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Marine Environments

+ - pent Nuclear
cr +M92" : K | :_:' : W Fuel (SNF) Dry
Na CI SO,~ dl # Storage Canisters:

In near-marine applications, deposition of aggressive (commonly chloride-
containing) sea salt aerosols is possible

« Spent nuclear fuel (SNF) dry storage canisters are one such example




Background — Spent Nuclear Fuel

» US has over 80,000 metric _ _ - m’“‘
tons of Spent Nuclear Fuel SNFIn 35 canister il
(SNF) inside concrete . "” " l”
overpack
« > 3000 stainless steel (SS)
canisters
« > 70 storage sites
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disposal pathway for SNF oy L ey

UNIVERSITY

TVIRGINIA




- 180 1 1 1 1 1 1 1 1 1
B ac kg roun d © Surface Temperature at
o 16y Canister Bottom i
= 14041 -
- 'g_ 120 \\\'\.\ Amb. Temp. =40°C |
Deliquescence Evaporation e, /
8 cr —_— <p— QE) 100 - \ .\.\.\.\ -
£ 10" 3 r - e .\'\-\.
g 8 80 N, Rlan = N 1
% 10° - r t‘t‘ \.\0\
£ 3 1 Honl oot s -
= -
§ ) r 40] Amb. Temp. L
‘.t-“' T T T T T T T T T
£ 0 10 20 30 40 50 60 70 80 90 100
@ 1072+ 3
§ Time (Years)
o s
g 1077 =T Canister temperature at various ambient temperatures [1]
10-4 T T T T T T T

20 30 40 50 60 70 80 90 100
Relative Humidity (%)

Composition of Evaporated Seawater [2]

- High chloride concentrations and
elevated temperatures can be seen

« Seldom explored in corrosion

[1] Enos, D. G., et al. Data Report on Corrosion Testing of Stainless Steel SNF Storage

Canisters, p. 1-103, 2013
[2] Bryan, C. R. and Schindelholz, E. J., Corrosion. Paper 10516. 2018
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Background — Pit Propagation

Studied through lead-in-pencil
experiments under a salt film (full
saturation) [1]
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Schematic of 1-D scenario with active alloy
surrounded by no flux (J) boundary (J=0)

Cbulk

~Insulating Epoxy

~Embedded SS Wire

Meﬂ+

Csat, Mo+

Insulating Wire

- Battle between outward ion diffusion and maintaining critical environment

- Galvele 1-Dimensional analysis yielded a pit stability product (i - x) [2]
« Where i is current density and x is the pit depth

[1] Srinivasan, J. and Kelly, R. G., Corrosion, Vol. 73, 2017, p. 613-633

[2] Galvele, J. R.,, Corrosion Science, Vol. 21, 1981, p. 551-579



Background — Pit Propagation

oy — Converted to hemisphere by a

\ geometric factor of 3

cr
f(MeCl,) /-
u
m+

Limiting anodic current

-Insulating Epoxy

-Embedded SS Wire

Insulating Wire o

- To sustain pitting, the current (I) at a
given radius (r) must satisfy

I I
(;) = (;)m-t demand (IILC ):
»  Critical value ~50% of full saturation Iip = (_)  Tanode
of salt film needed T/ crit
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Background — Cathodic Reduction Reaction

Corrosion Potentiall (E...)

Repassivation Potential (E;;} .

Cathode: area with radius r,
R ‘

Water Layer (WL)

i

Key Assumptions:
* hemispherical pit
* Un-suppressed cathode kinetics

Pit must be supported by

cathodic reduction reaction
forming an inherent galvanic
couple

« Infinite water layers, cathode

limited by ohmic drop [1]
« Finite cathode — Finite anode —

L ,
I \

" Mex

U%%g&%& [1] Chen, Z. Y. and Kelly, R. G., J. of The Electrochemical Society, Vol. 157, 2010, p. C69—-C78



Background — Cathodic Reduction Reaction

Corrosion Potentiall (E...J)

|

Repassivation Potential (E,;} .

Cathode: area with radius r;
T ‘

Water Layer (WL)

..

« Pit must be supported by
cathodic reduction reaction
forming an inherent galvanic
couple

« Infinite water layers, cathode
limited by ohmic drop [1]

Cathode Anode
« Finite cathode — Finite anode —
Econr |Em,ia ]T \r,
' miax
: Le

Key Assumptions:
* hemispherical pit .
* Un-suppressed cathode kinetics R
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Background — Cathode Properties

- Substantial pH rise possible in the cathode region
0O, +H,0+4e™ - 40H™ 2H,0 + 2e™ - H, + 20H™
- With pH increase, stable precipitates can form in the cathodic region
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Background — Cathode Properties

Substantial pH rise possible in the cathode region
0, +H,0+4e™ - 40H™ 2H,0 + 2e™ - H, + 20H™
With pH increase, stable precipitates can form in the cathodic region

Increased cathode pH

"1 Mg(OH),

Pit size

Mgz(OH)3C| . 4H20 J

T~ MgCO3 .
6- Mg?* -

0 1 2 3 4 5
MgCl, Concentration (mol/L)

pH of Precipitation

UNIVERSITY

/IRGINIA



Background — Cathode Properties

Substantial pH rise possible in the cathode region
0, +H,0+4e™ - 40H™ 2H,0 + 2e™ - H, + 20H™
With pH increase, stable precipitates can form in the cathodic region

Precipitate

composition f(pH) 77—

Mg(OH),

Pit size Mg,(OH);ClI - 4H,0 |

o MgCO3 N
. MgZ"‘ 4

0 1 2 3 4 5
MgCl, Concentration (mol/L)
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Modeling Cathode Precipitates
A

- Cathodic reactions produce hydroxyl
causing pH rise

« Can calculate OH production at a I
given pit depth and convert to a pH

[3 ()’ pﬁ;/fs

Vcath

MOH_

Cathode: area with radius r,
Cathode: Yolume (V)
Cathode: P

]M"ﬁ rit
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Modeling Cathode Precipitates

« Once the critical pH is reached,
conductivity updated based on
Bruggeman’s Equation

N W

V recip >
Kerr = k| 1— P
4 ( Vsolution + Vprecip

l

Icath,updated = f(Keff)

- Cathodic current is re-calculated
based on decreased conductivity
from precipitation formation, until
maximum pit is reached
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Modeling Cathode Precipitates

Based on the decreased
conductivity, a new, decreased
cathodic current is present

Solutions of interest
MgCl,

Assumptions
(1) no mass transport

(2) the cathode and anode
are separate

(3) no metal hydroxide
precipitation from the pit
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Objective and Approach

« Understand the quantitative impacts on maximum pit size predictions

« Determine governing factors for marine atmospheric corrosion
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Objective and Approach

« Understand the quantitative impacts on maximum pit size predictions

« Determine governing factors for marine atmospheric corrosion

A Cathode Blocking /

~ — Precipitate blocking
cathodic reduction site
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Objective and Approach

Understand the quantitative impacts on maximum pit size predictions

Determine governing factors for marine atmospheric corrosion
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Objective and Approach

« Understand the quantitative impacts on maximum pit size predictions

« Determine governing factors for marine atmospheric corrosion

Is there one controlling
parameter or is it all of
them combined?
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Objective and Approach

« Understand the quantitative impacts on maximum pit size predictions

« Determine governing factors for marine atmospheric corrosion

Is there one controlling
parameter or is it all of
them combined?
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Maximum Cathode Current Decreases with
Increasing Pit Size with Precipitation

«  Maximum pit size predictions without precipitation for saturated MgCl,
(4.98 M, RH =38 %) at 25°C
| is that needed to maintain concentration of 50% of saturation
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Maximum Cathode Current Decreases with
Increasing Pit Size with Precipitation

- With increased pit size, the cathode pH remains constant, increasing
Mg species precipitation and decreasing cathodic current
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|deal Cathode Radius Decreases
with Increased Precipitation

« Conductivity decreases with increased
precipitation, which is a result of
increased pit size

« Increased ohmic drop, due to a lower
conductivity, leads to the decrease in

cathode size

UNIVERSITY
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Cathodic Precipitation Affects Max Pit Size More in
Concentrated Brines

- Larger pit differences seen at elevated concentrations of MgCl,
- Water layer is orders of magnitude smaller in saturated solutions

40 L 1 L 1 L 1 1 350 ...............
25 Mmax,1=373.5um | oo |cath(K2)_ =
e Foay 1 = 160.6 pm e .
30 - leath(Ky) ==~ I max, 1 =
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2 254 I =
"E cath(Keff) ‘E 200 - rmax, 5= 155.9 um
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5] i 50 4 g
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— - (0)
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Cathodic Precipitation Affects Conductivity More in
Concentrated Brines

3

- 2
” — k(1= precip )
o < Vsolution + Vprecip

1.00
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0
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Fractional precipitate term
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solutions due to smaller solution

volume (Vsolution)
8
7 -
| 4.98 M MgCl,
6 -
5 -
4
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3- S
5 | Precipitation

0 50 100 150 200 250 300 350 400
Radius (um)

- More drastic change in conductivity and a lower (i - x) leads to a
greater difference in maximum pit size
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Larger Difference in Pit Radius at Lower Percentage
of Saturation

« Critical current (I, ) needed to maintain
aggressive environment can be a fraction of
saturation

« Values can range from 45 % to 70 % [1-3]
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f(MeCl,) /—
/
m+}

— 2
500 LD =3 g/m* |
\
\
_ \
= 400 *
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S— N
= 300 e
m -
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[1°] -~
= =
200 > i T
~ e . en e
1004 0189 MMgCl, ~ =~~~ _ _ _

40

50

60

70

80

90

Percent Pit Saturation (%)

[1] Li, T., et al. Journal of The Electrochemical Society, Vol. 166, 2019, p. C3341-C3354
[2] Srinivasan, J. and Kelly, R. G., Corrosion, Vol. 73, 2017, p. 613-633
[3] Gaudet, G. T. et al., AIChE Journal, Vol. 32, 1986, p. 949-958
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Larger Difference in Pit Radius at Lower Percentage

Of S a t u ra t i O n gt Dashed - No Pl;'gc?p::tg:ir:; i

\ Solid - Precipitation

400 -
« Percent saturation and precipitation
influence concentrated solutions more

drastically >

« Precipitation reactions more influential at
low values of pit saturation

300

Max Pit (um)

1004 0.189 M MgCl,

0 5 60 70 80 9 100
Percent Pit Saturation (%)

100 % Saturation 40 % Saturation

100 % Saturation - Precipitation 40 % Saturation - Precipitation
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Conclusions

- Considering cathodic precipitation decreases calculated maximum pit sizes
significantly
Pit sizes decrease by roughly 20% in saturated MgCl,

- Cathode sizes decrease when considering precipitates due to increased
ohmic drop

- Precipitation reactions influence pit sizes most in concentrated solutions
and at low values of pit saturation

L;wVERsm'
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Future Work

« Further assumptions to be explored in max pit modeling:
« No mass transport in cathode
« No metal hydroxide precipitates

- Dehydration reactions

Loam(Ko)

P Ll ke WL)

VEW Frme
r
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Background — Cathode Properties

- Substantial pH rise possible in the cathode region
0O, +H,0+4e™ - 40H™ 2H,0 + 2e™ - H, + 20H™
- With pH increase, stable precipitates can form in the cathodic region

Time
12
Pit Size
<"1  Mg(OH),
A (o]
w 101
I¢
S . Mg,(OH);CI - 4H,0 |
o
o 8- i
K
T 74 MgC03 |
o
6_ M92+ .
0 1 2 3 4 5

MgCl, Concentration (mol/L)
- Multiple precipitates present in seawater
brines
Still mainly Mg precipitates
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MgCl, and Seawater Polarization Scans
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Pit Stability and Repassivation Potential

- Determined through the lead in pencil technique
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MgCl, Properties
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Calculating I .,

Brine Brine Cathodic
Max. Cathode  Conductivity Thickness Kinetics

T \

ECOT‘T

Lic

InI cmax —

AEmax

Ic,max

E,, = Repassivation Potential
E..rr = Corrosion Potential

TRGINIA

Ey
_ Ak (WL)AE g | [ﬂe‘f P (ic—ip)dE

I
Limiting anodic
current demand:

I
Iic = (_) Tanode
T/ crit
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Calculating Equivalent Current Density

Econ

o

B R e e e e e

5

‘ Ezp
log((current density)
3 Erp . . o
Ef\thqdlc (ic — i) dE - Intersection of cathodic and anodic
inetics 5 p
corr

currents yields a maximum pit size
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MgCl, precipitates
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