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Background Marine Environments
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• In near-marine applications, deposition of aggressive (commonly chloride-
containing) sea salt aerosols is possible

• Spent nuclear fuel (SNF) dry storage canisters are one such example
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Background Spent Nuclear Fuel

•

•

US has over 80,000 metric

tons of Spent Nuclear Fuel

(SNF)

• > 3000 stainless steel (SS)

canisters

• > 70 storage sites

Historically licensed for 20

years with an additional 20

years upon recertification
• 15-20 sites will have to be
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U.S. Independent Spent Fuel Storage Installations (ISFSI)
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Background
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• High chloride concentrations and
elevated temperatures can be seen

• Seldom explored in corrosion
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Background
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• High chloride concentrations and
elevated temperatures can be seen

• Seldom explored in corrosion

• Localized pitting corrosion highly
probable in such environments
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Background Pit Propagation

J =

r

men+

csat,

-MI- 

611=

Schematic of 1-D scenario with active alloy

surrounded by no flux (J) boundary (J=0)

Cbulk

Pit Depth (x)

1

Studied through lead-in-pencil
experiments under a salt film (full

saturation) [1]
...........................................

• Battle between outward ion diffusion and maintaining critical environment

• Galvele 1-Dimensional analysis yielded a pit stability product (i • x) [2]

• Where i is current density and x is the pit depth

UNIVERS= [1] Srinivasan, J. and Kelly, R. G., Corrosion, Vol. 73, 2017, p. 613-633

5'.1ARGINIA [2] Galvele, J. R.,, Corrosion Science, Vol. 21, 1981, p. 551-579
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Background Pit Propagation

. ... ..........

• To sustain pitting, the current (I) at a
given radius (r) must satisfy

(-7-) (-7-)„„
• Critical value -50% of full saturation

of salt film needed

Converted to hemisphere by a
geometric factor of 3

cr
f(NleCI,)

rvrt

• Limiting anodic current
demand (ILC ):

I
ILC = ranode

r crit
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Background Cathodic Reduction Reaction

il
(WL)

Anode: area with radius ra

Conductivity

P I (OE,

Repassivation Potential CEO

Cathode: area with radius r,

.41

Key Assumptions:
• hemispherical pit
• Un-suppressed cathode kinetics

ILC

• Pit must be supported by
cathodic reduction reaction
forming an inherent galvanic
couple

• In finite water layers, cathode
limited by ohmic drop [1]

• Finite cathode —) Finite anode —)
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Background Cathodic Reduction Reaction
si P JAI (JE )

Water Layer (WL)
ol 

Repassivation Potential CEO
Cathode: area with radius r,

.................. ..
'Lc

ILc

Anode: area with radius ra

Conductivity (K)

Key Assumptions:

• hemispherical pit

• Un-suppressed cathode kinetics

I LC

• Pit must be supported by
cathodic reduction reaction
forming an inherent galvanic
couple

• In finite water layers, cathode
limited by ohmic drop [1]

• Finite cathode —> Finite anode
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Background Cathode Properties

• Substantial pH rise possible in the cathode region

02 + H20 + 4e- 40H- 2H20 +2e- H2 + 20H-

• With pH increase, stable precipitates can form in the cathodic region

12
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Bulk Solution pH
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Mg2(OH)3C1 • 4H20

MgCO3
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MgCl2 Concentration (mol/L)
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Background Cathode Properties

• Substantial pH rise possible in the cathode region

02 + H20 + 4e- 40H- 2H20 +2e- H2 + 20H-

• With pH increase, stable precipitates can form in the cathodic region

Increased cathode pH

Pit size
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Mg(OH)2

Mg2(OH)3C1 • 4H20

MgCO3

1 2 3 4 5

MgCl2 Concentration (mol/L)
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Background Cathode Properties

• Substantial pH rise possible in the cathode region

02 + H20 + 4e- 40H- 2H20 +2e- H2 + 20H-

• With pH increase, stable precipitates can form in the cathodic region

Precipitate

composition f(pH)

Pit size

1 2 3 4 5

MgCl2 Concentration (mol/L)
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Modeling Cathode Precipitates

• Cathodic reactions produce hydroxyl

causing pH rise

• Can calculate OH- production at a

given pit depth and convert to a pH

[ 
3 

0,031 rskw* se SS/

Vcath
MOH- =

44111111111116il

Anode: radius ra

pH < PHcrit OH-



Modeling Cathode Precipitates

• Once the critical pH is reached,
conductivity updated based on
Bruggeman's Equation

Kef f = — k (1

3

Vprecip

2Vsolution + Vprecip) 

I cath,updated = f (ice f f)

• Cathodic current is re-calculated
based on decreased conductivity
from precipitation formation, until
maximum pit is reached

pH > P H crit

/
Precipitation

OH-



Modeling Cathode Precipitates

• Based on the decreased
conductivity, a new, decreased
cathodic current is present

• Solutions of interest

• MgCl2

• Assumptions

• (1) no mass transport

• (2) the cathode and anode
are separate

• (3) no metal hydroxide
precipitation from the pit

ir

ll"
pH > PFicrii 

Mg(OH)2



Objective and Approach

• Understand the quantitative impacts on maximum pit size predictions

• Determine governing factors for marine atmospheric corrosion
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Objective and Approach

• Understand the quantitative impacts on maximum pit size predictions

• Determine governing factors for marine atmospheric corrosion

Cathode Blocking

Icath

Precipitate blocking

cathodic reduction site



Objective and Approach
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Objective and Approach

• Understand the quantitative impacts on maximum pit size predictions

• Determine governing factors for marine atmospheric corrosion

Cathode Blocking
*

r

MiL

ax)„it *
x/r 4

Is there one controlling
parameter or is it all of
them combined?
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Objective and Approach

• Understand the quantitative impacts on maximum pit size predictions

• Determine governing factors for marine atmospheric corrosion

Cathode Blocking
*

r

ax)„it *
x/r 4

Is there one controlling
parameter or is it all of
them combined?



Maximum Cathode Current Decreases with

Increasing Pit Size with Precipitation
• Maximum pit size predictions without precipitation for saturated MgCl2

(4.98 M, RH = 38 %) at 25°C

• I LC is that needed to maintain concentration of 50% of saturation
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Maximum Cathode Current Decreases with

Increasing Pit Size with Precipitation

• With increased pit size, the cathode pH remains constant, increasing

Mg species precipitation and decreasing cathodic current
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Ideal Cathode Radius Decreases
with Increased Precipitation

• Conductivity decreases with increased
precipitation, which is a result of

increased pit size

„

Increasing Pit Size

• Increased ohmic drop, due to a lower
conductivity, leads to the decrease in
cathode size
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Cathodic Precipitation Affects Max Pit Size More in

Concentrated Brines

• Larger pit differences seen at elevated concentrations of MgCl2

• Water layer is orders of magnitude smaller in saturated solutions
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Cathodic Precipitation Affects Conductivity More in

Concentrated Brines

Kef f k (1
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• More drastic change in conductivity and a lower (i • x) leads to a
greater difference in maximum pit size
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Larger Difference in Pit Radius at Lower Percentage

of Saturation

• Critical current (ILO needed to maintain
aggressive environment can be a fraction of
saturation

• Values can range from 45 % to 70 % [1-3]

f(MeCln)

M+1.
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Larger Difference in Pit Radius at Lower Percentage

of Saturation 500 -\ 
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Conclusions

• Considering cathodic precipitation decreases calculated maximum pit sizes
significantly

• Pit sizes decrease by roughly 20% in saturated MgCl2

• Cathode sizes decrease when considering precipitates due to increased
ohmic drop

• Precipitation reactions influence pit sizes most in concentrated solutions
and at low values of pit saturation

?AqRGINIA
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Future Work

• Further assumptions to be explored in max pit modeling:

• No mass transport in cathode

• No metal hydroxide precipitates

• Dehydration reactions

im

Ir

(a)

(b)

Icath(Ko)

pH < PHcat

Icath(Ket_

pH > pHcrit

id)

PtaVikoWipe61444,6,

pH >
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Background Cathode Properties

• Substantial pH rise possible in the cathode region

02 + H20 + 4e- 40H- 2H20 + 2e- H2 + 20H-

• With pH increase, stable precipitates can form in the cathodic region
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MgC12 Concentration (mol/L)

• Multiple precipitates present in seawater
brines

• Still mainly Mg precipitates
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MgC12 and Seawater Polarization Scans
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Pit Stability and Repassivation Potential

• Determined through the lead in pencil technique
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MgC12 Properties
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Calculating I cath

Cathode: area with radius r,

Anode: area with radius r,

Max. Cathode

Current

ln lc,max

Brine Brine Cathodic

Conductivity Thickness Kinetics

E
4n-K(WL)AEmax n
 + ln

era
fE 

n

co

, i

rr(vc — 
ip)dE

Ic,max AEmax

Err, = Repassivation Potential

Ecorr = Corrosion Potential

I LC

ir

Limiting anodic
current demand:

(/
I LC = ranode

crit

. Ut_NIVERSITY
VIRGINIA
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Calculating Equivalent Current Density

Cathodic

Kinetics l
Erp

(ic — ip )dE

Ecorr 

!Ur

• Intersection of cathodic and anodic
currents yields a maximum pit size
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MgC12 precipitates
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• Stable phases in the
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65

SEM KV: 21.0 kV

Vlew field: 413 pm

SEM MAG: 670 x

VERSITY
4RGINIA

40


