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ABSTRACT: Accurate photovoltaic (PV) production forecasting is an important feature that can assist utilities
and plant operators in the direction of energy management and dispatchability planning. Although numerous
forecasting models have been reported in literature, the challenge of improved accuracy remains unsolved. In
this work, a day-ahead PV power model utilising a hybrid approach is derived to feed into an Artificial
Neural Network (ANN) and a linear regression model trained for PV power forecasting. The study focuses
on improving the forecasting accuracy by employing machine learning and linear regression models that
could record the behaviour of the PV system. The performance of the hybrid model was assessed against a
single ANN model using a historical test set. The results showed that the hybrid model outperformed the
single ANN model exhibiting a normalised mean square error (nRMSE) of 7.05%.
Keywords: artificial neural networks, forecasting, performance, photovoltaic, power.

1 INTRODUCTION

PV production forecasting can mitigate the power
quality effects posed by large shares of distributed
systems through active grid management and is,
therefore, an important feature that can assist utilities and
plant operators in the direction of energy management
and dispatchability planning More specifically, short-
term PV production forecasts (intra-hour) are necessary
for power ramp and voltage flicker prediction as well as
control operations and dispatch management. On the
other hand, mid-term PV production forecasting (intra-
day and day-ahead) is used for load consumption and
production monitoring to control voltage and frequency
levels and reduce secondary reserve.

During the last decades, electricity system operation
has been upgraded involving PV production forecasts and
most commonly adopted PV production forecasting
approaches are based on time series analysis techniques
[1]. In addition, parametric models for PV production
forecasting have akeady been developed [2], [3] but their
ability to forecast the power output of PV systems is not a
straightforward process since accurate knowledge of
system characteristics and behaviour is required.
Therefore, a huge share of research is devoted to the
development of more sophisticated and flexible
prediction techniques using non-parametric models based
on machine learning algorithms [4]—[9]. In order to train
a PV power forecasting model with identical data,
weather classification and machine learning techniques
may be performed [10], [11]. Moreover, joint models
comprised of a combination of features of a physical
model and artificial neural networks (ANNs) were
presented elsewhere [7], [12]. Although a significant
number of PV power forecasting tools have been
developed, the challenge to provide a location-
independent and validated (against large scale data-sets)
model for different PV module types remains unsolved.
Additionally, to improve the accuracy of PV power
prediction, adaptive methods that can capture system
information and behaviour without the need of datasheet
and installation information must be employed. This is
crucial because a large proportion of PV systems includes

de-centralized rooftop installations where knowledge of
system information is not always available.

Furthermore, the system's behaviour can be
estimated by processing recent PV operational data-sets
using the classical approach of the feedforward neural
network (FFNN). The classical approach of the FFNN
with an input, a hidden and an output layer of linear and
non-linear activation functions can be viewed as a
convenient way to predict the power output of PV
systems. FFNN can be trained to develop relational
weighted chains between internal nodes to overcome the
limitations of traditional methods to solve complex
problems, which can be modelled through a supervised
learning technique based on historical data. Because of
this chain of relationships, theoretically, multi-layered
neural networks can be universal approximators and have
tremendous potential to perform any nonlinear mapping
through a learning process based on historical time-series
[13]. In addition, ANNs are efficient for online training
due to their capability of reflecting the information of
new instances on a model by changing the weight values
only.

Another approach is to utilise Numerical Weather
Prediction (NWP) models to forecast weather variables
[3], [14]—[16]. NWP models deliberate the atmosphere as
a fluid thus the concept of weather forecasts is to
parametrise the state of the fluid at a certain time (t) by
utilising the fluid- and thermo-dynamic equations to
forecast the state of the fluid at time (t + n) [17]—[19].

In this work, a day-ahead PV power model utilising a
hybrid approach is derived to feed into an ANN and a
linear regression model trained for PV power forecasting.
The study focuses on improving the forecasting accuracy
by employing machine learning and linear regression
models that could record the behaviour of the PV system.

2 EXPERIMENTAL SETUP

2.1. Outdoor test facility description
The outdoor test facility (OTF) of the University of

Cyprus includes a fixed plane infrastructure for outdoor
performance assessments at both the module and system
level. The installed poly-c-Si system was mounted in a
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portrait arrangement on aluminium mountings, at the
optimum annual energy yield plane-of-array (POA) angle
for Cyprus of 27.5°.

The PV system was connected to a data-acquisition
platform, used for the monitoring and storage of
meteorological and PV operational data. The
performance of the system and the prevailing
meteorological conditions were recorded according to the
requirements set by the IEC 61724 [20]. Specifically, the
irradiance and meteorological measurements include the
global horizontal irradiance (GH1), in-plane global
irradiance (Gi), relative humidity (RH), wind direction
( Wa), wind speed ( Ws) and ambient temperature ( Tamb).
The PV system operational measurements include the
maximum power current (Imp), voltage ( Vinp) and power
(Pmp), as measured at the output of the PV array (DC
side) [21], [22]. Additionally, the elevation angle of the
sun (a) and the azimuth angle of the sun (yos) were
calculated [23] for the location of the OTF.

2.2 PV system description
The PV system comprises of five poly-c-Si PV

modules. The modules of the system are connected in
series to form a PV string at the input of a string inverter.
The main technical specifications of the test PV system
are summarised in Table I.

Table I: Installed PV system technical characteristics.

Technical characteristic Parameter
Modules
System power (datasheet)
Installation date
Efficiency

3 METHODOLOGY

5 X poly-c-Si
1365 Wp

01/06/2015
14.40%

The hybrid model comprised of two separate models.
The ANN model was deployed to forecast the PV power
during irradiance levels > 300 W/m2, whereas the linear
regression model was used to forecast the PV power
during irradiance levels lower than 300 W/m2. This
approach was selected after a series of stress tests on both
models, where their corresponding behaviours on high
and low irradiance levels was recorded and analysed.
Both models were fed with historical meteorological and
PV operational data see Figure 1). Furthermore, the
models were optimised according to their input
parameters, training/testing dataset range and their
architectural (hyper) parameters.

Weather
parameters_ j

Model

Day-ahead PV
Power Forecast

Figure 1: Methodology of the proposed hybrid model.
Each model was trained with data within the predefined
boundaries, which are described by the red dotted lines.

The best-perfotming model was selected through a
series of validation tests including the optimisation of
input combinations and sizes and hyper parameters of the
ANN model. More specifically, the annual dataset was
divided into three subsets including a training, validation

and testing set. Training and validation sets were used to
identify the best-performing model, by varying the input
parameters and training period from 30% to 70% of the
actual dataset. Additionally, the hyper parameters of the
ANN model were tested by employing the validation set
while the test set was used as the final assessment of the
best-performing model (when the NWP data were
employed).

3.1 Artificial Neural Networks
A Bayesian Regularization Neural Network (BRNN)

is essentially a simple Multi-Layer Perceptron (MLP) in
which a Bayesian regularization has been applied to its
training function. The proposed model is given by Eq. (1)
[24], [25]:
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where e‘-N (0, e), s is the number of neurons, Wk is the
weight of the k-th neuron, bk is a bias for the k-th neuron,
/3/k/ is the weight of the j-th input to the net, and gk() is
the activation function:

exp (2x ) — 1
gk (x) —  

exp (2x) +1
(2)

The model will minimise according to Eq. (3) [24],
[25]

F = flE D + aEw (3)

where ED is the error of sum squares, E w is the sum of
squares of network parameters (weights and biases). Ew
is the sum of squares of network parameters (weights and
biases), )6 and a are the dispersion parameters for weights
and biases.

The regularisation term applied was the squared sum
of the weights of the neural network [26]:

N a M
CT = flCD 

aeR = k t2 k=1 2
(4)

where a and )6 are coefficients assigned to each term. The
second term in Eq. (4) is called weight decay and it
ensures that the weights of the network do not exceed the
total error of the network.

Once the data were fed into the network, the density
function for the weights can be updated according to the
Bayes' rule [25]:

M,11,444P(wl a, /11)
POsi D, cqi, -  (5)

1V1 0,4
where D represents the data-set, M the model used for the
Neural Network and w is the vector of neural network's
weights. P(w a, M) represents the values of weights
prior to the data-set input. P(Dlw,fl, M) is the probability
of the data occurring based on the weights. P(Dla,fi, M) is
a normalisation factor, which ensures that the total
summation of the probability is one.

In addition, the regularisation term is used to prevent
overfitting, by controlling the effective complexity of the
neural network. The regularisation of the designed



networks in this study was performed by adding a penalty
equal to the L2-norm of the weights, in order to reduce
the value of the weights by the same factor.

3.2. Linear regression model
A linear regression model is a linear method to model the
association among a scalar response of one or more
independent variables [27]:

y=A+fi.xi+A.X+... (6)

where is the intercept, /31, /32 are the coefficients for
each parameter and Xi, X2 ... are the input parameters.

3.3 Numerical Weather Predictions
The utilised NWP data were derived from the

Weather Research and Forecasting (WRF) Model, which
is a mesoscale NWP model designed for atmospheric
research and operational forecasting applications [28].

3.4 Model performance assessment
The forecasting performance accuracy was assessed

based on several predefined metrics when the test set was
applied to the developed algorithms. The metrics
commonly used in PV production forecasting
applications include the mean absolute percentage error
(MAPE), root mean square error (RMSE) and normalised
RMSE (nRMSE) to the nominal PV system peak power:

100 n Yactuati Ypredicted,i
MAPE = — x E

i=1 (7)n
Yactual,i

1 n 2
RMSE = 4 x E (Yactual,i Ypredicted,i (8)

= 1
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1

nRMSE =

=
nominal

where ÿactual4 and ÿforecasted, is the actual and predicted
irradiance and power respectively, Ynommal is the nominal
peak power of the PV system (1365 W).

4 RESULTS

The hybrid model comprised of 4 input parameters
[29] (forecasted GHI, forecasted Tamb, a and os).

Table II demonstrates the error performance results
of the single ANN model against the hybrid model over
110 days. The hybrid model exhibits improved accuracy
compared to the performance of the single ANN model.
Specifically, the hybrid model demonstrates an nRMSE
and MAPE (7.05%, 5.86%) with a —2% decrease
compared to the single ANN model (9.35%, 8.72%).

Table II: Performance metrics of the single ANN model
against the hybrid model.

Metrics
Forecasts MAPE RMSE nRMSE

(%) (W)
(%)

ANN 8.72% 127.62 9.35%

Hybrid Model 5.86% 96.23 7.05%

In addition, Figure 1 demonstrates the daily nRMSE

results of the hybrid model. As can be observed, the

majority of days are below the 6% error, while all the

tested days are exhibiting nRMSE below the 9%.

1
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Figure 2: Daily nRIVISE results of the hybrid model. The
blue dashed line demonstrates the average nRMSE which
is 7.05%.

In addition, Figure 3 demonstrates the histogram of
the error distribution of the hybrid model (Fig. 3a) and
single ANN model (Fig. 3b). It can be seen that the
hybrid model exhibits the minimum error distribution
compared to the single ANN model.

c

u_

o-

CO

o
tin

o

o

o _

o

o

<1 -

o

o

o

(a)

1 0

(b)

1 5 2 0 2 5 3 0

2 3 4 5 6

Error (%)

Figure 1 Histogram of the error distribution of : (a)
Hybrid model and (b) single ANN model.

Finally, Figure 4a demonstrates the diurnal comparison
of a typical day exhibiting higher errors during the low

irradiance hours whereas Figure 4b demonstrated the
improvements by applying the hybrid model.
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Figure 2: Typical day of the observed against the
forecasted power of: (a) single ANN model and (b)
Hybrid model. The hybrid model corrected the high
errors during the low irradiance hours.

5 CONCLUSIONS

A robust hybrid model was developed comprised of
an ANN model and a linear regression. The ANN model
was deployed to forecast the PV power during irradiance
levels > 300 W/m2, whereas the linear regression model
was used to forecast the PV power during irradiance
levels lower than 300 W/m2.

The results showed that the hybrid model exhibits the
best performance compared to the single ANN model.
Specifically, the hybrid model demonstrated an nRIVISE
and MAPE with a —2% absolute decrease compared to
the single ANN model, while all the test days of the
hybrid models were exhibiting errors below 9%.
Furthermore, the error distribution of the hybrid model
has a significant reduction during the low irradiance
hours compared to the single ANN model.
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