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ABSTRACT: Different data pipelines and statistical methods are applied to photovoltaic (PV) performance datasets
to quantify the PV module degradation rate. Since the real value of degradation rate is unknown, a variety of
unvalidated values has been reported in the literature. As such, the PV industry commonly treats this metric in an
assumptive manner based on a statistically extracted range from the literature. However, the accuracy and uncertainty
of degradation rate depends on a number of parameters including seasonality in respect to the local climatic
conditions and also the response of a particular PV technology. In addition, the selection of data pipeline and
statistical method may compound on the accuracy and uncertainty. In order to provide insights, a framework of bulk
simulations of PV performance datasets using data from different climates is under development. Known degradation
rates are emulated and large parametric studies are conducted in order to observe the convergence time on different
PV module types based on several selection criteria such as performance metric, statistical method, etc. The
preliminary results that are presented in this paper confirm that, indeed, climates and PV module types with typically
lower seasonality can provide accurate degradation rate results in a shorter time period, compared to locations and PV
module types that exhibit higher seasonality. As expected, the selection of data pipeline (e.g. metric, temperature
correction, etc.) and statistical method also has a strong influence and therefore, introduces additional challenges.
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1 INTRODUCTION

Photovoltaic (PV) energy yield predictions require
knowledge of the power decay over time (i.e. the
degradation rate, RD). Knowing the RD value of a system
is of utmost importance since its tradeoff with cost and
efficiency has a direct influence on the levelized cost of
energy.

The real value of RD is unknown, but it is commonly
approximated by applying statistical methods on PV
performance timeseries. Such timeseries exhibit a
seasonal behavior depending mainly on the location,
climate, and also the PV module material. Location and
climate affect PV seasonality in respect to irradiance and
its spectral composition and angle-of-incidence, ambient
temperature, wind speed/direction etc. On the other hand,
PV modules respond differently to these conditions
depending on their material. For example, crystalline
silicon (c-Si) technologies are characterized by a higher
temperature dependence (i.e., higher temperature
coefficients) compared to thin-fihn technologies (i.e.,
lower temperature coefficients). Furthermore, the
external quantum efficiency varies among different PV
module materials and therefore, the response to spectral
variations differs; e.g., amorphous silicon (a-Si)
technology is known to be more sensitive to changes in
spectrum due to its "narrow" spectral response [1].

In order to reduce seasonality, PV performance
timeseries are usually processed in different ways in
respect to data normalization, applied corrections,
aggregation, etc. These steps, however, are not perfect,
and the normalized signals still contain seasonal
fluctuations that affect the accuracy and corresponding
statistical uncertainty of RD estimation. Furthermore,
seasonal decomposition models can be applied to remove
seasonality and extract the trend of PV performance
timeseries. To this end, several methods exist in
literature, with varying degree of "accuracy" which also
depends on the seasonality of PV performance timeseries.

In general, it is recommended to allow several cycles to
be completed in order to estimate RD with relatively low
uncertainty [2-4]. The number of cycles differs or is often
unquantified in literature; this is simply because it
depends on climate, location, PV module type, data
processing pipeline and applied methodology.
Furthermore, other effects such as nonlinear degradation
behavior may also exist [5-7] which may increase the
statistical uncertainty if the timeseries are fitted with
linear models.

Due to the aforementioned challenges of different
pipelines of data normalization, corrections, aggregation,
statistical methods and undefined "adequate length of
timeseries" as well as other challenges such as noise,
filtering, etc., there is no proven methodology that would
enable a standardized procedure for estimating the PV
RD. As such, irreproducible results among analysts occur,
even when the same raw dataset is used [8, 9]. Therefore,
accurate knowledge of the real value of RD is challenging
and remains unknown. This, in turn, raises questions
regarding the validity of RD values, which are often used
by the industry based on the commonly cited RD of -
0.5%/year for module-level degradation [10]. On the
other hand, the well-known PV degradation rate studies
conducted by Jordan et al. [11, 12] reported average
degradation rates between -0.8%/year to -0.9%/year
(median -0.5%/year to -0.6%/year). These statistical
studies were based on a large sample of unvalidated RD
values from around the world whose accuracy might be
challenged, due to the aforementioned issues.

In order to provide insights on how different
decisions can influence RD estimations, and since the real
RD values are unknown, a comprehensive framework for
a worldwide parametric analysis is under development. In
this paper, specific locations from different Koppen-
Geiger-PV (KGPV) climate zones were selected to
generate synthetic PV datasets of known degradation
rates using weather data over 30 years. The analysis
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Figure 1: Map with the 11 locations considered in this study representing each KGPV zone in the northern hemisphere. In addition to these,
four more locations were added to the analysis: Atacama Desert, Chile (BK) and Gibson Desert, Australia (BK) from the southern
hemisphere, Albuquerque, USA (CK) and Lisbon, Portugal (DH). First letter of KGPV classification represents temperature and precipitation
(A: Tropical, B: Desert, C: Steppe, D: Temperate, E: Cold, F: Polar) whereas the second letter is based on solar irradiation (L: Low, M:
Medium, H: High, K: Very high). Figure courtesy of Ascencio-Vasquez et al. [13].
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Figure 2: Modeled PV performance data over a 30-year period
using ERA5 datasets. Degradation rates ranging from -1%/year
to -3%/year were applied to the power data. The case of "no
degradation" is also displayed as a reference.

includes different statistical models, timeseries lengths
and metrics.

2 METHODOLOGY

15 locations were selected based on the KGPV
climate classification that divides the globe into 12 zones
with respect to temperature, precipitation and irradiation,
and standardizes the PV performance evaluations in
regions with similar climatic locations [13] (Fig. 1).
Long-term meteorological data (hourly over 30 years)
were sourced from the global reanalysis ERA5 of the
European Centre for Medium-Range Weather Forecasts
(ECMWF) [14]. These data were used as inputs to PV
performance models of a monocrystalline silicon (c-Si)
and cadmium telluride (CdTe) modules using the Sandia
PV Array Performance Model (SAPM) [15] from pvlib-
python [16]. A linear degradation rate from -1%/year to -
3%/year was then applied to the performance data (see
Fig. 2) and a parametric analysis including different
metrics (performance ratio, PR, and temperature
corrected PR, PRrc), dataset length (2-30 years), and
methods (ordinary least square, OLS, classical seasonal
decomposition, CSD, seasonal and trend decomposition
with LOESS, STL, and Holt-Winters, HW) was
performed. Only a nighttime filter was applied to the data
(100 — 1200 W/m2).

Although some of the rates of emulated degradation
are not realistic (e.g., linear -3%/year over PV lifetime),
they were selected in order to observe whether they
influence the convergence time or not. This can also be

helpful in the case of nonlinear degradation with rapid
performance loss during the initial PV lifetime; for
example, light and temperature induced degradation
(LeTID) in the case of passivated emitter and rear contact
(PERC) PV modules [17].

3 RESULTS

The obtained results are summarized in the form of
boxenplots in Fig. 3 and 4. These plots are similar to
boxplots, but they provide more information on data
distribution and are useful when data are not normally
distributed. The largest box represents the interquartile
range or 50% of the data (similar to a boxplot) whereas
the second largest represents the 1-1/8th percentile (75%
of data), the third largest the 1-1/10 percentile (87.5% of
data) and so on. The black lines and diamonds represent
the median and outlying values, respectively. Fig. 3
demonstrates the minimum number of years needed to
converge to degradation rates within 2% of relative
percentage error (arbitrary selection) using the four
statistical methods. It includes all 15 locations under
investigation for both monthly PR and PRrc metrics and
emulated degradation rates from -1%/year to -3%/year.
Overall, it can be observed that each statistical method
behaves differently depending on the level of degradation
and whether the metric is temperature corrected or not. In
respect to the level of degradation, all methods behave
similarly achieving faster convergence with increasing
degradation rates. The decomposition models (CSD and
STL) converge faster with a median number of years
ranging from — 3 (CSD on PRrc for -3%/year) to — 6
years (STL on PR for -1%/year). The simplest and most
commonly used method of linear regression (i.e. OLS)
exhibited the slowest convergence time with median
minimum number of years of 7 years (LR on PR for -
1%/year). HW, which is the least popular method, ranged
from — 4 to 6 years of minimum number of years. It is
worth noting that although the decomposition models
demonstrated a faster convergence, the maximum values
are well above 15 years, which indicate that the selection
of optimum combination of data pipeline and statistical
method will not be universal. Further studies will be
conducted to investigate this.

The hypothesis relating convergence time with PV
material was investigated and the preliminary results are
summarized in Fig. 4. Again, it can be seen that for both
c-Si and CdTe PV technologies, shorter PV performance
time-series are required with increasing degradation rate.
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Figure 3: Boxenplot demonstrating the minimum years required to converge within a 2% percentage error of the "rear RD value taking
into account all locations, statistical methods, levels of RD and both corrected and uncorrected PR values.
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Figure 4: Boxenplot demonstrating the minimum years required to converge within a 2% percentage error of the "rear RD value taking into
account all 15 locations, statistical methods, levels of RD, both corrected and uncorrected PR values and c-Si and CdTe modules.

Furthermore, the reduced seasonality commonly
observed on the performance of CdTe technology enables
slightly faster convergence time; however, the difference
is reduced with increasing rates of degradation.

4 CONCLUSIONS

A new comprehensive framework for a worldwide
parametric analysis of PV degradation modeling is under
development. The first results using data of known linear
degradation rate values on synthetic PV performance
datasets demonstrated that each statistical method
behaves differently depending on the location,
technology, metric and timeseries length. Temperature
correction, decomposition models, and CdTe converge
faster, due to reduced seasonality. This work will expand
and investigate a larger number of locations including
additional methods, finer aggregation steps and other
metrics. Confidence intervals are equally important to the
degradation value itself; this will be reported in future.
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