

Southeast Regional Carbon Sequestration Partnership

Report Type: Completion of Drilling Injection Wells into Brine-bearing Lower Tuscaloosa Sandstones
(Work Products 5.1.1.a and 5.1.2.b)

Report Issue Date: August 30, 2009

DOE Award Number: DE-FC26-05NT42590

Submitting Organization: Susan D. Hovorka, Gulf Coast Carbon Center

Disclaimer

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Abstract

Three CO₂ injection and observation/monitoring wells were drilled at the SECARB Early Test Detailed Area of Study. This report documents completion of these wells in support of Task 5.1, Subtasks 5.1.1 and 5.1.2.

Table of Contents

Disclaimer	2
Abstract	3
Table of Contents	4
Executive Summary	5
Report Details-Experimental	5
Results and Discussion	5
<i>Task 5.0: Well Drilling and Completion</i>	5
Conclusion	9
References	10
List of Graphical Materials	10
List of Acronyms and Abbreviations	10
Appendices	13

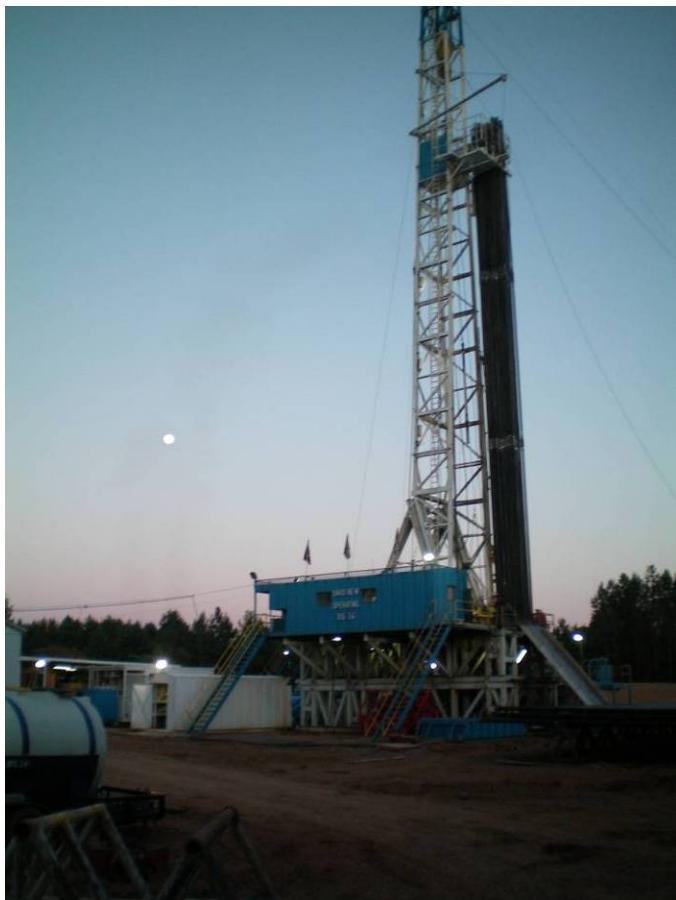
Executive Summary

For the Early Test, The Bureau of Economic Geology (BEG) at the University of Texas at Austin has partnered with Denbury Resources, Incorporated, to take advantage of ongoing CO₂-EOR efforts by the field operator. Following release of a Finding of No Significant Impact (FONSI) March 17, 2009, Phase III injection started April 1, 2009, in three downdip Phase III wells CFU 26-1, 27-1, and 28-1. Additional drilling to achieve the 1 million metric ton down-dip injection rate was completed.

Report Details-Experimental

Due to the nature of the project, no experimental methods, materials or equipment are necessary.

Results and Discussion


Task 5.0: Well Drilling and Completion

Subtask 5.1: Early Test Site Well Drilling and Completion

Injection well CFU 31F-1

The DAS injection well CFU-F31-1 that spudded on May 29 was logged on June 6 and completed on June 9. Figure 1 and Figure 2 show photograph of the rig drilling this well. This well was drilled with a field-standard 8 ¾ inch borehole to accommodate a 5½ inch steel casing. Denbury drilled it 200 ft deeper than normal and cemented it to the base of surface casing to accommodate seismic monitoring with VSP and cross well, at no additional cost to the project. Casing completion is 60 ft 16 inch surface conductor, 2019.11 ft 9.625 inch surface casing, and drill depth is 10,700 ft. Well is vertical with bottom hole location tracked via Telledrift. Stuart Coleman observed logging on behalf of SECARB. An acoustic log was collected at the base of surface casing to support VSP design and interpretation. Figure 3 shows the reservoir interval of the logs.

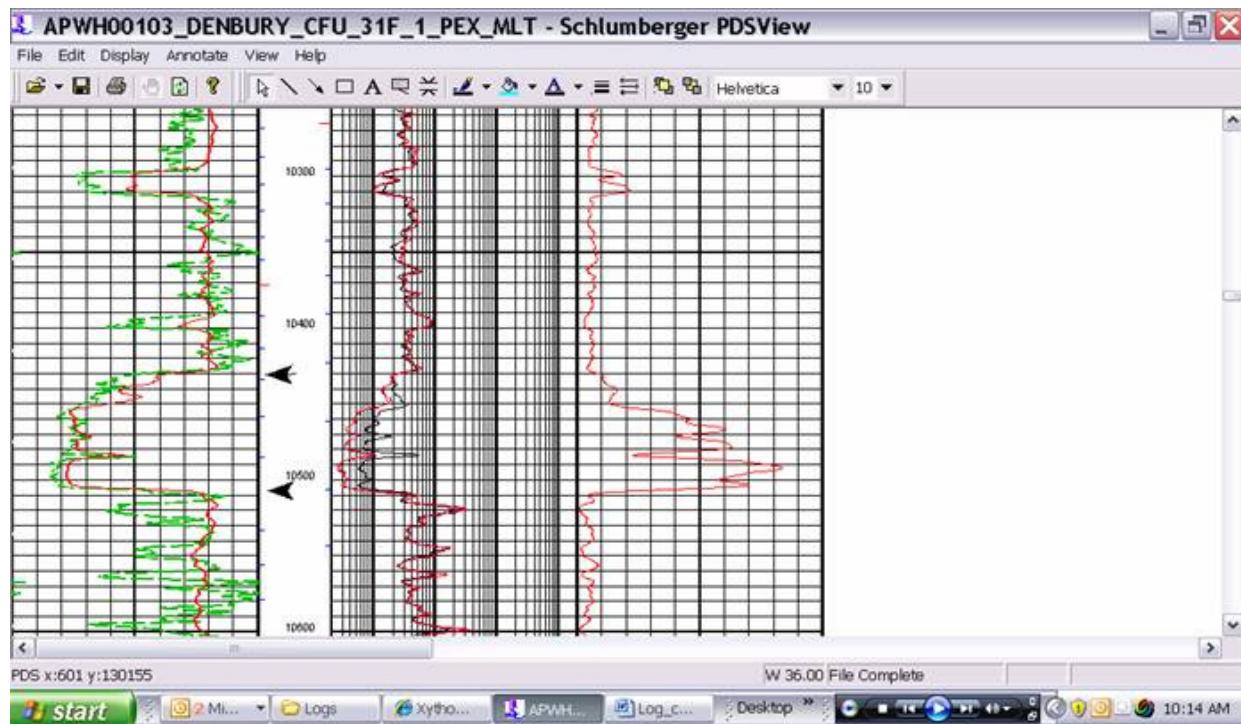
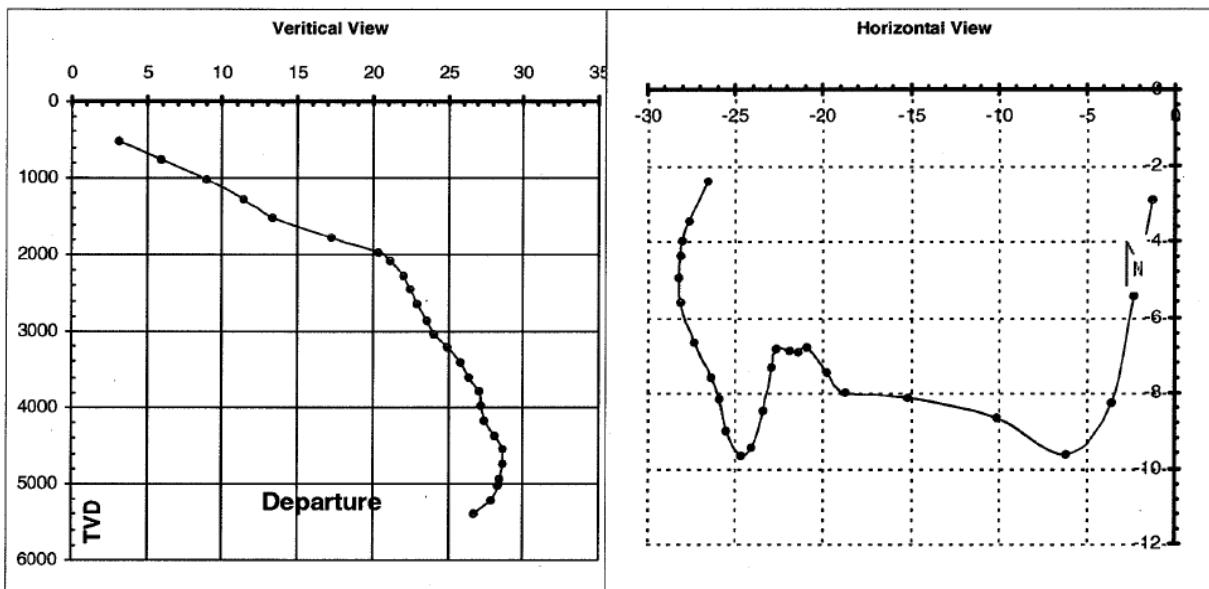

Denbury interprets that the reservoir is 74 ft of clean gamma ray sand, 60 ft of clean SP sand, of which 10,430 to 10,483 is defined as D with 25 ft of porosity and 10,485 to 10,508 and has 19 ft of porosity (in excess of 25%).

Figure 1. Rig New David #16 drilling injection well CFU 31F-1 from well pad.

Figure 2. Rig drilling injection well CFU 31F-1 from distance showing setting.

Figure 3. Wireline log of reservoir interval in the DAS injection well CFU31-F1.


Observation well CFU 31F-3

After completing the injector CFU 31F-1, Denbury began drilling the DAS observation wells, starting with CFU 31F-3, the easternmost observation well. This well was spudded June 12, and drillers cemented surface casing, installed wellhead, and tested BOPs on June 14. Teledrift was used to ensure that the well was adequately straight and to reduce the cost of having hole deviation controlled. Teledrift output is shown in Figure 4.

Drilling a 12½ inch diameter long string borehole to accommodate 7-inch casing with instrumentation was significantly slower than expected, and a number of engineering parameters had to be determined by trial and error. On June 16, at drill depth of 5,445 ft, an episode of over torque resulted in parting the drill string. To correct this, the drillers reduced the mud weight and reduced the fins; however this proved to be insufficient. On June 22 at a drill depth of 7,134 ft, the drillers had a second episode of over torque and twist off of the drill string and had to fish 4 separate drill string pieces, which spun apart. The engineering solution was to replace the 4½ inch drill string with a new 5 inch drill string to give it more momentum. The new 5 inch drill pipe required replacing rig equipment, including new bigger pipe rams for the blow out preventers. To install them, the BHP was picked up and rotated, and new pipe rams installed, rotated back, lowered, re-installed and tested.

In addition, drilling was slower than normal, because about twice as much rock has to be removed for a 12½ inch hole as for an 8½ inch hole. Low drilling rate was especially marked in the seal intervals, Austin Chalk, and Washita-Fredericksburg below the injection zone. We estimate 13 days rig time was required beyond what was budgeted because of these issues. We expect that experience will allow improved well speed, which will bring the second well

to TD faster, as the 5 inch drill pipe and blowout preventers will be used from the start. Drillers will attempt to find a better bit for the carbonate intervals. We expect to stay budget-neutral because CO₂ injection will be delayed, reducing this expense.

Figure 4. Teledrift output during drilling. After casing, we will run deviation surveys to TD to determine precise well location to support the cross-well surveys.

In preparation for casing completion of the observation wells, a pre-drilling operation was conducted on June 10, 2009, at the drilling site and in the drilling contractor's office in Natchez, MS. All services involved in drilling, running the casing, and cementing the casing in place were present. The meeting included a site visit where various components of the DTTS, ERT, and casing mounted P/T gauge instrumentation, as well as a sample of the fiberglass casing, were viewed. Afterward, the group traveled to David New Drilling's offices in Natchez to view the components to be deployed below the 7 inch steel casing. All aspects of the drilling, running of the casing, and cementing the casing in place were discussed, including drilling technique and the drilling mud program and cementing program. Risk analysis showed that high probability-high consequence failures during casing completion include failure to get casing to design depth and poor cement job. The mitigation for both of these risks is the mud program. Near the bottom of the well, we requested higher than normal attention by the mud engineer and additives to mud, including graphite, to make it slippery. On June 12, Jeff Martel, Merlin Keown, Dale Barnett (Denbury), David Freeman, Donald Stehle, and Dan Collins (Sandia Technologies) and Tip Meckel and Ramon Treviño reviewed contingency plans and made sure that parts were on hand should they be needed.

Figure 5. DAS well pad in May 2009, showing location of observation wells (M1 and M2) CFU 31F-2 and CFU 31F-3. Composite photograph by Changbing Yang.

Observation Well CFU 31F-2

The second observation well at the DAS was completed on August 28, 2009, through installation of the casing, including on-casing monitoring equipment, cement, and wellhead. Denbury drilled the CFU 31F-2 well to 10,701 feet. Schlumberger wireline equipment was rigged up and open hole wireline logging operations completed. Following completion of logging, the open hole was washed and reamed to total depth, 10,790 ft, and the hole was circulated to clean and condition the drilling fluid for casing installation.

Sandia mobilized concurrently with completion of the well installation and set up to manage running of the casing and casing-deployed monitoring equipment in CFU 31F-3 well. A depth correlation log was run from 10,650 feet to 9,500 feet and the casing was lowered 12 feet for depth correction. Drilling fluid was circulated to condition the open hole section for cementing. The casing was cemented with 465 sacks of 12.8 lb/gal lead slurry and 770 sacks of 16.2 lb/gal tail slurry.

Conclusion

The SECARB Early Test's injection well (CFU 31F-1) and two observation wells (CFU 31F-2 and CFU 31F-3) have been drilled and completed. This concludes work under Task 5.1.

References

No references were used for this document.

List of Graphical Materials

Figure 1. Rig New David #16 drilling injection well CFU 31F-1 from well pad.	6
Figure 2. Rig drilling injection well CFU 31F-1 from distance showing setting.....	6
Figure 3. Wireline log of reservoir interval in the DAS injection well CFU31-F1.	7
Figure 4. Teledrift output during drilling. After casing, we will run deviation surveys to TD to determine precise well location to support the cross-well surveys.	8
Figure 5. DAS well pad in May 2009, showing location of observation wells (M1 and M2) CFU 31F-2 and CFU 31F-3. Composite photograph by Changbing Yang.	9

List of Acronyms and Abbreviations

3-D	Three Dimensional
APT	annulus pressure test
ARI	Advanced Resources International
3-D	Three Dimensional
APT	annulus pressure test
ARI	Advanced Resources International
AUGUSTA	Augusta Systems, Inc.
BEG	Texas Bureau of Economic Geology
BWV	bulk water volume
CBM	Coal Bed Methane
CCS	Carbon Capture and Storage
CO ₂	Carbon Dioxide
COOP	Carbon Offset Opportunity Program
CoreLab	Promore Engineering
CRDS	Cavity Ringdown Spectrometer
DAS	Detailed Area of Study
DEM	Digital Elevation Model
Department	United States Department of Energy
DIAL	Differential Absorption Lidar
DOE	United States Department of Energy
DOT	United States Department of Transportation
DTS	differential temperature survey
EA	Environmental Assessment
ECBM	Enhanced Coal Bed Methane
ECC	Eastern Coal Council
EGL7	Ella G Lees #7 Observation Well (Field Test 1 at Cranfield, MS)
EGR	Enhanced Gas Recovery
EIA	Energy Information Administration
EIV	Environmental Information Volumes

EOR	Enhanced Oil Recovery
EPA	United States Environmental Protection Agency
EPRI	Electric Power Research Institute
ERT	electric resistance tomography
FACE	Free Air CO ₂ Enrichment
GCCC	Gulf Coast Carbon Center
GCWA	Gulf Coast Well Analysis
GHG	Greenhouse Gas
GIS	Geographical Information System
GM	geomechanical
GNIS	Geographic Names Information System
gpm	gallons per minute
GR	gamma ray
GSA	Geologic Survey of Alabama
GSWG	Geologic Sequestration Working Group
Ho:Tm:YLF	holmium-thalium-yttrium-lithium- fluoride laser
ICET	Institute for Clean Energy Technology
INS	Inelastic Neutron Scattering
InSAR	interferometric synthetic aperture radar
IOGCC	Interstate Oil and Gas Compact Commission
KGS	Kentucky Geological Survey
LBNL	Lawrence Berkeley National Laboratory
LIBS	Lazer Induced Breakdown Spectroscopy
Lidar	light detection and ranging
LLNL	Lawrence Livermore National Laboratory
LGS	Louisiana Geological Survey
MIT	Massachusetts Institute of Technology
MIT	mechanical integrity test(ing)
MM&A	Marshall Miller and Associates
MMRI	Mississippi Mineral Resource Institute
MMscf	Million standard cubic feet
MMV (or MM&V)	Monitoring, Mitigation (or Measurement) and Verification
MVA	Monitoring, Verification and Accounting
Mscf	Thousand standard cubic feet
MSU	Mississippi State University
NARSAL	Natural Resources Spatial Analysis Laboratory
NATCARB	National Carbon Database
NEPA	National Environmental Policy Act
NETL	National Energy Technology Laboratory
NLCD	National Land Cover Dataset
NOAA	National Oceanic & Atmospheric Administration
NPP	Net Primary Productivity
O ₂	Oxygen (pure)
OPS	Office of Pipeline Safety
ORNL	Oak Ridge National Laboratory
OSP	The University of Texas Office of Sponsored Programs

P&A	Plugging & Abandonment
Partnership	Southeast Regional Carbon Sequestration Partnership
PDG	Protocol Discussion Group
PEIS	Programmatic Environmental Impact Statement
ppm	parts per million
ppb	parts per billion
ppt	parts per trillion
psi	pounds per square inch
psia	pounds per square inch absolute
PTTF	Pipeline Transportation Task Force
RAT	radioactive tracer survey
RCSP	Regional Carbon Sequestration Partnership
R&D	Research and Development
RGGI	Regional Greenhouse Gas Initiative
rms	root mean square
RMOTC	Rocky Mountain Oil Test Centre
RWG	Regulatory Working Group
SDWA	Safe Drinking Water Act
SECARB	Southeast Regional Carbon Sequestration Partnership
SLC	Southern Legislative Conference
SP	spontaneous potential
SSEB	Southern States Energy Board
STATSGO	State Soil Geographic
Sw	water saturation
TD	total depth
TVA	Tennessee Valley Authority
TX BEG	Texas Bureau of Economic Geology
U.S. DOE	United States Department of Energy
U.S.	United States
UIC	Underground Injection Control
UNFCCC	United Nations Framework Convention on Climate Change
USDA	United States Department of Agriculture
USDOE	United States Department of Energy
USDOT	United States Department of Transportation
USDW	Underground Sources of Drinking Water
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
UT-BEG	University of Texas Bureau of Economic Geology
VCCER	Virginia Center for Coal and Energy Research
VRGGP	Voluntary Reporting of Greenhouse Gases Program
VT	Virginia Tech
WAG	Water After Gas
WBCSD	World Business Council for Sustainable Development
WRI	World Resources Institute
WVONGA	West Virginia Oil and Natural Gas Association

Appendices

There are no appendices to this report.