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SECURE project 

Overview  
The following text will be on the main page for the handbook:  

This website documents the methods, tools, and case studies that were created under the SECURE 
project funded by Sandia National Laboratories. Securing cyber systems is paramount, but cyber 
defenders lack evidence-based techniques for making decision about high-consequence cyber 
systems. The 2016 Federal Cybersecurity R&D Strategic Plan [1] states: “Most [cybersecurity] 
techniques are domain- and context-specific, often not validated as mathematically and empirically 
sound, and rarely consider efficacy and efficiency. Thus, the state of the practice consists of 
heuristic techniques, informal principles and models of presumed adversary behavior, and process-
oriented metrics.” This plan emphasizes a need for evidence-based approaches to cybersecurity, 
which employ principled and rigorous measurements and models.  

To help address this need, SECURE developed techniques for evidence-based cybersecurity that 
build upon the cyber experimental foundation provided by emulation-based testbeds, which 
provide scalable, virtualized environments for modeling cyber systems. Specifically, this research 
integrated emulation models, mathematical models, optimization, and uncertainty quantification 
into workflows that enable evidence-based risk assessment and risk mitigation. This supports the 
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science of cyber security by providing a foundation to produce quantitative knowledge concerning 
a target system, understand the limitations of available data, estimate cybersecurity risks, and 
identify defensive strategies. 

The SECURE Handbook consists of the following sections. 

• A collection of the key research terms and concepts from this work. 
• A recommended workflow for cyber experimentation. 
• A summary of the tools that were used and/or developed under SECURE 
• A set of case studies demonstrating the SECURE workflow and the application of rigorous 

cyber experimentation approaches such as verification and validation, optimization, and 
uncertainty quantification.   

o An Enterprise Command and Control (C2) study that that analyzes a C2 malware 
attack on an IT system. 

o A SCADA network study where an attacker aims to discover vulnerable remote 
terminal units (RTUs) on a utility grid’s cyber system. 

o A power grid impact study that connects attacks on the associated cyber to system 
to consequences on the grid and identifies key vulnerabilities. 

o  A threat study, where a Markov chain-based model it used to analyze a multi-step 
attack that includes the C2 and SCADA attacks listed above.  

 

[1] National Science and Technology Council, “Federal Cybersecurity Research and Development 
Strategic Plan.”  2016.   https://www.nitrd.gov/pubs/2016-federal-cybersecurity-research-and-
development-strategic-plan.pdf 

  



SECURE Research Terms and Concepts 
The purpose of this section is to provide the reader with an overview of the research terms and 
concepts explored in the SECURE project.   This section is not necessarily meant to be read 
linearly:  the reader can go directly to the topic of interest.  

Terms 
There are many types of models used in cyber analysis.  The following summarizes our use 
throughout these documents.  

• Cyber Model – a generic term that can apply to any methods (or combinations of 
methods) used to assess cyber systems 

• Cyber Testbed - the hardware platform and software framework used to run a cyber 
model or combination of cyber models.  

• Physical Model - Cyber models that run real software on a representative hardware 
platform to model the actual system in full fidelity. 

• Emulation Model – Cyber models that run real software in real time on a computing 
cluster, using hardware abstractions such as virtual machines (VMs) and/or 
containers to represent individual nodes, and virtual networking technologies such 
as Virtual Local Area Networks (VLANS) to interconnect VMs or containers. 

• Emulation Testbed – (also known as “virtual testbed”) The resources used to 
instantiate emulation models. E.g. computing cluster, virtualization technologies, 
and experimentation/orchestration software. 

• Simulation Model – primarily discrete event simulators (e.g. OMNET++ [1] or ns-
3 [2]), which run abstract representations of software and hardware. These models 
can run faster than real time. 

• Mathematical Model – Mathematical formulas that capture dynamic and/or steady-
state values of a quantity of interest and can be solved using mathematical analysis 
tools such as Matlab or Mathematica. 

• Optimization Model – A math-based model that can be used to efficiently identify 
worst-case attacks and/or optimal defense strategies using simplified 
representations of a cyber or cyber/physical system. 

[1] https://omnetpp.org 

[2] https://www.nsnam.org 
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Concepts 
Several modeling and analysis concepts were used and expanded upon to develop our cyber 
experimentation methodology. The following summarizes these areas. 

Threat Modeling 

Threat modeling begins by first identifying the various steps an attacker will make in a particular 
attack (e.g. reconnaissance, privilege escalation, credential access, script execution, command and 
control, etc.).  The MITRE ATT&CK framework (https://attack.mitre.org/) outlines many 
techniques that can be used to achieve success at each attack step.  

The second phase of threat modeling is to quantitatively analyze the attack success at each step 
and then identify optimal mitigations.  Under the SECURE project, we developed a threat 
modeling approach that utilizes a game theory approach called GPLADD [1] to first represent the 
attack success conditions as attack graphs and then to quantify the attack success metrics as a 
function of the attacker and defender strategies.  We then translate the GPLADD to a Markov 
model representation of the attack and populate the transition matrix in the Markov model with 
attack steps from the MITRE ATT&CK model [2]. Because the framework allows for multi-step 
attacks with different times per step, we can examine multiple results, including the attack state 
over time, the Markov-chain steady-state distribution of being in various attack states, the time-to-
success distribution, and the impact of various defenses on the graph and resulting probabilities.[2] 

 [1] A. V. Outkin, B. K. Eames, M. A. Galiardi, S. Walsh, E. D. Vugrin, B. Heersink, J. 
Hobbs, and G. D. Wyss, “GPLADD: Quantifying trust in government and commercial 
systems, a game-theoretic approach,” ACM Trans. Priv. Secur., vol. 22, no. 3, pp. 18:1–
18:27, Jun. 2019. [Online]. Available: http://doi.acm.org/10.1145/3326283  

[2] Defender Policy Evaluation and Resource Allocation against MITRE ATT&CK Data 
and Evaluations.  Alexander V. Outkin, Timothy Schulz, Thomas D. Tarman, Patricia V. 
Schulz, Ali Pinar.  SAND2021-7713. https://arxiv.org/abs/2107.04075,  

Mathematical Modeling of Attack Steps 

Under SECURE, we developed two mathematical models of attack steps for the purposes of having 
fast, approximate models for multifidelity modeling and for examination of the assumptions about 
attack progress.  Each mathematical model is governed by a set of equations that formally represent 
the state of the system and its evolution over time.  For example, the state might be represented by 
the number of ports (closed, open, and filtered) that have not yet been identified by a scanning 
tool.  These mathematical models can also include probabilistic representations, such as Poisson 
arrival rates for malicious and benign traffic.  Both mathematical models were validated by 
comparison with cyber emulation models.  

The two mathematical models developed for SECURE are: 

https://attack.mitre.org/
https://arxiv.org/abs/2107.04075


1. Port scanning with Nmap and detection with Snort. This model describes the rate of port-
scanning progress by an attacker and intrusion detection by the network defender. We 
validated this model with a set of emulation experiments conducted with a virtual 
testbed. The model is documented in the following paper: 

• Eric Vugrin, Jerry Cruz, Christian Reedy, Thomas Tarman, and Ali Pinar “Cyber 
Threat Modeling and Validation: Port Scanning and Detection,” in Proceedings of 
the 7th Annual Hot Topics in the Science of Security (HoTSoS) Symposium (2020).  
Sept. 2020. https://doi.org/10.1145/3384217.3385626 

2. Detection of command and control traffic. This model determines the probability that a 
number of alerts will be generated by the intrusion detection system (IDS) at each time step 
(given the arrival rates of malicious and benign traffic, the probability that packets will be 
dropped by the IDS, etc.). Ultimately, this model can be used to detect the probability the 
attacker will be seen and the rate of false positives.   

 

Verification 

Verification refers to ensuring the correctness of the model implementation:  is the model 
implemented and working as intended? [1]  Part of verification involves software testing and 
quality assurance. A unique aspect of cyber emulation involves assessing the performance of the 
emulation running in the virtualized environment: are there sufficient virtualized resources to 
properly handle the scenario that is being run, or are the virtualized components producing 
experimental artifacts and behavior that may result in the experimental outcomes to be 
unrepresentative or incorrect? 

In our work, we have focused on the use of telemetry metrics (metrics collected from the virtual 
machines or host running the emulations) [2-5] to identify anomalous behavior.  The telemetry 
metrics examined include stolen cycles, load, throughput, context switches, and user time.  We 
have developed a series of experiments where we repeat the same emulation on one host using an 
increasing number of namespaces, where a namespace refers to an experiment that is isolated on 
its own VLANs.  The deployment of the experiment to increasing number of namespaces tends to 
oversubscribe resources, which is seen in the telemetry metrics and output quantities of interest 
from the experiment.  

1. Oberkampf, W.L. and C.J. Roy. Verification and Validation in Scientific Computing.  
Cambridge University Press, 2010.  

2. https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-common-
metrics 

3. https://cloud.google.com/network-telemetry 
4. https://www.sumologic.com/insight/what-is-telemetry/ 
5. https://www.intel.com/content/www/us/en/cloud-computing/telemetry.html 

https://doi.org/10.1145/3384217.3385626
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-common-metrics
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-common-metrics
https://cloud.google.com/network-telemetry
https://www.sumologic.com/insight/what-is-telemetry/
https://www.intel.com/content/www/us/en/cloud-computing/telemetry.html


Validation 

Validation refers to the adequacy of a model for an intended application of the model. Typically, 
one compares model predictions with observational or experimental data (the “benchmark” data) 
in validation to determine this adequacy:  is the model “close enough” as measured by some 
metric?    In the context of validation in SECURE, we have focused on reproducibility in cyber 
experimentation. Reproducible results are foundational in science because they provide evidence 
that discoveries are completely documented and provide assurance that reported results are not 
biased.  

We performed a reproducibility study by first running a cyber experiment of scanning and 
detection scenario on Sandia’s minimega emulation platform. Then, we compared the 
replications with the same experimental configuration conducted by Texas A&M University using 
their CORE testbed environment, another cyber emulation framework.  The Sandia minimega 
results were considered the benchmark data we used for comparison:  we validated the Texas A&M 
CORE emulation results against the Sandia results.   

The process of reproducing the original experiment inspired us to question how we should compare 
the experimental results, which metrics might best evaluate the similarity of the results, and, 
ultimately, when it is possible to define a cyber model as “reproducible.”  

The metrics used, the two sets of experimental results, and the comparisons of those results are 
described in [1]: 

[1] T. D. Tarman, T. Rollins, L.P. Swiler, J. Cruz, E. Vugrin, H. Huang, A. Sahu, P. Wlazlo, 
A. Goulart, and K. Davis. Comparing reproduced cyber experimentation studies across 
different emulation testbeds.  USENIX 14th Cyber Security Experimentation and Test 
(CSET) Workshop. Aug. 9, 2021.  SAND2021-5696C. 

Uncertainty Quantification (UQ) 

Uncertainty quantification refers to characterizing input uncertainties and propagating them 
through a model (e.g. a cyber simulation or emulation model) to obtain the resulting uncertainties 
on the output quantities of interest.  Uncertainty analysis can be used to assess the likelihood of 
typical or extreme outputs, determine the mean or median performance, understand the variability 
in the responses, and find probability of failure. A related activity to UQ is sensitivity analysis, 
which is the identification of the most important variables affecting the response.  It involves 
understanding how model outputs vary as the inputs vary. 

In SECURE, we studied three areas supporting UQ.  Dimension reduction identifies the most 
important components of a high-dimensional space, allowing uncertainty analysis to focus only on 
the important components, thus helping tractability.  Discrete polynomials are an example of a 
surrogate model, which serve as a “surrogate” or proxy for the computationally expensive 
simulation or emulation.  Surrogate models are used extensively in UQ and optimization of 
computational models because they are fast to evaluate.  However, the accuracy of the surrogate 



approximation must be determined.  Multifidelity UQ is another area of UQ which attempts to 
improve efficiency of sampling by incorporating samples from both low and high fidelity models.   

Dimension Reduction 

In monitoring the behavior of physical or emulated computer experiments, the number of certain 
events that occur in a given timeframe can be highly significant. Thus, recording these quantities 
at some frequency (e.g. every second) creates useful time-series data, although that data may be 
inherently stochastic (due to randomness in timings of initializations, small changes in orderings 
of system calls, etc.). The challenge is to understand how much of the inherent randomness 
observed in time series vectors of quantities from cyber experiments can be explained by a few 
underlying components (i.e. reducing the dimensionality of the data while retaining as much of its 
variability as possible).  

In this work, we examined Principal Component Analysis (PCA) on cyber experiment time-series 
and compared with a discrete version of PCA called XPCA.   We studied XPCA because the Nmap 
port discovery results are discrete values:  1, 2, 3, etc. ports found. We applied PCA and XPCA to 
several datasets involving 1000 replicates of port scanning results.   Our main finding of this work 
is that PCA performs better than XCPA with respect to variance explained but worse with respect 
to reconstruction error on these discrete time series data sets.  This is due to the discrete nature of 
the port discovery time series.  The full results are described in [1].  

[1] “Time Series Dimension Reduction for Surrogate Models of Port Scanning Cyber 
Emulations.” Erin C.S. Acquesta, Laura P. Swiler, and Ali Pinar.  SAND20-10617. 

Discrete Polynomials 

Uncertainty quantification is often accomplished via computationally expensive Monte Carlo 
sampling. However, less costly stochastic expansion methods can approximate the functional 
dependence of the simulation response on uncertain model parameters by expansion in a 
polynomial basis.  The polynomials used are tailored to the characterization of the uncertain 
variables.  Polynomial chaos expansion (PCE) is based on orthogonal polynomials.  The goal of 
PCE is to construct a more efficient and accurate estimate of the uncertain response distribution 
than would be obtained from Monte Carlo sampling.   

In this research, we investigated the use of discrete orthogonal polynomials for constructing 
polynomial chaos expansions to build a response approximation of the results from cyber 
experiments.  One unique feature of the work is the presence of replicates (replicated data points) 
from the cyber emulations.  Reference [1] discusses how samples are chosen in input space and 
presents an analysis of “best practice” approaches for constructing stochastic expansions based on 
data one might obtain from a cyber experiment. 

[1] Bert J. Debusschere, Gianluca Geraci, John D. Jakeman, Cosmin Safta, and Laura 
Swiler, “Polynomial Chaos Expansions for Discrete Random Variables in Cyber Security 
Emulytics Experiments”, SIAM CSE 2021 presentation, March 1, 2021.  SAND2021-
2270C. 



Multifidelity UQ 

Often, uncertainty quantification (UQ) is challenging to perform because of the large number of 
samples that must be run through a cyber model, which can be computationally 
expensive. However, lower-cost multifidelity UQ methods run  many samples from one or more 
low-fidelity models (such as a mathematical model or a network simulator like NS-3) that are 
fused with a few runs of a high-fidelity cyber model (e.g. actual software run on real or virtualized 
hardware) to decrease the estimator variance and obtain more reliable statistics. Reference [1] 
presents the theory behind multifidelity UQ.   While the theory for multifidelity UQ existed before 
SECURE, we are the first group to demonstrate it on cyber emulation uncertainty problems, to our 
knowledge.  Reference [1] presents several network problems of increasing difficulty and 
demonstrates that the multifidelity estimator demonstrated increased efficiency with respect to 
Monte Carlo sampling.  

[1] Geraci, G., Crussell, J., Swiler, L.P. and Debusschere, B. J.  “Exploration of 
Multifidelity UQ Sampling Strategies for Computer Network Applications.” International 
Journal of Uncertainty Quantification, 2021. Pp. 93-118. DOI: 
10.1615/Int.J.UncertaintyQuantification.2021033774 

Adversarial Optimization 

Another focus of the SECURE project was the use of adversarial optimization to model the 
interactions between cyber defenders and attackers. Standard optimization models aim to identify 
a solution that maximizes or minimizes a given function, subject to a collection of mathematical 
constraints. Adversarial optimization extends standard optimization methods by embedding 
optimization models within other optimization models. These methods are of particular interest to 
SECURE because they provide a means of finding worst-case attacks against a system.  

The adversarial optimization work on SECURE had two main focuses. The first was developing a 
toolkit to express and solve adversarial optimization problems. While there is a large body of 
published literature on adversarial optimization algorithms, there are few general-purpose tools 
available to write and solve these types of problems. In practice, this means that applying these 
methods typically requires custom solutions. To address this, the SECURE team developed the 
Python Adversarial Optimization (PAO) toolkit [1-3], which contains both a modeling language 
for expressing adversarial problems and algorithms for solving them. The second focus was on 
developing adversarial optimization models to address cyber-physical security problems. The 
remainder of this section describes each of the adversarial optimization models developed under 
SECURE. 

[1] GitHub repository: https://github.com/or-fusion/pao 

[2] Online documentation: https://pao.readthedocs.io/en/latest/ 

[3] Hart, W. E., A. Castillo, E. S. Johnson, and S. Punla-Green (2021). PAO 1.0: A Python 
Library for Adversarial Optimization. Tech. rep. SAND 2021–6720. Sandia National 
Laboratories. 

https://github.com/or-fusion/pao
https://pao.readthedocs.io/en/latest/


N-k DC-OPF Model 

The first optimization capability developed under SECURE was the N-k DC-OPF. This model 
considers worst-case attacks on a DC optimal power flow (DC-OPF) representation of a power 
grid, which approximates AC power flow. In this example, we assume that the power grid has N 
components and the attacker can disable k of those components. The attacker aims to find the set 
of components to attack so that unmet demand is maximized. Once the grid operator observes the 
attack, they will update how their system is being operated to minimize load shed.  To begin, we 
implemented an existing model [1]. A key feature of this model is that it does not make any 
assumptions about how the k components on the system are disabled. For example, it could be 
from either a physical or a cyber-attack. This is useful because this capability can be used to bound 
the damage that can be caused for a wide variety of threats, without having to model the specific 
threat. SECURE utilized the N-k model in the following two research thrusts: 

• First, it was coupled with a cyber-physical emulation to better understand the impact of a 
CrashOverride malware attack on a notional electric system. More details on this work can 
be found in [2].  

• Second, we explored methods to speed up solution times. While the N-k model is a 
powerful capability for finding worst-case attacks, it can be difficult to solve for large 
attack budgets, even for networks with a few hundred buses. This difficulty further 
increases with the number of buses in the network. To address this challenge, we created a 
simplified version of this model. Analysis and experiments showed that in certain regimes, 
the results from the simplified model are often as good or nearly as good as the original 
DC-OPF formulation. The details of this approach can be found in reference [3]: 

[ 1] A. L. Motto, J. M. Arroyo and F. D. Galiana, "A mixed-integer LP procedure for the 
analysis of electric grid security under disruptive threat," in IEEE Transactions on Power 
Systems, vol. 20, no. 3, pp. 1357-1365, Aug. 2005, doi: 10.1109/TPWRS.2005.851942. 

[2] A. Castillo, B. Arguello, G. Cruz and L. Swiler, "Cyber-Physical Emulation and 
Optimization of Worst-Case Cyber Attacks on the Power Grid," 2019 Resilience Week 
(RWS), 2019, pp. 14-18, doi: 10.1109/RWS47064.2019.8971996. SAND2019-12468C. 

[3] Emma S. Johnson and Santanu S. Dey, "A Scalable Lower Bound for the Worst-Case 
Relay Attack Problem on the Transmission Grid," arXiv, 2021, 2105.02801. SAND2021-
10211O. 

Network Segmentation 

As an extension of the N-k DC-OPF model, the power grid cyber-physical network segmentation 
model was developed under SECURE to improve grid resiliency to SCADA cyber-attacks. The 
model assumes a three-tier SCADA system where an attacker must start attacks from balancing 
authorities, the first tier. Attacks must then pivot to control centers to reach substations. Once a 
substation has been infiltrated, all grid components at that substation are disabled by the attacker 
to damage the grid and cause loss of power to customers. A network designer can segment 
networks within each tier a pre-determined number of times to restrict possible attack vectors, with 
anticipation of the worst possible attack on the segmented SCADA system. By segmenting key 



functions in the cyber layer, the network design can limit the scope of attacks and improve systems 
resilience.  This network segmentation model and solution is documented in [1]. 

[1] B Arguello and E.S. Johnson and J.L. Gearhart, "A Trilevel Model for Segmentation of 
the Power Transmission Grid Cyber Network", arXiv.2108.10958: 
https://arxiv.org/abs/2108.10958. SAND2021-10208O 

Sensor Placement 

The sensor placement optimization model was developed to identify where sensors should be 
placed in a cyber network to maximize the probability that attacks are detected, knowing that an 
attacker will aim to evade detection after the sensor are placed. This model uses attack graphs, 
derived from the threat modeling work described above, as the "game board" where attackers and 
defenders interact.  

Robust Optimization 

SECURE also developed methods to incorporate robustness into multi-level adversarial 
optimization problems. In their standard form, optimization models use constraints that are 
parameterized by known values. However, in practice uncertainties can exist in the parameters 
used by the model. When distributional information on these parameters is available, approaches 
like stochastic programming can be used to account decision making under uncertainty. When 
distributional information is not available, robust optimization methods offer an alternative 
approach for dealing with uncertainty. Robust optimization assumes that parameters are not fixed 
but are instead constrained to take values within some uncertainty set. When robust models are 
solved, the solutions that are generated are guaranteed to perform well over all parameter values 
in the uncertainty set. 

Under SECURE, these approaches were applied in the context of sensor placement on networks, 
such as the attack graphs shown in the previous section. In a cyber setting, the sensor model focuses 
on placing sensors to maximize the probability of detecting an attack. As sensors are placed, the 
attacker may alter their path to minimize the probability that they are detected. One potential issue 
with this model is that the sensors that are placed on the network might not perform as expected 
or advertised. Given this, the robust version of this model helps ensure that the placement decisions 
guard against some amount of sensor failure or degradation.  

  



Cyber Experimentation Workflow 
Given the variety of tools that can be used to assess cyber systems, experimentalists might be 
tempted to dive right into a study. However, an analysis rigorous enough for use in high-
consequence cyber systems requires a carefully thought-out experimental design. This section 
describes the experimentation workflow developed and used by the SECURE research team while 
conducting its studies of power grid cyber effects. 

The workflow presented in this document is primarily focused on emulation testbed modeling, 
although it may be employed for other types of cyber models. Thus, to facilitate the discussion, 
we define the following terms:   

• Cyber Model – a generic term that can apply to any methods (or combinations of 
methods) used to assess cyber systems 

• Cyber Testbed - the hardware platform and software framework used to run a cyber 
model or combination of cyber models.  

• Physical Model - Cyber models that run real software on a representative hardware 
platform to model the actual system in full fidelity. 

• Emulation Model – Cyber models that run real software in real time on a computing 
cluster, using hardware abstractions such as virtual machines and/or containers to 
represent individual nodes, and virtual networking technologies such as Virtual 
Local Area Networks (VLANS) to interconnect VMs or containers. 

• Emulation Testbed – (also known as “virtual testbed”) Resources (e.g. computing 
cluster, virtualization technologies, and experimentation/orchestration software) 
used to instantiate emulation models. 

• Simulation Model – primarily discrete event simulators (e.g. OMNET++ [0] or ns-
3 [0]), which run abstract representations of software and hardware. These models 
can run faster than real time. 

• Mathematical Model – Mathematical formulas that capture dynamic and/or steady-
state values of a quantity of interest and can be solved using mathematical analysis 
tools such as Matlab or Mathematica. 

Figure 1 shows a spectrum of testbeds employed in the modeling of cyber systems and 
associated tradeoffs in terms of realism vs. cost.  

 



 

Figure 1.  Spectrum of cyber model fidelity, ranging from actual system to simulation testbeds.  

Because the topic of experimental design for emulation models is an active area of investigation 
in the cyber-security research community, several frameworks have been developed to help 
facilitate sound experimental practices and generate reproducible results.  For example, DEW 
(Distributed Experiment Workflows) [3] provides a generic descriptive language to encode the 
scenario and topology for an experiment.  Likewise, DARPA's National Cyber Range [4], Emulab 
[5], and DETER [6] are cyber testbeds that can be used for research and experimentation on 
networks. Reference [7] also examines how platform variations affect emulation models, using 
carefully structured experiments and statistical analysis. Although these tools exist and work well 
for experiments, methods for using them rigorously to provide comprehensive evidence to answer 
questions about high-consequence systems have not been developed and characterized. For 
example, reproducibility in cyber experiments remains a challenge, due to small timeframes, 
implementation differences, and differences in platform configurations. Therefore, to facilitate the 
achievement of reproducible, unbiased results and methods that may be readily applied in other 
contexts (e.g. on other cyber testbeds with differences in operating systems, software and 
hardware, kernels, system resources, etc.), the SECURE project developed the following workflow 
to help guide future studies, as shown in Figure 2. We acknowledge that this workflow was 
designed for an experimental model (to study sensitivity and uncertainty analysis) but note that it 
can be applied more generally to generate ensembles of runs that can support optimization studies 
or other studies.  Further detail and a description of SECURE’s experimental design (especially 
the design of experimental runs) can be found in "Design of Experiments for Cyber Emulation" 
[8]. 

 



 

Figure 2.  Recommended workflow for cyber modeling suggested by the SECURE project 

When performing cyber modeling experiments, we recommend that the following workflow be 
used: 

1. Clearly articulate the question. Be specific. (e.g. "If an attacker uses port scans and a 
given configuration of the Nmap scanning tool, how many alerts will our intrusion 
detection software identify in a 60-second window?" NOT "Will our intrusion detection 
software work efficiently?") If possible, identify what statistics are of interest (e.g. the 
average number of alerts in a time window, the probability that there will be more than 10 
alerts, or the full distribution of alerts).  
 

2. Define the approach that best answers the question. Scope the problem, identify inputs 
and outputs, and consider your modeling options. 

a. Identify your requirements (e.g. fidelity, scale, size of parameter space, desired 
variance in outputs, time per replicate, number of replicates). Most cyber models, 

Step 1. Articulate the 
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approach

Step 3. Develop the model
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experiment

Step 6. Analyze the 
experimental results

Step 7.  Document
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require multiple runs per model configuration setting (i.e. multiple replicates), 
because there is inherent variability or stochastic behavior in each replicate, due to 
small timing differences, ordering of various events happening on the system, etc.   

b. Choose your modeling domain(s) (e.g. emulation, mathematical), noting that your 
choice of modeling domain should depend on the model requirements identified in 
Step 2(a), as shown in Figure 1. For example, if a large scale is required, scalable 
modeling technologies (e.g. emulation, simulation, or mathematical modeling) 
would be more practical than physical testbed modeling; however, if high fidelity 
is required, then physical or emulation testbed modeling would be more effective 
than simulation or mathematical modeling. Of course, a combination of 
technologies can be used to maximize outcomes (e.g. a coupled model or models 
at multiple levels of detail in a multifidelity modeling study).  

c. Define how each modeling activity contributes to the answer. 
 

3. Develop the model, depending on the modeling domains. The developmental activities 
for different types of models will vary by model:  

• Mathematical models develop equations that will be solved, typically as a function 
of time (e.g. traffic might be modeled with a Poisson arrival rate distribution to 
calculate the expected number of packets arriving in a particular time step).  

• Simulation models use discrete event network simulators, which often have 
simulation examples and model libraries (e.g. with different routing protocols, 
network traffic, etc.) that can be used as building blocks; however, the configuration 
of the simulation must typically be customized for the scenario of interest to the 
study.   

• Emulation models bear some similarity to simulated models, but the actual software 
components and virtualized hardware components (e.g. routers, servers, 
workstations, NIC cards, etc.) must be explicitly identified. The emulation platform 
we used for SECURE was minimega [9].  Below we specify steps that are fairly 
general and need to be customized for a particular emulation platform and 
experiment. 

i. Define or import the topology 
ii. Develop the application components, if needed 

iii. Define the experimental behaviors that will be investigated 
iv. Develop a data collection strategy 
v. Set up and verify the configuration 

vi. Obtain the resources to run the model 
 

4. Validate the model. Compare the model to higher fidelity representations and/or to 
independently developed models of similar fidelity, to assess the degree of agreement 
between your model and the benchmark. Choose the comparison metrics that best expose 
the statistics of interest (e.g. differences due to virtual machine artifacts). A high-fidelity 
model (e.g. simulation or emulation) should ideally be benchmarked against an actual 
physical system, as in [13]. However, lower-fidelity models (e.g. mathematical) might be 



benchmarked against higher-fidelity models. Any large and/or systemic differences 
between your modeled data and the benchmark data should be investigated before the 
experiment progresses. 

At present, there is no standard for benchmarking cyber emulations; the current best-
practice is a hierarchical validation, which occurs in stages, as shown in Figure 3. First, the 
components and/or attack steps are validated individually, then larger groupings or 
components are validated, and then the entire system is validated. Figure 3 depicts the 
validation of a cyber attack model, but a similar validation process could be applied to any 
kind of performance issue or behavior.   

                                                                                                       

 

Figure 3.  Hierarchical validation for a cyber system, starting with validation of individual 
attack steps at the bottom and proceeding to validation of the full attack at the top.  

 

5. Define and run the experiment. Define the inputs/outputs for your model and specify 
them in a configuration file for an experimental orchestrator (e.g. Scorch or Dakota 
[10]).   Choose an experimental design that will produce an appropriate list of input/output 
parameter settings:  

Reconnaissance

Weaponize

Deliver Exploit

Control

Execute

Maintain

Individual, component-level steps of a 
MITRE ATT&CK chain (e.g. validate a 
malicious email spam under “Delivery” 
or a botnet under “Control”) 

Validation of multiple attack steps

Deliver

Exploit

Control

FULL SYSTEM 
ATTACK

Validation of full attack 
(e.g. CRASH OVERRIDE)



a. Define the inputs that will be varied in the experiment and specify the distribution of 
possible values for each input (e.g. discrete bandwidth values, uniformly distributed 
traffic generation rates between upper/lower bounds, etc.).   Each input that will be 
varied in the experiment should have a specification of its distribution in a parametric 
or empirical distribution form. 

b. Define the outputs that will be extracted from the experiment. These outputs can take 
the form of detailed experimental data (e.g. packet captures and logfiles sent to an 
Elasticsearch/Logstash/Kibana (ELK) data collection node [11]), and/or summarized 
experimental outputs calculated within the experiment as it executes (e.g. the time at 
which an intrusion detection system generates an alert).  

c. Develop the experimental design. This can be done in a variety of ways [8].  If the 
number of inputs is small (1-5) and each input has only 2 or 3 levels, a full factorial 
design can be run involving all combinations of input parameter levels.  If the inputs 
are specified with continuous distributions, Monte Carlo sampling or more efficient 
alternatives such as Latin Hypercube sampling or quasi-Monte-Carlo space-filling 
methods can be used to generate samples.  In each of these cases, the number of samples 
should typically be at least 10x the number of input parameters. 

d. Define the number of replicates per design point. At each point in the experimental 
design space (e.g. input 1 is at value A, input 2 is at value B, etc.), it may be necessary 
to run the model multiple times, where each model run is a replicate.  If the model is 
deterministic (e.g. running at one setting of parameter inputs always gives the same 
results), then it is only necessary to run the model once per parameter 
setting.  However, many cyber models are stochastic due to slight variations in timings 
of processes and order of operation executions. In this case, one setting of the parameter 
inputs should be run with replicates to obtain statistics on the response for that 
parameter setting.   

e. Run the model.  Once the experimental design is identified, it produces a list of input 
parameter settings at which the cyber model should be run. This list is given to the 
experiment orchestrator (e.g. Scorch, Dakota). The next step is to run the cyber model 
at these settings. For each parameter setting, the model may be run once or some 
number of times (multiple replicates), depending on whether the model is deterministic 
or stochastic. 
 

6. Analyze the experimental results. Use your data to generate a table (as an Excel 
spreadsheet, a data structure in a Python analysis script, a table in Elasticsearch, a table in 
Minitab [12], etc.) and organize the results (where the rows are each run of the cyber model, 
the first set of columns are the input parameters, and the second set of columns are the 
outputs) for further analysis. 
a. Verify results. Depending on the experimental design and the available benchmarks, 

choose the most appropriate validation method (e.g. scatterplots of inputs v. outputs, 
calculation of basic statistics on the outputs, etc.).  

i. (Optional) If the values obtained in Step 6(a) are orders of magnitude different 
from the benchmark values, revisit Step 3. 



b. Assess convergence 
i. (Optional) If the values obtained in Step 6(b) are orders of magnitude different 

from the benchmark values, revisit Step 3. 
c. Determine conclusions/insights. Employ statistical analysis methods appropriate to the 

experimental design (e.g. main effects analysis for full factorial designs with discrete 
input levels, correlation analysis, standardized regression analysis, and/or Sobol 
variance-based indices for designs with continuous input distributions). Statistical tests 
(e.g. t-tests or Kolmogorov-Smirnov tests) can be used to compare the results gathered 
from different tests, scenarios, platforms, or emulators.  
 

7. Document.  Document your results comprehensively so that they will be fully useful and 
reproducible for subsequent researchers.    
a. Question(s). List the question(s) addressed in the study. 
b. Methods. Define each step of the methodology, with enough detail that the study can 

be easily replicated. 
c. Analysis. Describe the analyses performed. 
d. Results. Report the complete results, including tables of raw data. 
e. Conclusions/Insights. Highlight the conclusions/insights gained from the study.  

 

References for Workflow 

1. https://omnetpp.org 
2. https://www.nsnam.org 
3. Mirkovic, J., Bartlett, G. and J. Blythe. DEW:  Distributed Experiment Workflows.  USC 

Information Sciences.  Proceedings from USENIX/CSET 2018 Conference. 
4. Bernard Ferguson, Anne Tall, and Denise Olsen. 2014. National cyber range overview. In 2014 

IEEE Military Communications Conference. IEEE, 123–128. 
5. Christos Siaterlis, Andres Perez Garcia, and Béla Genge. On the use of emulab testbeds for 

scientifically rigorous experiments. IEEE Communications Surveys & Tutorials, 15(2):929–942, 
2012. 

6. Jelena Mirkovic, Terry V Benzel, Ted Faber, Robert Braden, John T Wroclawski, and Stephen 
Schwab. The DETER project: Advancing the science of cyber security experimentation and test. 
In 2010 IEEE International Conference on Technologies for Homeland Security (HST), pages 1–
7.  IEEE, 2010. 

7. Maricq, A., Duplyakin, D., Jiminez, I., Maltzahn, C., Stutsman, R. and R. Ricci. Taming 
Performance Variability. 13th USENIX Symposium on Operating Systems Design and 
Implementation (OSDI). 2018 

8. Swiler, L., Stickland, M, and T. Tarman.  Design of Experiments for Cyber Emulation.  Sandia 
National Laboratories Technical Report SAND2019-5640C.  May 2019. 

9. https://minimega.org/ 
10. https://dakota.sandia.gov 
11. https://www.elastic.co/what-is/elk-stack 
12. https://www.minitab.com/ 
13. Stephen T Jones, Kasimir G Gabert, and Thomas D Tarman. “Evaluating Emulation-based Models 

of Distributed Computing Systems.” Technical Report SAND2017-10634, Albuquerque, NM 
(United States).  

https://omnetpp.org/
https://www.nsnam.org/
https://minimega.org/
https://dakota.sandia.gov/
https://www.elastic.co/what-is/elk-stack
https://www.minitab.com/


SECURE Tools 
This page documents the key software tools developed and/or used as part of the SECURE project.  

SCORCH 
SCORCH is an automated scenario orchestration framework for emulation-based models that also 
utilizes minimega.  The key benefits of SCORCH are that 1) it will configure the experiments and 
2) it is able to collect and store the outputs, thereby speeding up analysis time and reducing manual 
error.  

minimega  
minimega (https://minimega.org/) is an open source distributed Virtual Machine (VM) 
management tool used for launching and managing virtual machines locally or across a cluster. 
minimega is fast, easy to deploy, and can scale to run on massive clusters with virtually no setup. 
It is scalable and able to support studying both small and very large VM networks. minimega is 
designed to give you low-level control of all the fine details when it comes to setting up and 
running VMs and has now been pulled into other tools, e.g. SCEPTRE, to take care of the low-
level features of spinning up VMs. 

SCEPTRE 
SCEPTRE is an application that uses an underlying network emulation and analytics platform to 
model, simulate, emulate, test, and validate control system security and process simulations. 
Traditionally, tools and techniques for simulating and emulating control system field devices have 
been limited because the physical processes being monitored and controlled are omitted. 
SCEPTRE leverages proven technologies and techniques to integrate the end device and process 
simulations, with control hardware-in-the-loop (HITL), providing an integrated system capable of 
representing realistic responses in a physical process as events occur in the control system, and 
vice versa. SCEPTRE is a proven control system environment platform, having been fielded for 
many R&D applications, operational joint tests, and exercises supporting testing, training, 
validation, and mission rehearsal.  

SCEPTRE is comprised of simulated control system devices, such as remote terminal units 
(RTUs), programmable logic controllers (PLCs), protection relays, and simulated processes, such 
as electric power transmission systems, refinery processes, and pipelines. The simulated control 
system devices are capable of communicating over Internet Protocol (IP) networks using standard 
SCADA protocols such as Modbus, DNP3, IEC 61850, and others. SCEPTRE also includes 
support for HITL, wherein real field devices under study (i.e. a specific model of PLC) can be 
connected to and interact with the physical process being simulated. This allows the user to include 
high fidelity systems where they are needed without sacrificing scalability. SCEPTRE provides an 
analysis capability for assessing and improving the cyber security of control systems used in the 
energy sector and DoD. The SCEPTRE platform provides an environment where hardware and 
software upgrades and new mitigations can be evaluated before installation in an operational 
environment. 

https://minimega.org/


Elasticsearch 
Elasticsearch ( https://www.elastic.co/elasticsearch/ ) is an open source tool for storing large 
amounts of data in a highly searchable way that is amenable to a variety of data types and 
structures. Under SECURE, Elasticsearch was leveraged for data storage and retrieval during the 
Validation and Verification studies.  These studies required large amounts of data to be stored, 
sorted, and easily searchable. Using Elasticsearch allowed for storage of varied data types and 
structures, easy conversion of data to and from JSON format, and simple querying. 

Dakota 
Dakota is a suite of iterative mathematical and statistical methods that interface to computational 
models or simulations ( https://dakota.sandia.gov ).  Dakota’s goal is to make parametric 
explorations of models practical to support design, analysis, or test cycles.  Dakota is an open-
source software toolkit and has algorithms to enable design exploration, model calibration, risk 
analysis, and quantification of margins and uncertainty with computational models.  Dakota seeks 
to enhance the use of computational models with a variety of iterative analyses (running the model 
multiple times depending on the objective of the study) so that models may be used not just for 
single-point solutions, but also achieve broader impact in the areas of credible prediction and 
optimal design.    

Related to SECURE, there is an extensive suite of uncertainty analysis methods in Dakota, 
including a variety of sampling methods (Monte Carlo, Latin Hypercube Sampling, quasi-Monte 
Carlo methods, design of experiments, fractional and full factorial designs), sensitivity analysis 
methods, reliability methods, stochastic expansion methods such as polynomial chaos, epistemic 
uncertainty approaches including interval analysis and Dempster-Shafer evidence calculations, 
and Bayesian calibration methods, and multifidelity uncertainty methods. These are summarized 
in [L. P. Swiler, B.M. Adams, and M.S. Eldred, “Dakota: Bridging Advanced Scalable UQ 
Algorithms with Production Deployment.” In Springer Handbook on Uncertainty Quantification, 
Ghanem R., Higdon D., Owhadi H. (eds) (2015). https://doi.org/10.1007/978-3-319-11259-6_52-
1.]. 

PAO/Pyomo 
PAO is a Python-based package for Adversarial Optimization. The goal of this package is to 
provide a general modeling and analysis capability for bilevel, trilevel and other multilevel 
optimization forms that express adversarial dynamics. Many planning situations involve the 
analysis of a hierarchy of decision-makers with competing objectives. For example, the cyber-grid 
applications developed in the SECURE Grand Challenge consider the behavior of attackers and 
defenders, where defenders wish to protect their cyber infrastructure and execute power grid 
operations to meet expected energy demands, and attackers wish to maximally disrupt grid 
operations.  Thus, these cyber-grid applications can be naturally modeled as bi-level and tri-level 
optimization problems, where decision-makers need to account for the behavior of adversaries at 
a lower-level. 

SECURE researchers developed tailored optimization solutions for cyber-grid applications using 
the Pyomo modeling environment, which are analyzed with commercial and open source 

https://www.elastic.co/elasticsearch/
https://dakota.sandia.gov/


optimization solvers.  Concurrently, PAO was developed to automate these tailored solutions to 
future applications that share similar structure.  PAO extends the modeling concepts in the Pyomo 
algebraic modeling language to express problems with an intuitive algebraic syntax. Additionally, 
PAO supports compact problem representations that simplifies the implementation of solvers for 
bilevel, trilevel and other multilevel optimization problems. PAO currently includes four solver 
interfaces that are applicable to different classes of adversarial optimization problems. 

• Pyomo 
o GitHub repository: https://github.com/Pyomo/pyomo 
o Online documentation: https://pyomo.readthedocs.io/en/latest/ 
o Bynum, M., G. Hackebeil, W. E. Hart, C. Laird, B. Nicholson, J. Siirola, J.-P. 

Watson, and D. L. Woodruff. (2021) Pyomo: Optimization Modeling in 
Python. 3rd. Springer. 

• PAO 
o GitHub repository: https://github.com/or-fusion/pao 
o Online documentation: https://pao.readthedocs.io/en/latest/ 
o Hart, W. E., A. Castillo, E. S. Johnson, and S. Punla-Green (2021). PAO 1.0: 

A Python Library for Adversarial Optimization. Tech. rep. SAND 2021–6720. 
Sandia National Laboratories. 
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Command and Control (C2) Handbook 
Overview 

Over the last few decades, a variety of emulation tools have been developed to perform cyber 
experimentation. Despite this progress, relatively little attention has been devoted to developing 
methods that ensure the quality of experiments based on these capabilities. In this article, we 
demonstrate how the mathematical modeling, verification, validation, and uncertainty 
quantification methods, developed under SECURE, can be used in combination with emulation 
modeling to perform rigorous experimentation for a Command and Control (C2) cyber-attack. To 
our knowledge this exemplar demonstrates a level of experimental rigor and detail that has not 
been previously done for this kind of case study. 

Recall that the full end-to-end exemplar studied in SECURE considers a multi-stage attack in 
which an attacker attempts to access a power utility’s cyber control network and ultimately disrupt 
operations by causing load shed using the attack stages shown in Figure 4. Here we focus on the 
second step where an attacker aims to maintain C2 communications between an infected host and 
C2 server in order to pivot to other hosts and/or the ICS network. To counter this, the system owner 
uses an intrusion detection system (IDS) to identify malicious C2 traffic and take steps to remediate 
the infection to prevent disruption of physical operations. 

 

Figure 4: Multi-stage attack considered by SECURE 

The goals of this study fall into the following two categories: application objectives related to 
analyzing malicious C2 traffic in a cyber system and SECURE research objectives related to 
methods for cyber experimentation. Given this, we consider the following: 

• Application objectives:  
o How long does it take to detect a C2 channel? 
o How does background traffic affect detection? 
o Which factors have the largest impact on the performance of an IDS system? 

• SECURE research objectives:  
o What emulation capabilities are required to adequately represent this scenario? 
o Can we develop an approximate mathematical model of the emulation to analyze 

this scenario? 
o How can we validate the math model against the emulation? 
o What is the benefit of a math model? 
o Can the emulation and math model be used in conjunction to support analysis? 



Analysis Scenario 

In this study, we focus on detecting C2 malware traffic within the enterprise network portion of an 
electrical power utility. Figure 5 illustrates the system being analyzed. We assume that one or more 
hosts within the network have been infected and are communicating with an external C2 server. 
The internal network contains both benign and malicious network traffic, all of which is sent 
through a single router and switch. An IDS that monitors traffic to and from the network. The IDS 
performs packet inspection and issues an alert if the contents of an individual packet appears 
suspicious, according to one or more of its rules. We assume that it is possible that benign traffic 
may cause the IDS to issue an alert (i.e., a false-positive). In instances where there are large packet 
flow rates, the IDS may not have sufficient capacity to scan all packets [1]. In this case, unscanned 
malicious packets will still reach their destination without causing an alert. 

 

Figure 5: Notional C2 exemplar system representation 

For this study we analyze C2 communication from the Emotet malware and its detection by the 
Snort IDS. Emotet was first discovered in 2014 as a banking Trojan. Since its initial discovery, 
Emotet has infected more than 1 million computers and caused hundreds of millions of dollars in 
damage [2]. Most antivirus and IDS programs have some sort of mechanism to detect an Emotet 
infection. For the Snort IDS alone, dozens of rules have been written to detect Emotet. 

Though this study is motivated by and focuses on specific Snort and Emotet features, the work 
discussed below is not unique to this IDS or malware. Rather, we believe the capabilities presented 
below could be generally applicable to any IDS and malware combination in which the IDS 
generates alerts based on individual packet inspection. Consideration of different IDSs and alerts 
would merely require alternate parameterizations. 

Given the goals of the attacker and the defender, the key Quantities of Interest (QoIs) are the alert 
rates (i.e., number of alerts issued at a point in time) for both malicious and benign traffic, under 
various network, attack, and IDS configurations. We recognize that issuance of an alert does not 



necessarily equal detection; detection generally requires a combination of alerts and human 
recognition that the alerts are indicative of a problem. Modeling the human element of detection 
is beyond the scope of this work, so, instead, we assume that a detection occurs when a large 
enough number of alerts are issued that network administrators would reasonably determine that 
the anomalous traffic is malicious. Hence, the primary focus of this work is accurately modeling 
alerts over time and not establishing detection thresholds. 

The remainder of this article provides an overview of how the SECURE experimentation 
methodology was applied to the C2 malware problem. The following summarizes the process that 
we used to analyze the C2 problem. For each of steps described, detailed tutorials and technical 
documentation are also available. 

1. Emulation model development: Create a high-fidelity "ground truth" model using 
emulation. 

2. Emulation model verification: Build confidence that the emulation models are working as 
intended. 

3. Mathematical model development: Create a low-fidelity statistical model surrogate for 
the emulation model. 

4. Mathematical model validation: Assess the validity of the low-fidelity model using 
statistical tests for discrete, time-series data to ensure that the inexpensive mathematical 
model can be used as a proxy for the more costly high-fidelity emulation model. 

5. Analysis and Uncertainty quantification:  
1. Efficient sampling: Use Polynomial Chaos Expansion (PCE) to efficiently sample 

the input parameter space using the mathematical model to identify which input 
parameters have the largest effect on the QoIs. 

2. Multi-fidelity uncertainty quantification: Integrate results from low- and high- 
fidelity models to improve the accuracy of the QoIs with minimal 
experimentation costs, for the key parameters identified using PCE. 

C2 Emulation Environment 

We model the C2 environment using emulation, a capability primarily used to model distributed 
communication networks. As the name implies, emulation models aim to replicate high-level 
functionality of target networks using emulated hardware components. Abstraction of the 
hardware layer serves to facilitate implementation of these “logical network replicas” at reduced 
costs. A typical emulation environment consists of a set of virtual machines that are networked 
together using virtual switching. The entire environment is supported by a cluster of hardware 
servers. Emulation environments serve a variety of purposes such as testing, evaluation, training, 
and experimentation. Because of their heavy use of virtualization, large network environments can 
be deployed, torn down, and redeployed to an original state with relatively little effort. This makes 
emulation environments particularly well-suited for repeatable and reproducible experimentation 
of distributed communication networks. There are several tools available for creating, deploying, 
and managing emulation environments, including two created at Sandia National Laboratories: 
minimega and SCORCH. Sandia's minimega tool is used for launching and managing virtual 
machines locally or across a cluster. SCORCH is an automated scenario orchestration framework 
for emulation-based models that utilizes minimega to deploy and instrument experiments. 



We created the emulation model for this study using minimega and SCORCH. The environment 
model is comprised of the following primary components, as shown in Figure 6: a malware traffic 
generator (attacker), an IDS (defender), and the background traffic generator (environment). Each 
component has parameters that can be adjusted and tuned for various experiment iterations. The 
malware traffic is generated via custom Python code that enables researchers to modify the 
message features, size, and frequency of the generated packets. Rather than represent each machine 
with an individual host, we use a single device to generate “aggregate traffic” representative of the 
total traffic we would see from multiple hosts. For this scenario, the malware traffic generator is 
calibrated to mimic the packet structure of the Emotet malware message format, encrypted 
structure, and C2 timing (using the 2018/2019 variant of Emotet). The signature of the Emotet 
network traffic has been previously researched and captured in detection rules [2,3]. Snort is used 
as the IDS and implements Emotet-specific detection rules to alert on Emotet-based packet 
signatures. The IDS component can be tuned for different detection algorithms/rules, memory 
availability, and processing speed. To increase the scenario's fidelity and provide a realistic 
network for experiments, background packets are created and sent from a client to a server via a 
custom Python script. The background traffic message format, packet size and frequency can be 
modified per experiment. 

 

 

Figure 6: C2 Exemplar Emulation Environment 

For this study, we focus on the parameters shown in Table 1. These parameters can be binned into 
four groups. The general parameters describe basic parameters of the test environment. The IDS 
parameters define the capacity and characteristics of the IDS. The background traffic parameters 
specify the intensity of the background traffic and the false-positive rate. The malicious traffic 
parameters specify the intensity of the malware traffic and the false-negative rate. For each of 
these parameters, we indicate the value or the range of the values that the parameter can take. For 
those values that are uncertain, we assume they follow a continuous or discrete probability 
distribution, as indicated in the Distribution column. Even for this relatively modest sized problem, 
many parameter configurations can be explored. Note that some of parameters listed in Table 1 
cannot directly be controlled in the emulation environment, as specified in the Comments column. 

Table 1: Key variables of interest for the C2 study. 



Parameters Units Value Distribution Comments 

General 
Parameters     

Total number of 
workstations No units 10 Fixed 

Variable type: input parameter  

Basis: selected to represent 
"moderately" sized portion of a 
corporate network 

Average packet 
size Bytes 150-

250 
Continuous 
uniform 

Variable type: observed quantity  

Basis: packets observed in the 
experiments had an average size of 
200 bytes in experiments; +/-50 bytes 
is selected to permit variability across 
experiments 

IDS Parameters     

Snort capacity Bytes per 
second 

1e5, 
2e5, 
5e5, or 
1e6 

Discrete with 
equal 
probability 

Variable type: input parameter to 
emulation model 

Basis: selected to represent 
"moderately" sized portion of a 
corporate network 

Number of CPUs No units 8 Fixed 
Variable type: input parameter  

Basis: expert judgement and known 
hardware configurations 

Number of CPUs 
to maximize Snort No units 1-8 

Discrete with 
equal 
probability 

Variable type: input parameter  

Basis: positive integers bounded by 
total # of CPUs 

CPUs running 
other (non-Snort) 
processes 

No units 0-7 
Discrete with 
equal 
probability 

Variable type: input parameter 

Basis: positive, integers bounded by 
total # of CPUs 



Drop rate 
multiplier No units 0.9-1.1 

Symmetric 
continuous 
triangular 
distribution 

Variable type: observed quantity 

Basis: expert judgment used to assess 
the actual drop rate, which could be 
+/- 10% difference from the 
calculated rate 

Background 
Traffic 
Parameters 

    

Benign traffic per 
host 

Packets 
per sec 5-100 Continuous 

log-uniform 

Variable type: input parameter 

Basis: 100 pps per host (with 20 
hosts) results in 2000 pps for total 
traffic. This amount represents the 
upper limit on the traffic generator's 
capacity and is comparable to (and 
may exceed) congested TCP traffic 
conditions used in other IDS 
evaluation literature (e.g., [4] and 
[5]). 

The lower bound was selected to 
represent a minimal level of traffic for 
evaluation. 

Fraction of benign 
packets with 
Emotet signatures. 

Fraction 
of 
packets 
per sec 

1e-5-
1e-3 

Continuous 
log-uniform 

Variable type: input parameter 

Basis: expert judgment because 
published values were not available; 
selected values are relatively small to 
indicate the small probability that the 
Emotet signature would occur due to 
spurious conditions 

Detection rate for 
signatures in 
regular, benign 
traffic (if signature 
is present) 

No units 0.9-
0.99 

Continuous 
uniform 

Variable type: observed quantity 

Basis: we observed an average 
detection rate of 0.95 when we used 
the Snort rule to evaluate actual 
Emotet traffic packet captures (pcaps) 
and simulated Emotet traffic in 
emulation experiments; range was 
expanded to 0.9-0.99 to permit 
variability across experiments 



Malicious Traffic 
Parameters     

Number of 
infected 
workstations 

No units 0-10 
Discrete with 
equal 
probability 

Variable type: input parameter 

Basis: non-negative integer, bounded 
by total number of hosts 

Malware traffic 
per infected host No units 4-10 Continuous 

uniform 

Variable type: input parameter 

Basis: published observations and 
analysis of actual Emotet traffic 
pcaps  

Fraction of 
malware packets 
with Emotet 
signatures 

No units 0.1-0.2 Continuous 
uniform 

Variable type: input parameter 

Basis: analysis of Emotet traffic 
pcaps and structure of TCP traffic 

Detection rate of 
signatures for 
malware traffic (if 
signature is 
present) 

No Units 0.9-
0.99 

Continuous 
uniform 

Variable type: observed quantity 

Basis: we observed an average 
detection rate of 0.95 when we used 
the Snort rule to evaluate actual 
Emotet traffic pcaps and simulated 
Emotet traffic in emulation 
experiments 

 

Emulation Verification using Telemetry 

An important aspect of using emulation is verifying whether the emulation environment is working 
as intended.  For this study, we approach the verification problem using the same strategy that was 
employed in the SCADA study. The core idea of this approach is to monitor performance metrics 
while intentionally stressing the emulation environment to identify potential issues.  This 
monitoring process is called telemetry [2-5], which includes metrics like server load and 
availability, disk space usage, memory consumption, performance, etc.  Though many aspects of 
the emulation could be verified, we focused on determining whether sufficient virtualized 
resources are available to support the scenario because insufficient resources can cause 
experimental outcomes to be unrepresentative or incorrect. 

In this study, we run the C2 scenario under various levels of over-subscribed resources. We start 
with a baseline scenario where there is only one namespace running on a physical host. We then 
consider five scenarios where an increasing number of namespaces (2, 5, 10, 20, and 40) are run 
in parallel on the same physical host. As the level of over-subscription increases, we aim to identify 
metrics that can signal that a particular emulation experiment is unreliable. An experiment is 



unreliable if an output QoI is likely to have been affected by the emulation configuration. In our 
case, the QoIs are the number of alerts present a four timesteps (1, 5, 10, and 16 seconds). If 
sufficient resources are unavailable when an experiment is run, the resulting QoIs cannot be 
trusted, and the data should be excluded. Table 2 shows the six cases considered in this study. In 
all cases, a total of 200 replicates are performed, where a "replicate" represents a single iteration 
of the scenario running in emulation. In the baseline, the 200 replicates are run in series on the 
single namespace considered. In the two-namespace case, two replicates are run simultaneously 
over 100 iterations, to obtain the 200 replicates. The same idea is used in the other scenarios to 
ensure that the product of the number of parallel namespaces and iterations is equal to 200 
replicates. 

Table 2.  Summary of the Six Analysis Scenarios in the C2 Verification Study 

Number of 
Namespaces 
Running in 

Parallel 

1 
(Baseline) 2 5 10 20 40 

Iterations per 
Analysis 
Scenario 

200 100 40 20 10 5 

To assess the reliability of the emulation environment we focus on both the QoIs, the number of 
alerts at timesteps 1, 5, 10, and 16, and the telemetry metrics. While several telemetry metrics were 
considered during the original analysis, we will focus on the load metric. Load is the CPU demand 
on the physical host in terms of the number of processes running. The threshold for this metric is 
that the system load will not exceed the number of logical host cores for the duration of the 
experiment. Our threshold for acceptability is instances where the load in an experiment stays 
below 32. 

The results of the baseline set of replicates are used to determine the acceptable range of values 
for the QoI. This process helps to determine whether the results of a particular replicate are likely 
to have been affected by the emulation configuration and should therefore be discarded. We treat 
each timestep as its own QoI when determining acceptability, so there are four metrics for each 
replicate. We test the statistics by first filtering out any replicates in which a chosen threshold was 
violated for that statistic. We can then examine the distribution of the QoI for the remaining 
replicates, using a statistical t-test to compare these distributions between different emulation 
configurations. The better the metric is, the more closely we expect the distributions to all match, 
and the higher the p-values from the t-test should be. Because the C2 scenario has four QoIs per 
replicate, the t-test is performed for each QoI individually, and then the resulting p-values are 
aggregated. We found the mean to be the best aggregation, but we include the minimum in the 
results below for comparison.  

Table 3 shows the verification results for the C2 scenario when no replicates are filtered and when 
replicates are filtered for instances where load exceeds 32. A common threshold for rejecting a 



null hypothesis, in this case that the hypothesis that two experiments are the same, is when the p-
value falls below 0.05. Given the p-values in Table 3, we could not say that running the C2 
experiment with 2, 5, or 10 namespaces in parallel causes the results to deviate significantly from 
the baseline. In the 20- and 40-namespace cases, the p-values indicate that the distribution for the 
number of alerts generated is different from the baseline case. For these scenarios, 20 and 147 
replicates did exceed the load threshold of 32 and were therefore filtered out of results.  

 

Table 3. Results of the analysis scenarios (baseline compared to the five remaining scenarios). 

Telemetry Threshold Metric 2 5 10 20 40 

None 

(include all 
replicates) 

N/A 

Number of 
Replicates 200 200 200 200 200 

Mean (Min) 
p-Value vs. 
Baseline 

0.9 
(0.9) 

0.9 
(0.9) 

0.9 
(0.9) 

0.007 
(0.001) 

0.001 
(0.001) 

Load < 32  

Number of 
Replicates 200 200 197 180 53 

Mean (Min) 
p-Value vs. 
Baseline 

0.9 
(0.9) 

0.77 
(0.39) 

0.9 
(0.9) 

0.001 
(0.001) 

0.001 
(0.001) 

These results suggest that oversubscription is potentially an issue in the 20- and 40-namespace 
cases, and that telemetry data related to load might be a useful indicator that oversubscription has 
occurred. While these results demonstrate a methodology for performing verification, further 
research is needed to answer a variety of remaining questions. For example, which load threshold 
is best and, in addition to load, are there other telemetry metrics that could be considered (stolen 
cycles, number of context switches per second, etc.). There may also be opportunities to combine 
metrics into a single indicator, as well as to use real-time metrics to discard unreliable experiments 
while they are running. 

Mathematical Model 

Emulation testbeds provide a safe, high-fidelity environment for conducting cyber experiments. 
However, since these testbeds run real software and protocols, the experiments typically need to 
be executed in real-time. This can be time-prohibitive in instances where: 

• Scenarios evolve over long time periods. 



• Analyses include features of the system may be unknown or vary, or in which the analyst 
aims to characterize a potentially wide range of possible outcomes. 

• Analyses consider stochastic behaviors and thus require many experiments to suitably 
characterize the relevant statistics. 

Given the potential number of parameter setting that could be explored (see Table 1), we developed 
a low-fidelity statistical model that can be run significantly faster than the real-time emulation 
model. The model can be most easily described through an analogy, as depicted in Figure 7. 
Consider a water contamination sensor system that receives flows from various sources across a 
water transportation network. The flows may contain benign or beneficial matter like fluoride 
(normal network traffic) and also toxins like lead (malicious C2 messages). Water containing both 
good and bad matter flows into a reservoir tank and passes through a filter (IDS) that removes the 
toxic particles. The "cleaned" water is then distributed throughout the system. The filter may fail 
to catch some portion of the toxins (false negatives); it may also remove benign materials (false 
positives). The filtration system is rate-limited and has a finite reservoir capacity (memory). If the 
inflow rate exceeds the capacity of the sensor system, a bypass valve is activated, permitting the 
unfiltered water to circumvent the filter and pour directly into the system without filtration. See 
[11] for a full description of the mathematical model. 

 

Figure 7: Mapping between water filtration and intrusion detection systems. 

The mathematical model of the IDS builds on the flow/filter concepts to represent network traffic 
as an influx of packets from various hosts (flow) and the detection of C2 traffic by an IDS (filter). 
Most of the hosts are not infected with the malware, so the packets in their traffic is benign. Some 
hosts are infected by malware and generate packets that contains malicious C2 traffic. All packets 
are routed through a device running an IDS, whose signature-based rules act as a filter: if the rule 
identifies the malware signature from a malicious packet (true positive), the IDS issues an alert. 
Detection of malicious traffic is not perfect, so some malicious packets pass through without an 



alert being issued (false negative). In some instances, the IDS may issue an alert for a benign 
packet (false positive), but most benign packets result in no alert (true negative). 

The IDS is rate-limited in its capacity to process network traffic (i.e., the IDS has a threshold 
measured in packets/bytes per second) within a set time period. Hardware characteristics (e.g., 
number of CPUs, memory available), software features (e.g., types of detection rules being used 
by the IDS, computing requirements for individual rules, number of rules being used, degree of 
parallelization), and the number of other processes being run on the device (and computational 
requirements for the processes) all affect the IDS’s capacity. In the most extreme cases (when 
network traffic rates far exceed the IDS’s capacity), the IDS may eventually stop issuing alerts 
altogether until the memory buffer is cleared. In these instances, all packets will pass to their 
destinations without being inspected by the IDS, including any malicious C2 packets; because they 
are dropped, alerts are not generated for these packets, resulting in universal negatives (false and 
true). 

The mathematical model integrates these concepts into a probabilistic, discrete-time representation 
to describe the C2 traffic and detection by the IDS. The key model inputs include: 

• Packet arrival rates at the IDS for both benign and malicious traffic 
• True and false positive rates (on a per-packet basis) for the IDS’s signature-based rule 
• Average packet size 
• IDS capacity 

When specific values are assigned to  these inputs, the model produces the following two primary 
outputs: the average number of alerts that are expected over time (Figure 8), and the probability 
that at least N alerts will be registered by a point in time (Figure 9). Results can be produced for 
non-rate limiting (Figure 8 and Figure 9) and rate-limiting scenarios (Figure 10). Observe that in 
the latter case, the number of alerts levels off as the IDS reaches capacity. The total alert results 
can also be separated into false positive alerts and true positive alerts. 



 

Figure 8: Average number of alerts over time, for the emulation and mathematical models (non-
rate limited case). 

 

Figure 9: Probability of having at least k alters by time period 16, for the emulation and 
mathematical models (non-rate limited case). 



 

Figure 10: Average number of alerts over time, for the emulation and mathematical models 
(rate limited case). Note how the number of alerts levels off. 

Comparison of Mathematical Model and Emulation Model Results 

The mathematical model is validated against the results generated by the emulation model. Figure 
8, Figure 9, and Figure 10 show the results for both models. For these particular results, a visual 
inspection shows a strong level of agreement between the two models, with the mathematical 
model results generally falling within the 95% confidence intervals of the mean value from the 
emulation model results. The data generated by the emulation model is both discrete (number of 
alerts triggered) and time-series (number of alerts per time-step).  For example, a particular run 
might have 0 alerts triggered in the first second, 3 alerts after 5 seconds, and 7 alerts after 10 
seconds. After enough of these emulation runs are collected, we can generate a cumulative 
distribution function (CDF) at each time step on the number of triggered alerts.  In other words, 
we have a curve representing the probability that more than k alerts are generated by a given point 
in time. We compare the CDFs from both models using a more rigorous, statistical approach than 
visual comparison. We do this by using the Kolmogorov-Smirnov (K-S) test, a standard statistical 
test for comparing two distributions. Figure 11 shows an example of the model and experimental 
CDF curves at time period 9 for a particular C2 scenario.  



 

Figure 11: Comparison of the emulation and mathematical models CDFs for the probability of 
exceeding a given number of alerts by time period 9. 

Using the K-S test, we can calculate a p-value for each time period, as shown in Figure 12. Observe 
that for time period 9, the p-value is about 0.2. A high p-value indicates that the null hypothesis, 
that the two CDFs are statistically similar, cannot be rejected. While the p-value dips around time 
period 9, it is still above 0.1 even at its lowest point. Given this, we would not reject the null 
hypothesis in this example. 



   

Figure 12: p-values for the K-S by time period. 

In addition to the results shown above, we have compared the emulation and mathematical 
model results across a variety of parameter combinations. Though the results may not be 
perfectly identical, the combination of visual inspection and statistical comparisons provide 
confidence that the mathematical model is a reasonable proxy for the actual system and that it 
can provide reasonable estimates of alert statistics for the C2 scenario under consideration.  

Analysis and Uncertainty Quantification 
 

Given the high- and low- fidelity models, we next focus on uncertainty quantification (UQ) to 
understand how uncertainty in the input parameters propagates to the QoIs. We do this using two 
analysis methods: polynomial chaos expansion (PCE) and multi-fidelity UQ (MFUQ). We first 
use PCE to screen the 12 uncertain parameters shown in Table 1 to determine which parameters 
are the most important for more detailed study. The screening is done using the low-fidelity 
mathematical model to avoid the computational costs of using the emulation model. Once the key 
parameters are identified, MFUQ is used to analyze the QoI using a combination both models. 

PCE Sampling 

In the UQ community, QoIs are commonly represented as a polynomial function of the uncertain 
inputs; this approach is referred to as a Polynomial Chaos Expansion (PCE) of the QoI. Provided 
that a QoI is a smooth function of the inputs, the smoothness in the polynomial representation can 
give an accurate representation with fewer samples than would be required with a Monte Carlo 
(MC) approach.  Once a PCE is constructed, it can be used to determine the mean, variability, or 



other moments of the QoI. PCEs can also be used to perform a Global Sensitivity Analysis (GSA) 
of the QoI with respect to each of the inputs. In other words, it can tell us which inputs contribute 
the most to the variability in the output. 

One of the challenges of applying the PCE approach to cyber security experiments is that many of 
the input variables are discrete. For example, the number of infected nodes on a network, the 
number of CPUs on the host that runs an IDS, or the nominal network bandwidth of the node 
connections are all discretely valued. Therefore, we employ PCEs that have been tailored to 
discrete random variables and their probability masses. These tools have been implemented in 
PyApprox, a Sandia open source software package for uncertainty quantification [10]. 

We applied this approach to the QoIs of total alerts and false positives at time period 5, for the 
parameter distributions as in Table 1. This corresponds to a case with 12 uncertain parameters, 5 
of which are discrete in nature. A third order PCE was trained on random samples of the QoI that 
were obtained with the C2 math model. Table 4 shows the main effect indices for both QoIs for 
the 12 uncertain parameters. 

Table 4: Main effects from PCE analysis for the number of total alerts and false positives at 
time period 5. 

Parameters Total Alerts, 
t = 5 sec. 

False Positives, 
t = 5 sec. 

Number of infected workstations 0.87 0.00 
Fraction of benign packets with Emotet signatures 0.00 0.51 
Benign traffic per host 0.01 0.20 
Malware traffic per infected host 0.05 0.00 
Fraction of malware packets with Emotet signatures 0.03 0.00 
Snort capacity 0.01 0.01 
Other CPU Processes 0.01 0.00 
Number of CPUs to maximize snort 0.00 0.00 
Average packet size 0.00 0.00 
Detection rate for signatures in benign traffic 0.00 0.00 
Detection rate of signatures for malware traffic 0.00 0.00 
Drop rate multiplier 0.00 0.00 

Based on these results, the main parameter that impacts the value of total alerts is the number of 
infected hosts, with lesser contributions from the amount of malware traffic per infected host  and 
the fraction of malware packets that show the Emotet signature. The number of false positive alerts 
is most sensitive to the amount of benign traffic per infected host and the fraction of benign traffic 
packets that show the Emotet signature. 

 



Multi-Fidelity UQ 

Next, we explore the use of MFUQ to make optimal use of the emulation model which has high 
fidelity but is expensive to run and the lower-fidelity mathematical model which can be evaluated 
quickly. MFUQ estimator is built starting from the single fidelity MC results (Qminimega) and adding 
a weighted unbiased term which involves the lower-fidelity math model (Qmath). The benefit of 
this additional term is that it can reduce the variance of the QoI (see [12] for the technical details 
of this approach). Using this approach many samples from the low-fidelity mathematical model 
can be combined a relatively small number of high-fidelity emulation model results to decrease 
the estimator variance and obtain more accurate and reliable statistics, with reduced computational 
costs. 

 

Figure 13: C2 MFUQ estimator. 

Based on the screening results from the PCE analysis, we focus on the five parameters shown in 
Table 5. A total of 40 samples of these parameters was used for this study. The emulation model 
required 18 hours (plus additional processing time) to perform a total of 400 emulation runs (the 
40 unique parameter combinations with 10 iterations each). In contrast, the mathematical model 
required less than 1 second total for all 40 of the parameter combinations (0.4 s for all the samples). 
We note that the mathematical model is able to provide statistics for the QoI without being affected 
by any stochastic noise; therefore, we will compare the average from 10 emulation model replicas 
with the values from the mathematical model. 

Table 5: Key parameters of interest for MFUQ study. 

Parameters Varied in Experiment Units Value Distribution 

Aggregate Benign traffic rate Packets per 
sec 100-3000 Continuous log-uniform 

Fraction of benign packets with 
Emotet signatures. No units 1e-5 to 8e-4 Log-uniform 

Aggregate malware traffic rate Packets per 
sec 10-20 Uniform 

Fraction of malware packets with 
Emotet signatures No units 0.01-0.025 Uniform 



RAM assigned to the 1 CPU running 
SNORT Mbytes 128, 256, 512, 

1024  
Discrete with equal 
probability 

For this study, we consider the total number of alerts at time periods1, 5, and 10. We begin by 
performing a pilot study to compare the total number of alerts generated from both models. From 
Figure 14, we note that the correlation between both models is high, as confirmed in Figure 15 
which shows the estimated squared correlation between the models at the time steps considered. 

 

Figure 14: Scatterplots of total number of alerts at timesteps 1, 5, and 10 for 40 parameter 
samples for the emulation and mathematical models. 



 

Figure 15: Correlation squared between the emulation and mathematical models at time steps 
1, 5, and 10. 

From the pilot study, it is possible to estimate the variance of the number of alerts, which is 
reported, along with the coefficient of variation, in Figure 16. We note that the variance of the 
number of alerts increases with time (as expected), and that the coefficient of variation (defined as 
the ratio between the standard deviation and the mean) approaches a value of 92%. By leveraging 
this information (relative to the computational costs of the two models and their correlation), we 
obtained the optimal number of mathematical model replicates that would be required to minimize 
the estimator variance for a fixed number of emulation model experiments. Due to the increase in 
variance with time, the most restrictive condition is obtained for the time of 10 seconds. At this 
time, the optimal estimator is obtained by using a total of 86840 mathematical model samples. By 
adding samples to the original 40 samples from the emulation model, we obtain an estimator with 
a total cost of 40.53 equivalent emulation model runs. It follows that we can reduce the variance 
of the estimator by only adding a fraction of the cost of a single emulation model run (0.53). 

 

Figure 16: Variance (left) and coefficient of variation (right) for the total number of alerts. 



In Figure 17, we report the mean number of alerts and the associated 99.7% confidence interval 
for the MFUQ estimator and the single-fidelity MC estimator. From the experiments, we can also 
evaluate the estimator variance, which was used to calculate the confidence intervals. We note that 
the variance reduction that the MFUQ estimators attains increases with time since the Multi-
Fidelity estimator can maintain a high variance reduction with respect to MC, thanks to the 
increasing correlation between the models. The single MC estimator is not able to compensate for 
the increase in variance over time, and consequently, its confidence intervals grow more rapidly 
with progressively less accurate estimation for the mean number of alerts. 

 

Figure 17: Prediction of mean number of alerts and associated confidence interval for single 
(MC) and multi-fidelity (MF) estimators. 

 

 

Conclusions 

This exemplar demonstrates how the capabilities developed under SECURE can be used to support 
rigorous cyber experimentation. Specifically, it shows: 

• How experiments and metrics can be used to verify the behavior of emulation models. 
• How to develop low-fidelity models to approximate high-fidelity models and how to 

validate the outputs of these models. 
• How UQ methods can be used to efficiently explore input and output uncertainty. 
• How high- and low-fidelity models can be combined to effectively utilize the 

experimentation budget. 
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Scanning and Detection on a SCADA network 
Overview 

This section discusses scanning for vulnerable RTUs (remote terminal units) and the detection of 
scanning activity within the SCADA network. This activity is part of the end-to-end threat 
scenario, depicted in the purple box in Figure 1. 

 

 

Figure 1: SECURE end-to-end threat scenario, with SCADA network studies highlighted 

In this scenario, when the attacker lands on an engineering workstation in the power grid control 
center, it doesn't know the IP addresses of RTUs that are vulnerable to the CRASHOVERRIDE 
malware, so it must scan for them. However, as the attacker is scanning, the defender is monitoring 
SCADA network traffic and examining it using an intrusion detection system (IDS). One method 
used by IDS to detect scanning activity is to look for network packets that might indicate such 
activity, and when these packets are received with an intensity above a certain threshold, the IDS 
signals an alert. This detection approach guides an attacker's strategy: it can attempt to run slowly 
"below the radar" of IDS detection (at the expense of launching its attack later), or it can run 
quickly (at a higher risk of detection). 

The following sections describe the mathematical modeling, the ns-3 simulation, and the 
emulation-based experimentation that were applied to model this step in the attack timeline. 

Scenario 

The scenario addressed in the emulation, simulation, and mathematical models assumes the 
attacker uses Nmap to scan for vulnerable RTUs, and the defender uses Snort (with the sfportscan 
module) to detect scanning activity. Both tools were selected for these models because they are 
commonly used, open source, and familiar to the experimental team. In particular, the fact that 
these tools are open source means that the experimental team can better understand how these tools 



work "under the hood," which is especially important when developing simulation and 
mathematical models. However, it's important to emphasize that, although these specific tools 
were selected for the studies, the methodologies (and, in some cases, the results) are generalizable 
to other scanning and IDS tools. 

Topology 

The topology studied in the emulation, mathematical, and simulation models is shown in the 
following Figure 2. 

 

Figure 2: Notional SCADA network topology for scanning/detection study 

 

This topology (which does not reflect a particular real-world SCADA/ICS network, but is meant 
to be representative) consists of the following components: 

• An engineering workstation in a control center network that represents the attacker's 
current location, from which it scans the SCADA network for vulnerable devices; 

• A router that separates the control center IP subnet from the SCADA network IP subnet; 
• An IDS that listens to all traffic on the SCADA network IP subnet; 
• 8 SCADA substations, all on the same IP subnet; and 
• 24 hosts, distributed across the SCADA substations, configured as follows:  

o 4 hosts are vulnerable to CRASHOVERRIDE, 
o 8 hosts are not vulnerable, but are discoverable, 
o 12 hosts are neither vulnerable nor discoverable. 



Nmap 

As described earlier, in our modeled scenarios we configure the attacker node to use Nmap to scan 
for and find vulnerable nodes. Nmap performs its scan using the Transmission Control Protocol 
(TCP) connection establishment protocol to look for active IP addresses with open ports, as shown 
in the following Figure 3: 

 

Figure 3: Nmap protocol operations while scanning open, closed, and filtered hosts 

In our scenarios, we model "vulnerable" hosts (see previous section) as hosts that have a particular 
port in the "open" state, which represents a vulnerable application. When Nmap scans a host on an 
active IP address with an open port (i.e. an application listening on that port), Nmap sends a TCP 
SYN (synchronization) packet to that host IP/port combination, and the host responds with a 
SYN/ACK (acknowledgement). Normally the initiator would acknowledge the connection with a 
third message, ACK; however, Nmap does not want to maintain an open connection, so it responds 
with an RST (reset). If Nmap receives a SYN/ACK from a remote host, then it knows two things: 
that the IP address is valid, and that an application is listening on that port. 

Our scenarios model non-vulnerable but discoverable hosts as hosts that have that particular port 
in the "closed" state (meaning that these hosts are not running the vulnerable application). When 
Nmap scans a host on an active IP address with a closed port, Nmap sends a TCP SYN packet to 
the host IP/port combination, and the host responds with a SNY/RST message. Therefore, if Nmap 
receives a SYN/RST from a remote host, it knows that the IP address is valid, but there is no 
application listening on that port. 

Hosts that are neither vulnerable nor discoverable are modeled as hosts with the IP address/port 
combination that are "filtered." In this case, when Nmap sends a TCP SYN message to these hosts, 
there is no reply back to the Nmap host, meaning that the host either does not exist or chooses not 
to reply. 

Intrusion detection systems (IDS) will observe these connection request/response packets and use 
them to determine whether a scanning attack is occurring, as described in the next section. To 
counter IDS, Nmap has a couple of command line configurations that can be used. To reduce the 
scanning traffic intensity, Nmap allows the user to increase the delay between scanning probes 
(the “delay” parameter) and decrease the number of hosts that are probed in each attempt (the “host 
group” parameter). By default, Nmap scans hosts in sequence by IP address; however, that 
approach could tip off an IDS, so Nmap has a command line parameter to randomize the sequence 
in which the hosts’ IPs are probed. 



In our studies, we varied parameters related to attacker strategy (i.e. “fast” vs. “slow”) and 
randomness (i.e. “sequential” vs. “random”). In addition, we also configured our experiments to 
allow random packet drop (i.e. “no drop” vs. “drop”), to determine the effect of imperfect packet 
transfers on results. The combination of the randomness order and random packet drop parameters 
are organized into two formulations: a deterministic formulation (i.e. sequential ordering, no 
packet drop) and a stochastic formulation (i.e. random ordering, random packet drop). The plots 
shown later in this section show results from both formulations. 

Detection 

Our scenarios assume intrusion detection using Snort [2]. Snort is a very flexible IDS framework 
that uses signature definition files and rules to identify traffic as malicious. In this example we use 
the “sfportscan” rule to detect Nmap scanning traffic using the technique identified in the previous 
section. As shown in Figure 4, the sfportscan rule looks for SYN/RST traffic from "closed" (i.e. 
non-vulnerable, but discoverable) hosts, which is indicative of a scanning attack. If 
Snort/sfportscan counts five or more SYN/RST packets within a 60 second window, then it 
generates an alert. Our models and scenarios consider two attacker strategies: a "fast" strategy 
where the attacker attempts to discover as many vulnerable nodes as quickly as possible, and a 
"slow" strategy where the attacker attempts to stay within the 5 SYN/RST packets within a 60 
second threshold. The results shown later in this section account for both strategies. 

 

Figure 4: Snort “sfportscan” rule 

Tools 
Mathematical model 

We developed a mathematical model to assess the port discovery process. The model describes the 
stochastic state transitions that occur within the Nmap protocol that occur over time during the 
scanning process. This mathematical model is described in detail in [1] and summarized below 
and in Figure 5: 

1. The model states (illustrated in Figure 5) are defined by the progress that Nmap makes 
scanning the nodes. The initial state at time 0 (indicated in the state on the far left of 
Figure 5) contains key model parameters provided to the model. Each state consists of 
three lists that track the nodes that have yet to be scanned (topmost list in the state 
figure), the nodes that are being actively scanned (middle list), and the nodes that have 
already been scanned (bottom list). Furthermore, the color of the dots in the lists indicates 
the scanned nodes' status - magenta for filtered (inconclusive), green for closed (secure), 



and red for open (vulnerable). All nodes begin in the first "To Scan" list in the initial 
state. 

2. The model describes the transition from the initial state to subsequent states (in the 
second column in Figure 5). The transition probabilities Pr{# filtered, # closed, # open} 
are determined by the number and type of nodes that have yet to be scanned and the 
probability that combinations of nodes are selected for scanning. 

3. The third step the model consists of a third set of states (third column) that describe 
which nodes have been discovered (i.e. TCP SYN/RSTs occurred) and which ones timed 
out. The transition probabilities are conditioned on the current (second) state and depend 
on which nodes have been discovered so far. That is, the transition probability is Pr{# 
filtered_to_scan, # closed_to_scan, # open_to_scan | # filtered, # closed, # open} 

4. If timeouts occurred, steps 2 and 3 are repeated. 
5. Steps 2-4 are repeated until all nodes are moved to the Scanned list. 

The steps in the model are implemented to effectively create a probability tree that lists the 
probability of discovering open, closed, and filtered nodes at each time step. 

 

 

Figure 5: Mathematical state transition diagram 

We use the model results to compute the statistics of port discovery. Figure 6 shows the open port 
discovery process. The magenta stars represent the mean number of open ports discovered, as 
calculated with the math model. The blue line represents the mean number of open ports discovered 
from 1000 runs of the minimega emulation model, and the dashed black lines represent the 95% 
confidence intervals on the emulation means. The plot shows the mathematical results tracking the 
mean of the minimega runs and falling within the 95% confidence interval of these runs. This 
agreement validates the predictive value of the mathematical model, which, for small topologies, 
can run more quickly than the emulation model, making it more suitable for more widely 
evaluating the effect of configuration parameters (e.g. host group size and delay) on the results. 



 

Figure 6: Port discovery analysis (mathematical model and minimega emulation) 

The model results were also processed to determine when and if detection would have occurred 
using the logic in the Snort sfportscan algorithm. These times were compared against the detection 
times that were experimentally determined using the minimega topology. The mathematical 
results, shown in Figure 7, also closely track the results from the emulation runs and, again, 
validate the mathematical model's predictive ability. 



 

Figure 7: Detection times 

ns-3 

Ns-3 [3] is a discrete event simulator that is used for network simulation and has an extensive 
model library for various network links, devices, and applications. Because it is a simulation, the 
components are abstracted objects and it does not run real implementations of applications and 
protocols. However, ns-3 simulations can run much more quickly when compared to emulations 
because discrete event simulations are event-driven rather than time-driven and can run faster than 
real time. This makes an ns-3 simulation particularly useful for serving as the low fidelity model 
in multi-fidelity modeling studies because it is much more efficient, and if implemented correctly, 
well correlated with emulation runs. 

The Nmap ns-3 model developed in this work implements two major components - a topology and 
an Nmap application simulation model. The topology, shown in Figure 8, corresponds to the 
SCADA network topology described earlier, but is different from the emulation model topology 
in a couple of ways: 

• The ns-3 simulation topology has each SCADA device on its own subnet: 
This design choice is an artifact of how the example ns-3 star topology code does 
subnetting, and should not appreciably affect packet timings and results. Nevertheless, it 
does affect scalability of the topology because the subnetting schemed used in the model 
only allows up to 255 subnets (and with one host per subnet, 255 hosts). 

• Different mechanisms are used to implement closed and filtered nodes: 
Whereas the emulation uses iptables filtering to implement closed and filtered nodes, the 



ns-3 model does not install a packet sink on closed nodes, and causes Nmap to scan 
unused IP addresses for filtered nodes. 

 

Figure 8: ns-3 model for scanning/detection 

The Nmap application running on the scanning node functions similarly to the real Nmap 
application running in the emulation. Also, the ns-3 model implements packet dropping using a 
similar mechanism that is used in the emulation model. 

Emulation experiments using Scorch 

The name SCORCH comes from the terms SCenario ORCHestration. It is primarily an automated 
scenario orchestration framework for emulation-based models, where a scenario is a specification 
of high-level experimental behaviors for a given experimental goal. Concretely, SCORCH is 
implemented as a python package that interfaces with minimega to run experimental scenarios 
on and collect data from emulation-based models (EBMs) managed by minimega. 

At a high-level, basic SCORCH usage is as follows. First, a scenario configuration file is created 
that defines a scenario (experimental behaviors), model parameters, and output parsing. This file 
describes the “what” of the experimental scenario. The scenario is defined in terms of modular 
scenario components which represent re-usable experiment primitives. The code implementing 
components describes the “how” of the experimental scenario. 

Secondly, a minimega topology is deployed on a hardware cluster (or single machine). This is 
the EBM to which the experimental scenario will be applied. This step highlights a degree of 
separation between structure and function of the experiment. The minimega topology represents 
the structure of the experiment while the SCORCH scenario represents the function. This 
separation enables efficiency in experimentation by, for example, enabling the user to apply the 
same scenario to a variety of topologies without the need to re-create the scenario for each 



topology, or enabling the user to apply a variety of scenarios to the same topology without having 
to tear down the topology. 

In this study, the SCADA network topology is deployed within minimega where each virtual 
machine (VM) receives the necessary software and model parameters to execute the 
scanning/detection scenario. For example, the scanning VM includes Nmap and a list of 
parameters such as: number of IP addresses and ports to scan, specific port number to scan, time 
to wait between scans (delay), etc. This set is subsequently used to scan the SCADA network. 
Each time a port is scanned, the metadata associated with the scan is logged to an Nmap.out file. 
To counter the adversarial scanning VM, the detector VM runs snort and its configuration 
parameters capable of sensing the syn packets used in Nmap probing. If snort notices a packet that 
aligns with criteria in one of its rules, it will signal an alert and append all such to an alert file. 
During this reciprocal exchange, tcpdump captures all traffic on the network by way of a port 
mirror residing on the minimega virtual LAN hosting the SCADA network. This data is saved 
as a PCAP file. 

Data collection 

Input/output to and from the live virtual network is handled by the individual components as 
facilitated by the framework. Here, the minimega command and control agent, miniccc, handles 
the data input and output process, in tandem with the snort, tcdump, and filebeat components. 
During SCORCH execution, the Nmap and snort components call miniccc to signal that their 
respective model parameters and other supporting data, be added to the model. This occurs during 
EBM setup, where miniccc copies the data from the hardware cluster node to the respective VM 
within the minimega topology. After the experiment has completed, each component initiates an 
exfil process where it again calls the miniccc agent to extract any logging data accrued by Nmap, 
snort or tcpdump. This data is then written to the host cluster node for analysis. If enabled, 
SCORCH interfaces with Filebeat to push the collected experimental data and artifacts to a 
specified Elasticsearch server.  

Following data collection, post processing scripts run against the PCAP and snort alert files to 
derive the time delta (in seconds) between the 1st packet captured and the 1st alert instance 
captured, for every Nmap portsweep occurrence. If any time format discrepancies exist between 
the PCAP and alert file, the scripts will convert the packet time to reflect seconds since Unix epoch 
time (Jan 1, 1970).  Once the initial alert time values have been calculated, the post processing 
scripts aggregate the initial alerts times for every experiment and log to a metrics.txt file. This is 
done for each snort sensitivity level (low, medium, high). 

Experimental methods 
Experiment reproduction 

Reproducibility is essential to science because it ensures results are not biased according to overt 
or hidden desires for a particular outcome. The SECURE team, working with our collaborators 
from Texas A&M University (TAMU), wanted to see understand the degree to which the results 
published in [1] can be reproduce by a research team that did not contribute to the original paper. 



In the process of reproducing this study (which is described in detail in [4], the team not only 
considered the methods for reproducing the results, but also the metrics by which the results from 
Sandia and TAMU should be compared. The comparison metrics used during this study were: 

• t-test: the t-test is a widely-used test for determining if there is a statistically significant 
difference between the means of two data sets, 

• Kolmogorov-Smirnov Test: the KS-test is a non-parametric statistical test for equality of 
distributions, based on the maximum difference between the cumulative distribution 
functions (CDFs), 

• Area Test: the area test also compares CDFs, but accounts for the entire difference 
between CDFs rather than the maximum difference, and 

• Relative Hausdorff Distance: originally developed for graph analysis, the Relative 
Hausdorff Distance can also be used to compare distributions 

The plots in Figure 9 show the application of these metrics to compare Sandia and TAMU port 
discovery results in the case where there is no added randomness (i.e. deterministic formulation): 

 



 
         Fast, deterministic          Slow, deterministic 
Figure 9.  Port Discovery Statistical Test Results for Deterministic Case 



The results above show perfect agreement between the Sandia and TAMU results, as evidenced 
by all four metrics, indicating that TAMU correctly set up the experiment for the deterministic 
formulation. The plots in Figure 10 show the application of these metrics to compare Sandia and 
TAMU port discovery results in the case where there is there is added randomness in the Nmap 
search order and in packet loss (i.e. stochastic formulation): 



 
Fast, stochastic            Slow, stochastic 

Figure 10.  Port Discovery Statistical Test Results for Deterministic Case 



From these comparisons we find that the KS Test shows good agreement between the Sandia and 
TAMU results, as evidenced by the p values > 0.05. The Area Metrics for all cases also show good 
agreement as evidenced by the consistently low area values. However, we find that the Relative 
Hausdorff metric does not seem to be a suitable metric for comparing results, as seen in the plots 
above.  

Verification 
An important part of using emulation is verifying whether the emulation environment is working 
as intended, also called verification [5]. Part of verification involves software testing and quality 
assurance. A unique aspect of cyber emulation involves assessing the performance of the 
emulation running in the virtualized environment and determining whether there are sufficient 
resources to properly handle the scenario that is being run. If there are not, the virtualized 
components may produce experimental artifacts and behavior that result in the experimental 
outcomes being unrepresentative or incorrect.  

Under SECURE, we focused on determining whether there are sufficient virtualized resources to 
support the emulation experiment and whether we can identify metrics that indicate when the 
results of an emulation experiment are unreliable. We refer to these metrics as telemetry metrics, 
following the usage of this phrase from Microsoft [6], Google [7], Intel [8] and Sumo Logic [9].  
We studied telemetry metrics such as system load and CPU utilization relating to the performance 
of virtual machines which are used in the scanning/detection scenario and the physical machine 
hosting that study. We ran experiments with various levels of over-subscribed resources.   

In these experiments, we purposefully put more and more strain on the physical resources available 
to the emulation experiments. We accomplished this by forcing the physical host to do more and 
more work in parallel through the concept of a namespace, which is an isolated copy of the 
experiment environment running on its own VLAN.  For the purposes of this study, we ran several 
iterations of the same experiment with increasing numbers of parallel namespaces. By increasing 
the number of namespaces, we hoped to reach a point of resource over-subscription, where the 
results of the experiments run are affected by emulation artifacts caused by this over-subscription. 
We saw evidence of oversubscription at 20 namespaces and greater. 

We found that statistical tests such as the Tukey multiple mean comparison test was useful to 
identify anomalies in results as we increased the number of parallel namespaces running in the 
experiments.  For scanning/detection, as we increased namespaces, we found that the alert time 
distributions shifted upward and became much more diffuse with longer tails.  We also found that 
the telemetry metrics of system load and throughput were effective at filtering out replicates which 
had statistically significantly different results than the baseline case with one namespace. 

 

Validation 

Validation is the process of verifying that the model is correct with respect to the questions that it 
is intended to answer. Validation can be done in several ways; it can be performed on multiple 
models and compared (i.e. cross-validation), and validation experiments can be conducted in 



physical testbeds and compared with models. In the SECURE project we performed two different 
kinds of physical experiments and compared the results with the minimega scanning/detection 
model: 

1. Validation experiments on physical hosts in the Sandia computing cluster. The physical 
hosts used for these experiments were all identical, but configured differently to assume 
different roles in the validation experiment, and 

2. Validation experiments using physical and virtual devices in the Texas A&M testbed. 
Physical relay devices were used to model vulnerable hosts (open ports) in the scanning 
detection scenario, however, due to limited numbers of physical devices, closed ports 
were modeled using the CORE virtual machine testbed, and filtered devices were 
modeled using firewall rules in the network switch. 

The Sandia physical validation experiments utilized the same software (applications and operating 
systems) that was used in the minimega virtual machine-based experiments. The primary 
differences between the minimega and physical experiments were 1) minimega used KVM-
based virtual machines whereas the physical experiments were run on physical hosts, and 2) a few 
configuration differences due to differences in networking between the virtual and physical 
experiments. We found the port scanning and Snort detection time results between the minimega 
and physical experiments matched up very well. 

The Texas A&M University (TAMU) physical testbed experiments used a mixture of physical and 
virtual hosts in order to achieve the scales that were needed to conduct the validation experiment. 
The TAMU team used four field devices to implement vulnerable hosts with open ports, eight 
virtual machines running in the CORE virtual testbed environment to represent secure hosts with 
closed ports, and used firewall rules in the network switch to represent 12 secure hosts that are 
filtering inbound TCP connection requests. The TAMU physical testbed configuration used the 
same scanning and detection software used in the minimega experiment, however, because the 
TAMU testbed was very different from the minimega testbed, a number of custom scripts were 
written to orchestrate the experiment and collect data. These scripts required some amount of 
debugging, resulting in some back-and-forth between the Sandia and TAMU teams to make sure 
the physical experiment was producing correct validation data. Due to limitations in available time, 
the two teams were able to validate port discovery but did not have an opportunity to assess 
validation with respect to detection times.  

Optimal segmentation 

Network segmentation is a strategy used by the network designer to limit the scope of what an 
attacker may see if they are able to achieve a malware presence on the network. However, network 
segmentation has costs and constraints on the network design - too much segmentation will incur 
excessive costs and exceed the defender's budget. Therefore, a tri-level optimization formulation 
was developed to account for 1) network designer's budget, 2) attacker's budget (in terms of the 
number of networks that the attacker can compromise), and 3) the network operator's response to 
an attack (e.g. re-dispatching generation resources to loads). This optimization model and results 
are documented in [10].  
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Power Grid Impacts 
Overview 

This section demonstrates how the methods developed under SECURE can be used to analyze the 
power grid impacts of the larger attack chain. Recall that the full end-to-end exemplar considered 
under SECURE describes a multi-stage attack in which an attacker attempts to access a power 
utility’s corporate enterprise network, pivot to the ICS network, identify vulnerable RTUs, run the 
CRASHOVERRIDE malware and ultimately disrupt operations by causing load shed. The focus 
of this article is the power grid impacts caused by the CRASHOVERRIDE malware.  

CRASHOVERRIDE 

CRASHOVERRIDE was malware designed to attack power grids and was used in the 2016 cyber 
attack on the Ukrainian electric grid. Unlike the previous attack on the Ukrainian grid in 2015 in 
which attackers manually switched off power to electrical substations, the CRASHOVERRIDE 
attack was fully automated and could perform attacks much more quickly and with less 
preparation. Once the malware had infected the system, CRASHOVERRIDE could launch four 
payload modules. This study focuses on the module that communicates directly with grid 
equipment and switches breakers within the power grid. 
https://www.dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-
grids/ 

In power systems, field devices (such as relays, RTUs and PLCs) monitor and control the power 
grid. CRASHOVERRIDE understands how to enumerate and discover the inputs and outputs to 
field devices and leverages this to open circuit breakers in the power system. Additionally, 
CRASHOVERRIDE can force the field devices into an infinite loop thus continually opening the 
circuit breakers even if operators are dispatched to re-close them.  

In our multi-stage attack, Nmap is used to scan the network for vulnerable RTUs. 
CRASHOVERRIDE will then target only those RTUs and open the breakers associated with those 
RTUs. The power grid impacts of this CRASHOVERRIDE attack will highly depend on the 
identification of vulnerable RTUs.  

CRASHOVERRIDE Configuration 

CRASHOVERRIDE modules were designed to be used with configuration files specifying various 
parameters of the attack. This section focuses on the configuration associated with the module that 
targets the protocol payload. In this configuration, a set of stations are specified for an attack. Each 
targeted station has the following configuration options: 

• target ip - specifies the IP address of the targeted field device 
• first action - specifies the first action (on or off) used to switch grid components 

https://www.dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids/
https://www.dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids/


• change - specifies whether to continually toggle power grid equipment (1) or only change 
once (0) 

• interval - specifies the time interval in between toggles 

TAMU Topology 

Power grid impact experiments were all performed on a synthetic cyber-physical topology of the 
Texas power grid developed by Texas A&M University's (TAMU) Cyber Physical Resilient 
Energy Systems (CyPRES) project. https://cypres.engr.tamu.edu/test-cases/ 

This topology consists of both cyber and physical components. The cyber model shown in Figure 
1 has three main sets of components: (1) balancing authorities, (2) utility control centers, and (3) 
substations. The primary and secondary balancing authorities are responsible for managing the 
flow of electric power among the utilities. The utility control centers are responsible for monitoring 
multiple substations and contain networking equipment, a demilitarized zone, and SCADA 
software. The substations are responsible for monitoring and controlling the power grid and 
contain networking equipment, relays, as well as corporate devices such as PCs, security cameras, 
phones, and card readers. The relays in each substation are mapped to busses and branches of a 
synthetic 2000-bus power model of the Texas grid shown in Figure 2. Overall, this topology 
contains 2 balancing authorities, 150 utility control centers, and 1251 substations. 

https://cypres.engr.tamu.edu/test-cases/


 

Figure 1: TAMU cyber topology 



 

Figure 2: 2000-bus power model 

Power Grid Impact Studies 

The CRASHOVERRIDE malware and the TAMU topology were used for two main studies: an 
uncertainty quantification study and an optimal segmentation study.  

UQ Study 

A workflow was developed for the UQ study that leverages both traditional UQ tools and 
emulation tools. Dakota provides a means to sample CrashOverride parameters and generates a 
CrashOverride configuration file. For each sample of parameters, Scorch then injects the new 
CrashOverride configuration file into the SCEPTRE experiment, runs the CrashOverride malware 
in SCEPTRE, collects physical process data from the power model, and then resets the SCEPTRE 
emulation. Dakota then chooses the next sample and the process repeats. The data is then post 
processed and can then be further analyzed.  



The UQ study was performed on a small subset of the TAMU topology consisting of 1 balancing 
authority, 2 control centers, and 11 substations. All protections on relays in the topology were 
disabled so that the effects of CRASHOVERRIDE could be clearly identified. 800 experiments 
were run sampling the parameters in Table 1. The overall timing of each experiment was 150s; the 
first 30 seconds of each experiment was normal operations. CRASHOVERRIDE was executed at 
the 30s mark and was run for an additional 2 minutes. The physical process data was post-
processed to calculate loss of load for each experiment. 

Parameter Values 

target ip set of 49 relay IPs 

first action [off] 

change [0, 1] 

interval [10, 11, 12, ..., 60] 
Table 1 - Parameters of UQ Study 1 

Figure 3 shows results of the UQ study. Each point on the plot shows the loss of load results for a 
single experiment. The red line shows the mean regression line. the green line shows the median 
regression line while the black lines show the regression lines for the 0.05, 0.1, 0.25, 0.75, 0.9, 
0.95 quantiles respectively.  

 

Figure 3: UQ Experiment Results with Quantile Lines for Normalized Loss of Load 



For a given number of RTUs out (such as 4), there is a huge spread in the loss of load based on 
which four RTUs are targeted.  This variance makes it hard to get a good regression model: the 
regression captures the mean trend but does not capture the variance well. If we instead look at the 
quantile regression lines, there is a better trend than with the mean regression line. Each quantile 
regression also gives us an analytic formula for a tail probability of normalized loss of load. For 
example, the 95th quantile = 440.18+27.10*RTUs_out. This formula can be used in end-to-end 
CRASH studies, where we want to couple upstream attack uncertainties to a tail probability loss 
of load (instead of worst case). 

Future studies are planned, to increase complexity of the model by scaling the size of the topology 
as well as reimplementing the relay protections. However, due to the large variability of results 
present in the small topology, future work will first include more analysis of the current results 
such as worst-case analyses.  

Segmentation Study 

The second study using the TAMU topology and CRASHOVERRIDE malware was a 
segmentation study. The optimal segmentation work determined optimal segmentation of a 
network using mathematical optimization. This study applied the mathematical results to the 
TAMU topology and investigated the impacts the CRASHOVERRIDE malware would have on 
this new, segmented topology. We hypothesized that using the mathematical results would 
decrease the impact of the CRASHOVERRIDE malware since optimal segmentation would force 
the attacker to pivot more within the network to deliver the CRASHOVERRIDE payload to 
specific relays.  

A workflow was designed that interfaces emulation with mathematical optimization for network 
segmentation. The workflow starts with an initial SCADA network implemented in SCEPTRE. 
The design of the topology (i.e. current network segments) is input to the mathematical 
optimization. The mathematical optimization then does two things. 1) identifies the worst-case 
attacker on the original topology and 2) identifies a new optimally segmented network topology 
along with the worst-case attack for this new topology. The SCEPTRE topology is then updated 
with the new segmented topology.  Theoretically speaking, this is done by re-subnetting and 
applying new firewall rules. However, for our example, we wanted to investigate the effects of the 
CrashOverride malware against the optimal and non-optimal network topologies. So practically 
speaking, we investigated this by simply changing the potential targets of CrashOverride based on 
the segmentation that came from the optimization. 

To gather results, the worst-case attacker (specific to each topology) was used to identify the set 
of RTUs that CrashOverride would target. The CrashOverride malware was implemented and for 
each topology, 100 experiments were run varying the other parameters of CrashOverride. Figure 
4 shows results of this study. The results show that the optimal segmentation of the network 
lowered the cumulative loss of load for the scenario.  



 
Figure 4: Segmentation Results 

Moreover, this study shows the value of coupling mathematical optimization with emulation. 
Determining an optimal segmentation in emulation is usually SME driven and would require full 
enumeration or brute force to determine a true optimal solution. This is infeasible in emulation so 
practically heuristics would normally be used, but these do no guarantee an optimal or even near 
optimal solution. By coupling the emulation with mathematical optimization, most of the burden 
is done by the lightweight mathematical model.  

Beyond this initial study, other questions we want to answer about this study are: 

1. Can we use emulation to show that the mathematical result is better than SME design?  
2. Can we use emulation to explore the robustness of the mathematical abstraction? 
3. Does the incorporation of other real-world parameters (such as scanning and detection 

probabilities) affect the optimality of the segmentation? 
4. What are the tradeoff costs between cost to implement segmentation versus benefit the 

segmentation provides against an attacker? 

 

 

  



Markov Modeling of End-to-End Attack  
The SECURE project used Markov analysis to assess attacker/defender performance relative to 
the end-to-end scenario, answering questions regarding an attacker’s probability of successfully 
performing a power grid attack, and the time required for an attacker to traverse all of the steps 
required to reach this state. The process starts with translating the end-to-end scenario to a Markov 
state transition diagram, as shown in Figure 1.  

 

 

Figure 1: Translating the end-to-end threat scenario to a Markov state transition diagram 

Once the state transition diagram is constructed, the task shifts to populating the model with 
transition probabilities. These transition probabilities can be determined via a number of means: 
through data collected from the MITRE ATT&CK evaluations, through subject matter expert 
(SME) judgment, or through cyber experimentation. In this study, we used cyber experimentation 
(i.e. emulation-based modeling and mathematical modeling) to calculate transition probabilities 
for both the “Command and control” (Markov state 6) and the “ID vulnerable RTUs through 
Scanning” (Markov state 8) steps highlighted in green in Figure 1. These transition probabilities 
are shown in Table 1 and Table 2. 

 

 



Table 1.  C2/Markov state 6 transition probabilities (from emulation and mathematical models) 

Snort condition Timestep value Detection 
probability 

Next state 
transition 
probability 

Same state 
transition 
probability 

Unstressed 16 s 0.565 0.435 0.0 
Stressed 
(dropping 
packets) 

16 s 0.372 0.628 0.0 

 

Table 2.  ID RTUs/Markov state 8 transition probabilities (from emulation and mathematical models) 

Attacker 
scanning 
strategy 

Timestep 
value 

Detection 
probability 

Next state 
transition 
probability 

Same state 
transition 
probability 

Fast 30 s 0.69 0.31 0.0 
Slow 61 s 0.70 0.30 0.0 

 

An example of an analysis using the experimental and MITRE ATT&CK transition probabilities 
is shown in Figure 2.  

 

 

Figure 2: Markov analysis results showing attacker time to success and success probabilities, 
depending on defender capabilities 



This analysis assumes a set of different defender (blue team) capabilities denoted Bij, depending 
on the specific MITRE ATT&CK tactics employed by the attacker (denoted by subscript i), and 
the defender’s ability to handle increasing levels of ambiguity in attack indications (denoted by 
Table 3). 

Table 3.  Defender capabilities 

Defender name Level of ambiguity Detection capabilities 
Bi,1 None Indicators of compromise (IOC) 
Bi,2 Medium IOC, specific alerts 
Bi,3 High IOC, specific alerts, general alerts 

 

Figure 2 shows the mean time it takes an attacker to transition from state 1 (initial state) to state 9 
(ready to attack state) in the Markov chain on the Y axis, and the steady state probability of the 
attacker residing in state 9 on the X axis. These results are collected into two sets, indicated by the 
ovals, with the yellow oval indicating results if the attacker only needs to discover exactly one 
RTU to proceed, and the red oval indicating results if the attacker needs to discover more than one 
RTU. In cases where the attacker must find more than one RTU in order to continue with its attack, 
the probability of success is lowest and the time to success is longest (as shown in the set 
surrounded by the red oval). This makes intuitive sense, since the criteria are more difficult than 
in the other set, where the attacker only needs to find one RTU. 

Within each set there are two arcs: one arc (green and orange points) is for attacker i=1, and the 
other arc (dark red and purple points) is for attacker i=2. Recall that each of these attackers is 
distinguished by the particular MITRE ATT&CK tactics that the attacker employs. As can be seen 
in Figure 2, attacker i=1 appears to use tactics that do a better job of evading detection than attacker 
i=2. Details regarding the tactics used by both attackers can be found in [1]. 

Within each arc there are two groups. In one group, denoted by triangles and *1 markers, the 
intrusion detection system is stressed by the volume of network data, and is dropping packets as a 
result. In the other group, denoted by squares and *2 markers, the intrusion detection system is 
able to process every packet. As the results show, when the C2 intrusion detection system is 
stressed and dropping packets, the attacker’s time to success decreases and its ready fraction 
increases, indicating that the attacker is more likely to achieve its object more quickly, which 
makes intuitive sense. 

Within each group, the data points are classified according to defender capability. Orange and 
purple markers represent a defender of Medium capability (Bi,2), and green and dark red markers 
represent a defender of High capability (Bi,3). As Figure 2 shows, when the defender’s capability 
increases from j=2 to j=3, the attacker’s time to success increases and its ready fraction decreases, 
indicating that it becomes harder for the attacker to achieve its objectives, which also makes 
intuitive sense. It should be noted that defender j=1 is not shown in this figure because the results 
are off the scale of the plot at Ready Fraction = 1.0, meaning that the attacker is certain to succeed 
against defender j=1. 



[1] Defender Policy Evaluation and Resource Allocation against MITRE ATT&CK Data and 
Evaluations.  Alexander V. Outkin, Timothy Schulz, Thomas D. Tarman, Patricia V. Schulz, Ali 
Pinar.  SAND2021-7713. https://arxiv.org/abs/2107.04075 
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