between conditional dependencies discovered in observed and
simulated climate dynamics. If the assumptions of causal discovery were to hold, we would find that
E3SM climate simulation runs are causally similar to each other and, importantly, causally similar to
observations. Although we cannot validate the causal sufficiency assumption, there is evidence that our
feature set is a good hypothesis. The largest remaining sources of confounding may be from remaining
seasonality and trend from external forcing such as periodic-natural and anthropogenic climate changes.
A clear next step is to apply a causal discovery algorithm that does not require causal sufficiency and
then compare results.
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Towards Knowing Why: Data-Driven Causal Evaluations of Climate Models
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Abstract

In this work, we plan to use nascent data-driven
causal discovery methods to find and compare
causal relationships in observed data and climate
model output. We will look at ten different fea-
tures in the Arctic climate collected from public
databases and from the Energy Exascale Earth
System Model (E3SM). In identifying and com-
paring the resulting causal networks, we hope
to find important differences between observed
causal relationships and simulated causal relation-
ships. With these, climate modeling experts will
be able to improve the coupling and parameteri-
zation of E3SM and other climate models.

1. Introduction

The Arctic climate has significant direct and indirect im-
pacts on the ecology, geopolitics, and economics of not
only the Arctic region, but the whole world (Hassol, 2004;
Richter-Menge et al., 2019; Smith & Stephenson, 2013).
Of particular importance, the volume and extent of Arctic
sea ice are important indicators for the current state and
projections of global climate change (Goosse et al., 2018;
Sevellec et al., 2017; Runge et al., 2015; Cvijanovic et al.,
2017). Because of this, effectively understanding the causal
drivers in the Arctic climate system is requisite for under-
standing the future of our climate and how we can mitigate
or intervene in climate change.

Commonly, causal effects are determined and quantified by
interventionist experiments, usually controlling all but one
variable at random, such as in randomized controlled trials.
Because of the magnitude, complexity, and singularity of the
Earth’s climate, there are significant feasibility and ethical
problems with controlling and intervening in the climate
for experimentation. For this reason, climate science is

"Department of Computer Science, University of New Mexico,
Albuquerque, New Mexico, USA *Sandia National Laboratories,
Albuquerque, New Mexico, USA. Correspondence to: J. Jake
Nichol <jefnich@sandia.gov>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

largely studied with coupled numerical models. Each model
ecapsulates subsystems and subprocesses that work together
to determine the long-term climate.

The model we are interested in for this work is the United
States Department of Energy (DOE) Energy Exascale Earth
System Model (E3SM) (E3SM Project, 2018). This model
is a coupling of atmospheric, ocean, river, land, land ice,
and sea ice numerical models. Its goal is to use exscale
computing to output high-resolution simulations of natural
and anthroprogenic effects in the climate.

Climate models are in active development and the Cou-
pled Model Intercomparison Project (CMIP) is a group that
collects and curates modern climate models for world-wide
collaboration. Researchers have found that models in phases
3 and 5 of CMIP underestimate the rate of Arctic sea ice loss
on average (Rosenblum & Eisenman, 2017; Taylor et al.,
2012; Stroeve et al., 2007). Given the importance of climate
modeling for climate science, it is important to be able to
evaluate models and determine why they fall short. Figure 1
shows the difference between observed sea ice extent and
E3SM’s modeled prediction.

The status-quo in Earth system model evaluation is based on
simple descriptive statistics, like mean, variance, climatolo-
gies, and spectral properties of model output derived from
correlation and regression methods (Runge et al., 2019a).
These methods can be simple to implement and interpret but
are often ambiguous or misleading; resulting associations
can be spurious and direction of impact is fundamentally
unknown. In previous work, we used random forest feature
analysis to determine which summer-time features in the
Arctic are most predictive of yearly sea ice extent minimums
in September (Nichol et al., 2021). We then compared re-
sults from observed data and simulation output data. This
approach allowed us to discover and compare nonlinear re-
lationships in the climate systems Random forest feature
importance values are correlational results and direction-
ality can only be infered from each feature to the single
predictand. Inter-feature relationships in the model cannot
be interpretted causally.

In recent decades, causal inference has been established
in a rigorous mathematical framework (Pearl, 2009). That
framework can be leveraged to offer a deeper understanding
by discovering causal relationships within existing data.
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Most importantly, causal methods will identify the direction
of causal effects between variables and determine which
known correlations are spurious.

Finding different causal relationships between climate mod-
els and observed data will identify actionable problems with
the models. Like in our previous work, we expect to find
many similarities as well. Those similarities will validate
the causal structure inherent in the expert-designed numeri-
cal climate models. We hope to find that our results from
previous work are replicated in the causal analysis as well.
It is possible that the causal discovery process will identify
there are missing variables as well. Learning this will be a
great help to determine that important drivers are missing
from our selection or even E3SM itself. The results we
find can be analyzed by subject matter experts in climatol-
ogy and climate modeling to improve the coupling and and
parameterization of E3SM and other climate models.

2. Data

We will use time series of ten features in the Arctic con-
sisting of monthly mean values for each year of available
data. Observed data will be collected from observational
and reanalysis data products, and simulated data will be the
output from five ensemble members of the E3SM historical
dataset (E3SM Project, 2018; Golaz et al., 2019). The se-
lected features are a subset of physical quantities simulated
by E3SM in the Arctic and are the same ones used in our
previous work with random forests, (Nichol et al., 2021).
‘We originally chose these features because they match ob-
servable features in nature and we hypothesized they would
be good predictors of sea ice loss. Each feature of the ob-
served dataset is a time series beginning with the start of
the satellite era in 1979 through 2018. The E3SM historical
ensemble datasets span 1850 through 2014.

The observational data included monthly sea ice extent com-
puted from gridded, daily, passive-microwave satellite ob-
servations of sea ice concentration provided by the National
Snow & Ice Data Center (Peng et al., 2013). Sea ice concen-
tration is a percentage value of ice in each grid cell, and sea
ice extent (SIE) is computed as the total area of cells contain-
ing more than 15% ice. Sea ice volume (SIV) reanalysis data
were provided by the Pan-Arctic Ice Ocean Modeling and
Assimilation System (Schweiger et al., 2011). Atmospheric
data, total cloud cover percentage (CLT), downward long-
wave flux at surface (FLWS), pressure at the surface (PS),
near-surface specific humidity (SSH), temperature at the
surface (TS), wind u component/zonal (uwind), and wind v
component/meridional (vwind)) were from an atmosphere
reanalysis provided by the National Centers for Environmen-
tal Prediction (NOAA et al., 2019a). Sea surface tempera-
ture (SST) was provided by the National Oceanic and At-
mospheric Administration (NOAA et al., 2019b). For each

of the atmospheric data variables, as well as SST, monthly
Arctic area averages were computed from the global gridded
fields.
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Figure 1. Comparison of observed, pan-Arctic mean September
sea ice extent with predictions from E3SM’s historical ensembles
1-5. The mean of E3SM simulations is shown with 95% confidence
interval (shaded).

Climate simulation data in this work is from DOE’s E3SM
(E3SM Project, 2018; Golaz et al., 2019). E3SM version
1 was a fork of the community Earth system model (Kay
et al., 2015), which was a part of the CMIPS5 collection de-
termined to underpredict the rate of sea ice loss (Rosenblum
& Eisenman, 2017). E3SM is a global model comprised of
submodels for land, atmosphere, land ice, sea ice, oceans,
and rivers. Specifically, we will use data from E3SM’s
historical ensembles 1-5 at one-degree global resolution.

Figure 1 shows the difference between observed and
E3SM’s simulated sea ice extent in September each year
between 1979 and 2014. September is when sea ice extent
is at its minimum. The model generally predicts the same
trend but fails to determine critical lows in yearly sea ice
extent.

3. Approach

Causal inference is a mathematical framework for answering
questions about why phenomena occur. Causal modeling is
an effort to discover, describe, and analyze the relationships
between cause and effect. The discovery and description
of causal models is defined in two languages: a causal dia-
gram, expressing what we know, and a symbolic language,
expressing what we want to know (Pearl & Mackenzie,
2018). Causal inference methods attempt to identify causal
relationships and interdependencies of an underlying system
(Pearl, 2009; Spirtes & Zhang, 2016).

Many causal discovery algorithms produce a causal diagram
or network. The diagram is a directed graph that represents
the relationships between variables. Figure 2 is a diagram de-
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picting correlation between variables in the observed dataset
from our previous work, including only mean values from
June in each year between 1979 and 2014. The PC algo-
rithm (Spirtes et al., 2000) would take a diagram like this
as input and iteratively remove spurious correlations and
determine the causal direction between the remaining links.
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Figure 2. Diagram showing correlated relationships between vari-
ables in June from the observed dataset between 1979 to 2014.
Green indicates a positive correlation and orange indicates a nega-
tive correlation. The correlation threshold is £0.6.

There are multiple methods for constructing causal networks
that are candidates for investigation in this work. These in-
clude causal network learning algorithms, such as the Peter-
Clark (PC) algorithm, structural causal model frameworks,
such as LINGAM, and the fast causal inference (FCI) algo-
rithm. Each of these require sets of assumptions about the
given data describing the system. We will need to determine
which assumptions we can meet with the available data.
Due to the nonlinear, stochastic, high-dimensional nature
of the climate system, it is likely that causal network learn-
ing algorithm and structural causal models will be more
effective.

3.1. First step: the PCMCI method

We plan to attempt our analysis with PCMCI (Runge et al.,
2019b) first. PCMCI extends the PC-algorithm by adding
momentary conditional independence (MCI) tests. These re-
move false-positives left by the PC algorithm and conditions
on each variable’s causal parent and its time-shifted parents
as well. Thus, the algorithm is designed to remove spurious
relationships and identify concurrent and time-lagged causal
relationships. PCMCI was specifically designed for highly
interdependent time series such as climate data.

In (Nowack et al., 2020), the authors used time series of
sea level pressure data at 50 locations around the globe as
the raw data. The authors then examined the relationship
between precipitation and the causal network skill scores
for sea level pressure to demonstrate that this method can
help identify dynamic coupling mechanisms arising from
underlying physical processes. The Nowack et al. study
is one of the first causal network inference studies using

large-scale spatiotemporal data and provides a proof-of-
concept that such methods are viable in climate systems.
They looked at a single variable in various regions, each
region’s data making up a time series that is input to the
algorithm as a single variable. In our work, we plan to
use PCMCI to do the opposite, analyze several different
quantities in the same region.

3.2. Comparing and evaluating causal models

An obvious first approach for comparing causal diagrams
is with standard graph comparison metrics such as global
properties and summary statistics: edge density, global clus-
tering coefficient, degree distribution, counts of subgraphs,
hamming distance, etc. However, these are defined by corre-
lation and do not address the causal nature of the networks.
Other metrics grounded in information flow are more appro-
priate but possibly more difficult to interpret holistically. In
(Runge, 2015), the authors present a framework for deter-
mining information flow from multivariate causal diagrams.

A different approach is to consider the resulting models’
performance. This includes metrics such as true positive
rate (TP), false positive rate (FP), accuracy, positive pre-
dictive value, false omission rate, and the G-measure and
F1-score (metrics combining TP and FP), and the S-score.
These require a baseline model, such as the causal diagram
of the observed dataset, to measure the performance of a
test model. These are easier to interpret than information
flow but are relative measures and cannot be assessed inde-
pendently.

4. Conclusions

The contributions of this work will bring climate modeling
experts a step closer to understanding why E3SM does not
model certain Arctic quantities well, such as sea ice extent.
In our previous work, random forests were able to illucidate
which features were more or less important for model pre-
dictability in observed and E3SM data. This work should
support those results and help explain the causal drivers
behind observed and E3SM results. Future research after
this work could include: considering more features in the
Arctic; other regions with known modeling biases, such as
the Antarctic; and other climate modeling problems, such as
determining the effects and sources of major climate events.
Clear examples are volcanic erruptions and anthroprogenic
climate change and intervention.
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Why: Data-Driven Causal Evaluations of Climate Models.” ICML 2021 Workshop: tackling
Climate Change with Machine Learning. SAND2021-8028 C

https://www.climatechange.ai/papers/icml2021/80

+ Presentations: Workshops, conferences, Industry Days
« ICML 2021 Workshop: Tackling Climate Change with Machine Learning

“Learning Why: Data-Driven Causal Evaluations of Climate Models” presented by Jake Nichol,
SAND2021-8130 C

+ Presentation on causal analysis and causal discovery to Sandia's Verification and
Validation of Machine-Learned Models Used in Science and Engineering discussion
group (5954).
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+ Establishment of Capabilities expected to impact future work

« New knowledge base of how to apply Causal Modeling for climate data
Preprocessing data

Parameter Tuning of Causal Models
Generating Comparison and Evaluation Metrics

« Career Development & Capabilities Stewardship

« Matt Peterson (Pl), 1461, is an early career staff and first Pl position on an
LDRD

+ Jake Nichol ,1461, is a Year-round PhD student intern being mentored by
Matt Peterson and this work is directly related to his dissertation topic
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+ Engagement with potential customers

* Will be working on the CLDERA Grand Challenge to continue this
work; Diana Bull (0515)

* New research teams or collaborations formed

« Collaborated with other Causal Network folks; Mark Smith (5493) and
Laura Swiler (1463)

* Presented at Validation and Verification Discussion group, hosted by
Erin Acquesta (5954)

» This work ties into Jake's dissertation at UNM with his advisor Melanie
Moses
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Feature Date Range Source

Cloud cover percentage 1979-2019 https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html

(CLT)

Downward longwave 1979-2017 https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html

radiation flux at the

surface (FLWS)

Precipitation rate (PREC) | 1979-2019 https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html

Air pressure at the 1979-2017 https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html

surface (PS)

Sea ice extent (SIE)* 1979-2018 https://nsidc.org/data/seaice_index/archives

Sea ice volume (SIV) 1979-2019 http://psc.apl.uw.edu/research/projects/arctic-sea-ice-
volume-anomaly/data/

Sea surface humidity 1979-2019 https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html

(SSH)

Sea surface temperature 1979-2018 https://psl.noaa.gov/data/gridded/data.noaa.ersst.v4.html

(SST)

Surface wind speed 1979-2019 https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html

(SWind)**

Air temperature at the 1979-2017 https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html

surface (TS)

* Computed from directional zonal and meridional wind velocities.
** Sea ice extent data was computed from sea ice concentration values. Sea ice concentration is a
ercentage value of ice in each grid cell, and extent was computed as the total area of cells containin
7’

more than 15% ice.
E3SM Simulated Data

E3SM historical ensemble data was collected from https://esgf-node.lInl.gov/search/e3sm/

Feature Date Range
Cloud cover percentage (CLT) 1850-2014
Downward longwave radiation flux | 1850-2014
at the surface (FLWS)

Precipitation rate (PREC) 1850-2014
Air pressure at the surface (PS) 1850-2014
Sea ice extent (SIE) 1850-2014
Sea ice volume (SIV) 1850-2014
Sea surface humidity (SSH) 1850-2014
Sea surface temperature (SST) 1850-2014
Surface wind speed (SWind) 1850-2014
Air temperature at the surface (TS) | 1850-2014
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Results for the full 1850-2019, nonoverlapping date range
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Results for the full 1850-2019, nonoverlapping date range
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